
Completeness for Identity-free Kleene Lattices1

Amina Doumane2

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France3

amina.doumane@ens-lyon.fr4

Damien Pous5

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France6

damien.pous@ens-lyon.fr7

Abstract8

We provide a finite set of axioms for identity-free Kleene lattices, which we prove sound and9

complete for the equational theory of their relational models. Our proof builds on the complete-10

ness theorem for Kleene algebra, and on a novel automata construction that makes it possible to11

extract axiomatic proofs using a Kleene-like algorithm.12

2012 ACM Subject Classification Theory of computation → Regular languages13

Keywords and phrases Kleene algebra, Graph languages, Petri Automata, Kleene theorem14

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.1815

Related Version Long version at https://hal.archives-ouvertes.fr/hal-0178084516

Funding This work has been funded by the European Research Council (ERC) under the17

European Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157). This work18

was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within19

the program "Investissements d’Avenir" (ANR-11-IDEX-0007) operated by the French National20

Research Agency (ANR).21

1 Introduction22

Relation algebra is an efficient tool to reason about imperative programs. In this approach,23

the bigstep semantics of a program P is a binary relation [P] between memory states [19,24

21, 6, 15, 1]. This relation is built from the elementary relations corresponding to the25

atomic instructions of P , which are combined using standard operations on relations, for26

instance composition and transitive closure, that respectively encode sequential composition27

of programs, and iteration (while loops). Abstracting over the concrete behaviour of atomic28

instructions, one can compare two programs P,Q by checking whether the expressions [P]29

and [Q] are equivalent in the model of binary relations, which we write as Rel |= [P] = [Q].30

To enable such an approach, one should obtain two properties: decidability of the31

predicate Rel |= e = f , given two expressions e and f as input, and axiomatisability of32

this relation. Decidability makes it possible to automate the verification process, thus33

alleviating the burden for the end-user [16, 13, 9, 24, 27]. Axiomatisation offers a better way34

of understanding the equational theory of relations and provides a certificate for programs35

verification. Indeed, an axiomatic proof of e = f can be seen as a certificate, which can36

be exchanged, proofread, and combined in a modular way. Axiomatisations also make it37

possible to solve hard instances manually, when the existing decision procedures have high38

complexity and/or when considered instances are large [23, 16, 7].39

Depending on the class of programs under consideration, several sets of operations40

on relations can be considered. In this paper we focus on the following set of operations:41

© A. Doumane and D. Pous;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amina.doumane@ens-lyon.fr
mailto:damien.pous@ens-lyon.fr
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.18
https://hal.archives-ouvertes.fr/hal-01780845
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Completeness for Identity-free Kleene Lattices

composition (·), transitive closure (_+), union (+), intersection (∩) and the empty relation (0).42

The expressions generated by this signature are called KL−-expressions. An example of an43

inequality in the corresponding theory is Rel |= (a ∩ c) · (b ∩ d) ≤ (a · b)+ ∩ (c · d): when44

a, b, c, d are interpreted as arbitrary binary relations, we have (a∩ c) · (b∩d) ⊆ (a · b)+∩ (c ·d).45

The operations of composition, union and transitive closure arise naturally when defining the46

bigstep semantics of sequential programs. In contrast, intersection, which is the operation of47

interest in the present paper, is not a standard operation on programs. This operation is48

however useful when it comes to specifications: it allows one to express local conjunctions49

of specifications. For instance, a specification of the shape (a ∩ b)+ expresses the fact that50

execution traces must consist of sequences of smaller traces satisfying both a and b.51

Those operations contain those of identity-free regular expressions, whose equational52

theory inherits the good properties of Kleene algebra (KA).We summarise them below.53

First recall that each regular expression e can be associated with a set of words L(e) called54

its language. Valid inequations between regular expressions inequalities can be characterised55

by language inclusions [28]:56

Rel |= e ≤ f iff L(e) ⊆ L(f) (1)57

Second, we have the celebrated equivalence between regular expressions and non-deterministic58

finite automata (NFA) via a Kleene theorem: for every regular expression e, there is an NFA59

such that L(e) is the language of A, and conversely. Decidability follows (in fact, PSpace-60

completeness). Lastly, although every purely equational axiomatisation of this theory must61

be infinite [29], Kozen has proved that Conway’s finite quasi-equational axiomatisation [12]62

is sound and complete [18]. (There is also an independent proof of this result by Boffa [8],63

based on the extensive work of Krob [25].)64

Those three results nicely restrict to identity-free Kleene algebra (KA−), which form a65

proper fragment of Kleene algebra [20]. It suffices to consider languages of non-empty words:66

Equation (1) remains, Kleene’s theorem still holds, and we have the following characterisation,67

where we write KA− ` e ≤ f when e ≤ f is derivable from the axioms of KA−:68

L(e) ⊆ L(f) iff KA− ` e ≤ f (2)69

There are counterparts to the first two points for KL−-expressions. Each KL−-expression70

e can be associated with a set of graphs G(e) called its graph language, and valid inequations71

of KL−-expressions can be characterised through these languages of graphs. A subtlety here72

is that we have to consider graphs modulo homomorphisms; writing CG for the closure of a73

set of graphs G under graph homomorphisms, we have [10]:74

Rel |= e ≤ f iff CG(e) ⊆ CG(f) (3)75

KL−-expressions are equivalent to a model of automata over graphs called Petri automata [10].76

As for KA−-expressions, a Kleene-like theorem holds [11]: for every KL−-expression e, there is77

a Petri automaton whose language is G(e), and conversely. Decidability (in fact, ExpSpace-78

completeness) of the equational theory follows [10, 11].79

What is missing to this picture is an axiomatisation of the corresponding equational theory.80

In the present paper, we provide such an axiomatisation, which we call KL−, and which81

comprises the axioms for identity-free Kleene algebra (KA−) and the axioms of distributive82

lattices for {+,∩}. Completeness of this axiomatisation is the difficult result we prove here:83

CG (e) ⊆ CG (f) entails KL− ` e ≤ f (4)84

A. Doumane and D. Pous 18:3

We proceed in two main steps. First we show that G (e) ⊆ G (f) entails KL− ` e ≤ f ,85

using a technique inspired from [22], this is what we call completeness for strict language86

inclusion.The second step is much more involved. There we exploit the Kleene theorem for87

Petri automata [11]: starting from expressions e, f such that CG (e) ⊆ CG (f), we build two88

Petri automata A ,B respectively recognising G (e) and G (f). Then we design a product89

construction to synchronise A and B, and a Kleene-like algorithm to extract from this90

construction two expressions e′, f ′ such that G (e) = G (e′), KL− ` e′ ≤ f ′, and G (f ′) ⊆ G (f).91

This synchronised Kleene theorem suffices to conclude using the first step.92

To our knowledge, this is the first completeness result for a theory involving Kleene93

iteration and intersection. Identity-free Kleene lattices were studied in depth by Andréka,94

Mikulás and Németi [3]; they have in particular shown that over this syntax, the equational95

theories generated by binary relations and formal languages coincide. But axiomatisability96

remained opened. The restriction to the identity-free fragment is important for several97

reasons. First of all, it makes it possible to rely on the technique used in [10] to compare98

Petri automata, which does not scale in the presence of identity. Second, this is the fragment99

for which the Kleene theorem for Petri automata is proved the most naturally [11]. Third,100

‘strange’ laws appear in the presence of 1 [2], e.g., 1 ∩ (b · a) ≤ a · (1 ∩ (b · a)) · b, and101

axiomatisability is still open even in the finitary case where Kleene iteration is absent—see102

the erratum about [2].103

Proofs of completeness for other extensions of Kleene algebra include Kleene algebra with104

tests (KAT) [19], nominal Kleene algebra [22], and Concurrent Kleene algebra [26, 17]. The105

latter extension is the closest to our work since the parallel operator of concurrent Kleene106

algebra shares some properties of the intersection operation considered in the present work107

(e.g., it is commutative and it satisfies a weak interchange law with sequential composition).108

The paper is organised as follows. In Sect. 2, we recall KL−-expressions, their graph109

language and the corresponding model of Petri automata. In Sect. 3 we give our axiomatisation110

and state the completeness result. Then we show it following the proof scheme presented111

earlier: in Sect. 4 we show completeness for strict language inclusions, we recall in Sect. 5112

the Kleene theorem of KL− expressions, on which we build to show our synchronised Kleene113

theorem in Sect. 6.114

2 Expressions, graph languages and Petri automata115

2.1 Expressions and their relational semantics116

We let a, b . . . range over the letters of a fixed alphabet X. We consider the following syntax117

of KL−-expressions, which we simply call expressions if there is no ambiguity:118

e, f ::= e · f | e+ f | e ∩ f | e+ | 0 | a (a ∈ X)119
120

We denote their set by ExpX and we often write ef for e · f . When we remove intersection121

(∩) from the syntax of KL−-expressions we get KA−-expressions, which are the identity-free122

regular expressions.123

If σ : X → P(S × S) is an interpretation of the letters into some space of relations, we124

write σ̂ for the unique homomorphism extending σ into a function from ExpX to P(S × S).125

An inequation between two expressions e and f is valid, written Rel |= e ≤ f , if for every126

such interpretation σ we have σ̂(e) ⊆ σ̂(f).127

CONCUR 2018

18:4 Completeness for Identity-free Kleene Lattices

G ∩H ,
G

H

G ·H , G H

G (a) , a

Figure 1 Operations on graphs.

G ((a · (b ∩ c)) ∩ d) ,
a

d

b

c

G ((a · b) ∩ (a · c)) ,
a

a

b

c

Figure 2 Graphs associated with some terms.

2.2 Terms, graphs, and homomorphisms128

We let u, v . . . range over expressions built using only letters, ∩ and ·, which we call terms.129

(Terms thus form a subset of expressions: they are those expressions not using 0, + and _+.)130

We will use 2-pointed labelled directed graphs, simply called graphs in the sequel. Those are131

tuples 〈V,E, s, t, l, ι, o〉 with V (resp. E) a finite set of vertices (resp. edges), s, t : E → V the132

source and target functions, l : E → X the labelling function, and ι, o ∈ V two distinguished133

vertices, respectively called input and output.134

As depicted in Fig. 1, graphs can be composed in series or in parallel, and a letter can be135

seen as a graph with a single edge labelled by that letter. One can thus recursively associate136

to every term u a graph G (u) called the graph of u. Two examples are given in Fig. 2; graphs137

of terms are series-parallel [30].138

I Definition 1 (Graph homomorphism). A homomorphism from G = 〈V,E, s, t, l, ι, o〉 to139

G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉 is a pair h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that140

respect the various components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t, l = l′ ◦ g, ι′ = f(ι), and o′ = f(o).141

We write G′ CG if there exists a graph homomorphism from G to G′.142

Such a homomorphism is depicted in Fig. 3. A pleasant way to think about graph ho-143

momorphisms is the following: we have G C H if G is obtained from H by merging (or144

identifying) some nodes, and by adding some extra nodes and edges. For instance, the graph145

G in Fig. 3 is obtained from H by merging the nodes 1, 2 and by adding an edge between146

the input and the output labelled by d.147

The starting point of the present work is the following characterisation:148

I Theorem 2 ([5, Thm. 1], [14, p. 208]). For all terms u, v, Rel |= u ≤ v iff G (u) C G (v).149

2.3 Graph language of an expression150

To generalise the previous characterisation to KL−-expressions, one interprets expressions by151

sets (languages) of graphs: graphs play the role of words for KA-expressions.152

I Definition 3 (Term and graph languages of expressions). The term language of an expression153

e, written JeK, is the set of terms defined recursively as follows:154

Je · fK , {u · v | u ∈ JeK and v ∈ JfK} J0K , ∅155

Je ∩ fK , {u ∩ v | u ∈ JeK and v ∈ JfK} JaK , {a}156

Je+ fK , JeK ∪ JfK
q
e+y

,
⋃
n>0 {u1 · · · · · un | ∀i, ui ∈ JeK}157

158

The graph language of e is the set of graphs G(e) , {G(u) | u ∈ JeK}.159

A. Doumane and D. Pous 18:5

G :

`

4
5

6
a

d

b

c

H : 0
1

2
3

a

a

b

c

Figure 3 A graph homomorphism.

A

B

C
D

E0 12

3

b

c

d

a

b

c

Figure 4 A Petri automaton.

A
B

C
D

B

C
D

E

D

0 2 1

3

b

c

d

b

c

a

Figure 5 Run of a Petri automaton.

0 2 1

3

b

c

d

b

c a

Figure 6 Graph of a run.

Note that for every term u, JuK = {u}, so that the graph language of u thus contains just the160

graph of u. This justifies the overloaded notation G (u). Given a set S of graphs, we write161
CS for its downward closure w.r.t. C: CS , {G | GCG′, G′ ∈ S}. We obtain:162

I Theorem 4 ([10, Thm. 6]). For all expressions e, f , Rel |= e ≤ f iff CG (e) ⊆ CG (f).163

2.4 Petri automata164

We recall the notion of Petri automata [10, 11], an automata model that recognises precisely165

the graph languages of our expressions.166

I Definition 5 (Petri Automaton). A Petri automaton (PA) over the alphabet X is a tuple167

A = 〈P, T , ι〉 where:168

P is a finite set of places,169

T ⊆ P (P)× P (X × P) is a set of transitions,170

ι ∈ P is the initial place of the automaton.171

For each transition t = 〈◃t, t▹〉 ∈ T , ◃t is assumed to be non-empty; ◃t ⊆ P is the input of t;172

and t▹ ⊆ X × P is the output of t. We write π2 (t▹) , {p | ∃a, 〈a, p〉 ∈ t▹} for the set of the173

output places of t. Transitions with empty outputs are called final.174

A PA is depicted in Fig. 4: places are represented by circles and transitions by squares.175

Let us now recall the operational semantics of PA. Fix a PA A = 〈P, T , ι〉 for the176

remainder of this section. A state of this automaton is a set of places. In a given state S ⊆ P ,177

a transition t = 〈◃t, t▹〉 is enabled if ◃t ⊆ S. In that case, we may fire t, leading to a new178

state S′ = (S \ ◃t) ∪ π2 (t▹). We write S t→A S′ in this case.179

I Definition 6 (Run of a PA). A run is a sequence 〈S1, t1, S2, . . . , tn−1, Sn〉, where Si are180

states, ti are transitions such that Si
ti→A Si+1 for every i ∈ [1, n− 1], S1 = {ι} and Sn = ∅.181

A run of the PA from Fig. 4 is depicted in Fig. 5; this run gives rise to a graph, depicted in182

Fig. 6; see [11, Def. 3] for a formal definition in the general case.183

I Definition 7 (Graph language of a PA). The graph language of a PA A , written G (A),184

consists of the graphs of its runs.185

CONCUR 2018

18:6 Completeness for Identity-free Kleene Lattices

e ∩ (f ∩ g) = (e ∩ f) ∩ g e ∩ f = f ∩ e e ∩ e = e

e ∩ (f + g) = (e ∩ f) + (e ∩ g) e ∩ (e+ f) = e e+ (e ∩ f) = e

e+ (f + g) = (e+ f) + g e+ f = f + e e+ e = e

e·(f ·g) = (e·f)·g e·(f+g) = e·f+e·g (e+f)·g = e·g+f ·g e+0 = e e·0 = 0 = 0·e

e+ e·e+ = e+ = e+ e+·e e·f + f = f ⇒ e+·f + f = f f ·e+ f = f ⇒ f ·e+ + f = f

Figure 7 KL−: the first three lines correspond to distributive lattices, the last three to KA−.

PA are assumed to be safe (in standard Petri net terminology, places contain at most one186

token at any time—whence the definition of states as sets rather than multisets) and to187

accept only series-parallel graphs. These two conditions are decidable [11]. Here we moreover188

assume that all PA have the same set of places P .189

PA and KL−-expressions denote the same class of graph languages:190

I Theorem 8 (Kleene theorem [11, Thm. 18]).191

(i) For every expression e, there is a Petri automaton A such that G (e) = G (A).192

(ii) Conversely, for every Petri automaton A , there is an expression e such that G (e) =193

G (A).194

3 Axiomatisation and structure of completeness proof195

Let us introduce now our axiomatisation.196

I Definition 9. The axioms of KL− are the union of197

the axioms of identity-free Kleene algebra (KA−) [20], and198

the axioms of a distributive lattice for {+,∩}.199

It is easy to check that those axioms are valid for binary relations, whence soundness of KL−:200

I Theorem 10 (Soundness). If KL− ` e ≤ f then Rel |= e ≤ f .201

The rest the paper is devoted the converse implication, which thanks to Thm. 4 amounts to:202

I Theorem 11 (Completeness). If CG(e) ⊆ CG(f) then KL− ` e ≤ f .203

The following very weak form of Thm. 11 is easy to obtain from the results in the literature:204

I Proposition 1. For all terms u, v, G (u) C G (v) entails KL− ` u ≤ v.205

Proof. Follows from Thm. 4, completeness of semilattice-ordered semigroups [4] for relational206

models, and the fact the the axioms of KL− entail those of semilattice-ordered semigroups. J207

As explained in the introduction, our first step consists in proving KL− completeness w.r.t.208

strict graph language inclusions, i.e., not modulo homomorphisms:209

I Theorem 12 (Completeness for strict language inclusions). If G(e) ⊆ G(f) then KL− ` e ≤ f .210

The proof is given in Sect. 4. Our second step is to get the following theorem (Sect. 6):211

I Theorem 13 (Synchronised Kleene Theorem). If A ,B are PA such that CG(A) ⊆ CG(B),212

then there are expressions e, f such that:213

G (A) = G (e) , KL− ` e ≤ f , and G (f) ⊆ G (B) .214
215

A. Doumane and D. Pous 18:7

The key observation for the proof is that the state-removal procedure used to transform a216

PA into a KL− expression is highly non-deterministic. When considering two PA at a time,217

one can use this flexibility in order to synchronise the computation of the two expressions, so218

that they become easier to compare axiomatically. The concrete proof is quite technical and219

requires us to first recall many concepts from the proof [11] of Thm. 8(ii) (Sect. 5); it heavily220

relies on both Thm. 12 and Prop. 1.221

Completeness of KL− follows using Thm. 8(i) and Thm. 12 as explained in the introduction.222

4 Completeness for strict language inclusion223

Recall that the graph language of an expression e, G(e), is defined as the set of graphs of the224

term language of e, JeK. We first prove that KL− is complete for term language inclusions:225

I Proposition 2. If JeK ⊆ JfK then KL− ` e ≤ f .226

Proof. We follow a technique similar to the one recently used in [22]. We consider the227

maximal KA−-subexpressions, and we compute the atoms of the Boolean algebra of word228

languages generated by those expressions. By KA− completeness [18, 20], we get KA− (and229

thus KL−) proofs that those are equal to appropriate sums of atoms. We distribute the230

surrounding intersections over those sums and replace the resulting intersections of atoms by231

fresh letters. This allows us to proceed recursively (on the intersection-depth of the terms),232

using substitutivity to recover a KL− proof of the starting inequality. J233

The difference between the term language and the graph language is that intersection234

is interpreted as an associative and commutative operation in the latter. We bury this235

difference by defining a ‘saturation’ function s on KL−-expressions such that for all e,236

(†) KL− ` s(e) = e, and (‡) Js(e)K = {u | G(u) ∈ G(e)} .237
238

Intuitively, this function uses distributivity and idempotency of sum to replace all intersections239

appearing in the expression by the sum of all their equivalent presentations modulo associativ-240

ity and commutativity. For instance, s(a∩ (b∩c)) is a sum of twelve terms (six choices for the241

ordering times two choices for the parenthesing). Technically, one should be careful to expand242

the expression first by maximally distributing sums, in order to make all potential n-ary243

intersections apparent. For instance, ((a∩ b) + d)∩ c expands to ((a∩ b)∩ c) + (d∩ c) so that244

its saturation is a sum of twelve plus two terms. For the same reason, all iterations should be245

unfolded once: we unfold and expand (a ∩ b)+ ∩ c into ((a ∩ b) ∩ c) + ((a ∩ b) · (a ∩ b)+ ∩ c)246

before saturating it. We finally obtain Thm. 12 using (‡), Prop. 2, and (†):247

G(e) ⊆ G(f) ⇒ Js(e)K ⊆ Js(f)K ⇒ KL− ` s(e) ≤ s(f) ⇒ KL− ` e ≤ f248
249

5 Kleene theorem for Petri automata250

To prove the synchronised Kleene theorem (Thm. 13), we cannot use the Kleene theorem for251

PA (Thm. 8) as a black box: we use in a fine way the algorithm underlying the proof of the252

second item. We thus explain how it works [11] in details.253

Recall that to transform an NFA A to a regular expression e, one rewrites it using the254

rules of Fig. 8 until one reaches an automaton where there is a unique transition from the255

initial state to the final one, labelled by an expression e. While doing so, one goes through256

generalised NFA, whose transitions are labelled by regular expressions instead of letters.257

CONCUR 2018

18:8 Completeness for Identity-free Kleene Lattices

σ τ

B

ρ
A C

σ ρ
A ·B∗ · C7→ σ ρ

A

B

σ ρ
A ∪B7→

Figure 8 Rewriting rules for state-removal procedure.

We use the same technique for PA: we start by converting the PA into a NFA over a258

richer alphabet, which we call a Template Automaton (TA), then we reduce this automaton259

using the rules of Fig. 8 until we get a single transition labelled by the desired expression.260

To get some intuitions about the way we convert a PA into an NFA, consider the run in261

Fig. 5 and its graph in Fig. 6. One can decompose the run and the graph as follows:262

{A} {B,C,D} {B,C,D} {E,D} ∅

b

c

d

A

B

C

D

b

c

D D

B

C

B

C

a

D D

B

C
EE

D

263

The graph can thus be seen as a word over an alphabet of ‘boxes’, and the run as a path in an264

NFA whose states are sets of places of the PA. The letters of the alphabet, the above boxes,265

can be seen as ‘slices of graphs’; they arise naturally from the transitions of the starting PA266

(Fig. 4 in this example).267

5.1 Template automata268

In order to make everything work, we need to refine both this notion of states and this notion269

of boxes to define template automata:270

states (sets of places) are refined into types. We let σ, τ range over types. A type is a271

tree whose leaves are labelled by places. When we forget the tree structure of a type τ ,272

we get a a state τ . See [11, Def. 10] for a formal definition of types, which is not needed273

here. We call singleton types those types whose associated state is a singleton.274

letters will be templates: finite sets of boxes like depicted above but with edges labelled275

with arbitrary KL−-expressions; we define those formally below.276

Given a directed acyclic graph (DAG) G, we write minG (resp. maxG) for the set of its277

sources (resp. sinks). A DAG is non-trivial when it contains at least one edge.278

I Definition 14 (Boxes). Let σ, τ be types. A box from σ to τ is a triple
〈−→
p , G,←−p

〉
where279

G is a non-trivial DAG with edges labelled in ExpX , −→p is a map from σ, the input ports, to280

the vertices of G, and ←−p is a bijective map from τ , the output ports, to maxG, and where281

an additional condition relative to types holds [11, Def. 11]. (This condition can be kept282

abstract here.) A basic box is a box labelled with letters rather than arbitrary expressions.283

A 1-1 box is a box between singleton types.284

We let α, β range over boxes and we write β : σ → τ when β is a box from σ to τ .285

We represent boxes graphically as in Fig. 9. Inside the rectangle is the DAG, with the286

input ports on the left-hand side and the output ports on the right-hand side. The maps −→p287

and ←−p are represented by the arrows going from the ports to vertices inside the rectangle.288

A. Doumane and D. Pous 18:9

a+ b

c

a ∩ c

a

A

C

D

E

F

G

H H
b

a

b
E

F

G

A

C

D

H H

a+ b

c

a ∩ c

a b

a

b
A

C

D

A

C

D

H H

Figure 9 Two boxes and their composition.

a

b

c

b

b
a

A

B

C

D

E

A

B

C

D

E

Figure 10 An atomic box.

Note that unlike ←−p , the map −→p may reach inner nodes of the DAG. 1-1 boxes are those with289

exactly one input port and one output port.290

Boxes compose like in a category: if α : σ → τ and β : τ → ρ then we get a box291

α · β : σ → ρ by putting the graph of α to the left of the graph of β, and for every port292

p ∈ τ , we identify the node ←−p1 (p) with the node −→p2 (p). For instance the third box in Fig. 9293

is obtained by composing the first two.294

The key property enforced by the condition on types (kept abstract here) is the following:295

I Lemma 15. A 1-1 box is just a series-parallel 2-pointed graph labelled in ExpX .296

Accordingly, one can extract a KL−-expression from any 1-1 box β, which we write e (β) and297

call its expression.298

I Definition 16 (Templates). A template Γ : σ → τ is a finite set of boxes from σ to τ . A299

1-1 template is a template of 1-1 boxes. The expression of a 1-1 template, written e (Γ), is300

the sum of the expressions of its boxes.301

Templates can be composed like boxes, by computing all pairwise box compositions.302

I Definition 17 (Box language of a template). A basic box is generated by a box β if it can303

be obtained by replacing each edge x e−−→ y of its DAG by a graph G′ ∈ G (e) with input304

vertex x and output vertex y. The box language of a template Γ, written B(Γ), is the set of305

basic boxes generated by its boxes.306

As expected, the box language of a template Γ : σ → τ only contains boxes from σ to τ .307

Thanks to Lem. 15, when Γ is a 1-1 template, its box language can actually be seen as a set308

of graphs, and we have:309

I Proposition 3. For every 1-1 template Γ, we have B(Γ) = G (e (Γ)).310

We can finally define template automata:311

I Definition 18 (Template automaton (TA)). A template automaton is an NFA whose states312

are types, whose alphabet is the set of templates, whose transitions are of the form 〈σ,Γ, τ〉313

where Γ : σ → τ , and with a single initial state and a single accepting state which are314

singleton types. A basic TA is a TA whose all transitions are labelled by basic boxes.315

By definition, a word accepted by a TA is a sequence of templates that can be composed316

into a single 1-1 template Γ, and thus gives rise to a set of graphs B(Γ). The graph language317

of a TA E , written G (E), is the union of all those sets of graphs.318

An important result of [11] is that we can translate every PA into a TA:319

I Proposition 4. For every PA A , there exists a basic TA E such that G (A) = G (E).320

CONCUR 2018

18:10 Completeness for Identity-free Kleene Lattices

TA were defined so that they can be reduced using the state-removal procedure from Fig. 8.321

Templates can be composed sequentially and are closed under unions, so that now we only322

miss an operation _∗ on templates to implement the first rule. Since we work in an identity-323

free (and thus star-free) setting, it suffices to define a strict iteration operation _+; and to324

rely on the following shorthands ∆ · Γ∗ = ∆ ∪∆ · Γ+ and Γ∗ ·∆ = ∆ ∪ Γ+ ·∆.325

Such an operation is provided in [11]:326

I Proposition 5. There exists a function _+ on templates such that if the TA obtained from327

a PA A through Prop. 4 reduces to a TA E by the rules in Fig. 8, then G (A) = G (E). 1
328

One finally obtains the Kleene theorem for PA by reducing the TA until it consists of a single329

transition labelled by a 1-1 template Γ: at this point, e (Γ) is the desired KL−-expression.330

5.2 Computing the iteration of a template331

We need to know how the above template iteration can be defined to obtain our synchronised332

Kleene theorem, so that we explain it in this section. This section is required only to333

understand how we define a synchronised iteration operation in Sect. 6.334

First notice that templates on which we need to compute _+ are of type σ → σ. We first335

define this operation for a restricted class of templates, which we call atomic.336

I Definition 19 (Atomic boxes and templates, Support). A box β =
〈−→
p , G,←−p

〉
: σ → σ is337

atomic if its graph has a single non-trivial connected component C, and if for every vertex v338

outside C, there is a unique port p ∈ σ such that −→p (p) =←−p (p) = v. An atomic template is339

a template composed of atomic boxes.340

The support of a box β : σ → σ is the set supp (β) ,
{
p
∣∣ −→p (p) 6=←−p (p)

}
. The support341

of a template is the union of the supports of its boxes.342

The following property of atomic boxes, makes it possible to compute their iteration:343

I Lemma 20 ([11, Lem. 7.18]). The non-trivial connected component of an atomic box344

β : σ → σ always contains a vertex c, s.t. for every port p mapped inside that component, all345

paths from −→p (p) to a maximal vertex visit c. We call such a vertex a bowtie for β.346

Notice that the bowtie of a box is not unique. For instance, the atomic box in Fig. 10347

contains two bowties: the blue and the red nodes.348

We compute the iteration of an atomic box as follows. First choose a bowtie for this box,349

then split it at the level of this node into the product α = β · γ. The box γ · β is 1-1, we can350

thus extract from it a term e (γ · β). We set α+ to be the template consisting of α and the351

box obtained from α by replacing the bowtie by an edge labelled e (γ · β)+. For the sake of352

conciseness, we denote this two-box template as on the right below, with an edge labelled353

with a starred expression.354

α = β γ α+ = β γ
e (γ · β)∗

355

1 This statement is not simpler because, unfortunately, there is no function _+ on templates such that
B(Γ+) = B(Γ)+).

A. Doumane and D. Pous 18:11

Data: Atomic template Γ
Result: A template Γ+ s.t. B(Γ+) = B(Γ)+

if Γ = ∅ then
Return ∅

else
Write Γ = ∆ ∪ {α} ∪ Σ such that
supp (∆) ⊆ supp (α) and
supp (Σ) ∩ supp (α) = ∅;
Choose a bowtie for α;
Split α into β · γ at the level of this bowtie;
Return (∆+ ·Σ∗)∪ (∆∗ ·Σ+)∪ (∆∗ · δ ·∆∗ ·Σ∗),
where δ is the two-box template depicted on
the right.

end

β γ
e (γ ·∆∗ · β)∗

Figure 11 Iteration of an atomic template.

It is not difficult to see that B(α+) = B(α)+. Depending on the bowtie we have chosen, the356

box α+ will be different. This is why we will write α+
./ to say that the bowtie ./ has been357

selected for the computation of the iteration.358

Now we need to generalise this construction to compute the iteration of an atomic359

template. For this, we need the following property, saying that the supports of atomic boxes360

of the same type are either disjoint or comparable:361

I Lemma 21. For all atomic boxes β, γ : σ → σ, we have either 1) supp (β) ⊆ supp (γ), or362

2) supp (γ) ⊆ supp (β), or 3) supp (β) ∩ supp (γ) = ∅.363

We can compute the iteration of an atomic template by the algorithm in Fig. 11; intuitively,364

atomic boxes with disjoint support can be iterated in any order: they cannot interfere; in365

contrast, atomic boxes with small support must be computed before atomic boxes with366

strictly larger support: the iteration of the latter depends on that of the former. (Also367

note that since supp (∆) ⊆ supp (α) we have also supp (∆+) ⊆ supp (α) thus the template368

γ ·∆∗ · β is 1-1 and it gives rise to an expression e (γ ·∆∗ · β).)369

We finally compute the iteration of an arbitrary template Γ : σ → σ as follows: from each370

connected component of the graph of each box in Γ stems an atomic box; let At(Γ) be the371

set of all these atomic boxes; we set Γ+ = At(Γ)+.372

The overall algorithm contains two sources of non-determinism. First, one can partially373

choose in which order to process the atomic boxes. This is reflected by the choice of the box α,374

which we will call the pivot. For instance if Γ = {α1, α2, β} such that supp (α1) = supp (α2)375

and supp (β) ∩ supp (α1) = ∅, then we can choose either α1 or α2 as the pivot, and the376

computation will respectively start with the computation of α+
2 or that of α+

1 , yielding two377

distinct expressions. (In contrast, choices about boxes with disjoint support do not change378

the final result.) Second, every box of the template is eventually processed, and one must379

thus choose a bowtie for all of them. We write Γ+
./,≤ to make explicit the choice of the380

bowties and the computation order.381

CONCUR 2018

18:12 Completeness for Identity-free Kleene Lattices

6 Synchronised Kleene theorem for PA382

We can now prove Thm. 13. To synchronise the computation of two expressions e, f for two383

PA A ,B respectively, we construct a synchronised product automaton E ×F between a TA384

E for A and a TA F for B.385

The states of this automaton are triples 〈σ, η, τ〉 where σ and τ are types, i.e., states386

from the TA E and F , and η : τ → σ is a function used to enforce coherence conditions.387

Its transitions have the form 〈〈σ, η, τ〉 , 〈Γ,∆〉 , 〈σ′, η′, τ ′〉〉 where 〈σ,Γ, σ′〉 is a transition of388

E , 〈τ,∆, τ ′〉 is a transition of F , and Γ and ∆ satisfy a certain condition which we call389

refinement, written Γ ≤ ∆.390

The overall strategy is as follows. We reduce E ×F using the rules of Fig. 8, where the391

operations · and ∪ are computed pairwise. The operation _∗ is also computed pairwise,392

but in a careful way, exploiting the non-determinism of this operation to ensure that we393

maintain the refinement relation. We eventually get a single transition labelled by a pair of394

1-1 templates Γ and ∆ such that B(Γ) = G (A), B(∆) = G (B), and Γ ≤ ∆. To conclude, it395

suffices to deduce KL− ` e (Γ) ≤ e (∆) from the latter property. To sum-up, what we need396

to do now is:397

Refinement: define the refinement relation ≤ on templates;398

Initialisation: define E ×F so that refinement holds;399

Stability: show that the refinement relation is maintained during the rewriting process;400

Finalisation: show that refinement between 1-1 templates entails KL− provability.401

6.1 Refinement relation402

We first generalise graph homomorphisms to templates; this involves dealing with multiple403

ports, with finite sets, and with edge labels which are now arbitrary KL−-expressions. For404

the latter, we do not require strict equality but KL−-derivable inequalities.405

I Definition 22 (Box and template homomorphisms). Let σ, τ, σ′, τ ′ be four types with two406

functions η : σ → τ and η′ : σ′ → τ ′. Let β =
〈−→
p β , 〈Vβ , Eβ , sβ , tβ , lβ〉 ,←−p β

〉
be a box407

of type τ → τ ′ and let α =
〈−→
p α, 〈Vα, Eα, sα, tα, lα〉 ,←−p α

〉
be a box of type σ → σ′. A408

homomorphism from α to β is a pair 〈f, g〉 of functions f : Vα → Vβ and g : Eα → Eβ s.t.:409

sβ ◦ g = f ◦ sα, tβ ◦ g = f ◦ tα,410

∀e ∈ Eα, KL− ` lβ ◦ g(e) ≤ lα(e),411

If {v} ⊆ Vα is a trivial connected component, so is f(v).412

−→
p β ◦ η = f ◦ −→p α and ←−p β ◦ η′ = f ◦←−p α. (We call this condition (η, η′)-compatibility.)413

We write β Cη,η′ α when there exists such a homomorphism. For two templates Γ : τ → τ ′414

and ∆ : σ → σ′, we write Γ Cη,η′ ∆ if for all β ∈ Γ, there exists α ∈ ∆ such that β Cη,η′ α.415

We abbreviate Γ Cη,η′ ∆ as Γ C ∆ when Γ,∆ are 1-1 templates, or when σ = τ , σ′ = τ ′ and416

η, η′ are the identity function id. A box homomorphism is depicted in Fig. 12.417

The above relation on templates is not enough for our needs; we have to extend it so that418

it is preserved during the rewriting process. We first write Γ v ∆ when B(Γ) ⊆ B(∆), for419

two templates Γ,∆ of the same type. Refinement is defined as follows:420

I Definition 23 (Refinement). We call refinement the relation on templates defined by421

≤η,η′ , Cη,η′ · (Cid,id ∪ v)∗, where _∗ is reflexive transitive closure.422

The following proposition shows that refinement implies provability of the expressions423

extracted from 1-1 templates. This gives us the finalisation step.424

A. Doumane and D. Pous 18:13

β :

`

a+

d

b

c

p p

q r

α :

p p

q r

(a ∪ b)+

(a ∪ c)+

c+

b

Figure 12 A box homomorphism.

α1 α2α =

f

β+
./′ =

β1 β2
e∗

α1 α2α+
./ =

f∗

β = β1 β2

Figure 13 Bowtie compatible boxes.

α =

f

β =

γ =

Figure 14 Case of bowtie incompatible boxes.

I Proposition 6. If ∆,Γ are 1-1 templates such that ∆ ≤ Γ, then KL− ` e (∆) ≤ e (Γ).425

Proof. When ∆ ⊆ Γ, it follows from Prop. 3 and Thm. 12; when ∆ C Γ, it follows from426

Prop. 1. We conclude by transitivity. J427

6.2 Synchronised product automaton (initialisation)428

I Definition 24 (2-Template automata (2-TA)). A 2-template automaton is an NFA whose429

states are tuples of the form 〈τ, η, σ〉 where τ, σ are types and η : σ → τ , whose alphabet is430

the set of pairs of templates, whose transitions are of the form 〈〈σ, η, τ〉 , 〈Γ,∆〉 , 〈σ′, η′, τ ′〉〉431

where Γ : σ → σ′, ∆ : τ → τ ′, and Γ ≤η,η′ ∆, and with a single initial state and a single432

accepting state which consist of singleton types.433

If T is a 2-TA, we denote by π1(T) (resp. π2(T)) the automaton obtained by projecting the434

alphabet, the states and the transitions of T on the first (resp. last) component. Note that435

π1(T) and π2(T) are TA.436

I Definition 25 (Synchronised product of TA). Let E ,F be two TA. The synchronised product437

of E and F , written E ×F is the 2-TA where 〈〈τ, η, σ〉 , 〈Γ,∆〉 , 〈τ ′, η′, σ′〉〉 is a transition of438

E ×F iff 〈τ,Γ, τ ′〉 is a transition of E , 〈σ,∆, σ′〉 is a transition of F and Γ ≤η,η′ ∆. (And439

with initial and accepting states defined from those of of E and F .)440

Note that we enforce refinement in the definition of this product, so that π1(E ×F) is441

a sub-automaton of E and π2(E ×F) is a sub-automaton of F . Thus G (π1(E ×F)) ⊆442

G (E) and G (π2(E ×F)) ⊆ G (F). When E ,F are TA coming from PA A ,B such that443
CG (A) ⊆ CG (B), we can use the results from [11] about simulations to strengthen the first444

inclusion into an equality:445

I Theorem 26. Let A ,B be two PA, E ,F be basic TA such that G (A) = L(E) and446

G (B) = L(F) (given by Prop. 4). If CG (A1) ⊆ CG (A2) then:447

G (π1(E ×F)) = G (A);448

G (π2(E ×F)) ⊆ G (B).449

CONCUR 2018

18:14 Completeness for Identity-free Kleene Lattices

Proof. The second point follows from the observation above. The first one comes from the sim-450

ulation result ([11, Prop. 9.10]) for PA. Indeed, if CG (A) ⊆ CG (B), then there is a simulation451

([11, Def. 9.2]) between A and B. This implies that for every run 〈τ1,Γ1, τ2, . . . ,Γn−1, τn〉 of452

E , there is a run 〈σ1,∆1, σ2, . . . ,∆n−1, σn〉 of F and a set of mapping ηi : σi → τi, i ∈ [1, n]453

such that Γi Cηi,ηi+1 ∆i for every i ∈ [1, n− 1]. J454

6.3 Maintaining refinement during reductions455

Let us finally show that refinement is stable by composition, union, and iteration.456

I Theorem 27 (Stability of refinement by · and ∪).457

If Γ1 ≤η,η′ Γ2 and ∆1 ≤η′,η” ∆2 then Γ1 ·∆1 ≤η,η” Γ2 ·∆2.458

If Γ1 ≤η,η′ Γ2 and ∆1 ≤η,η′ ∆2 then Γ1 ∪∆1 ≤η,η′ Γ2 ∪∆2.459

Proof. To show the first property it suffices to show the following results:

If Γ1 Cη,η′ Γ2 and ∆1 Cη′,η′′ Γ2 then Γ1 ·∆1 Cη′,η′′ Γ2 ·∆2. (L1)

If Γ1 v Γ2 and ∆1 v ∆2 then Γ1 ·∆1 v Γ2 ·∆2. (L2)

If Γ1 C Γ2 and ∆1 v ∆2 then Γ1 ·∆1 (C· v)∗ Γ2 ∪∆2. (L3)

To show (L1), consider a box α1 ∈ Γ1 and β1 ∈ ∆1. By hypothesis, there is a box α2 ∈ Γ2460

and an (η, η′)-compatible homomorphism h = 〈f, g〉 from α2 to α1 and a box β2 ∈ ∆2 and461

an (η′, η′′)-compatible homomorphism h′ = 〈f ′, g′〉 from β2 to β1. Let h′′ = 〈f ′′, g′′〉, where462

f ′′ equals f in dom (f) and f ′ in dom (f ′), and g” equals g in dom (g) and g′ in dom (g′).463

Using (η, η′)-compatibility of h and (η′, η′′)-compatibility of h′, it is easy to show that h′′ is464

an (η, η′′)-compatible homomorphism from α2 · β2 to α1 · β1, which concludes the proof of465

(L1). (L2) follows easily from the definition of v. For (L3), note that ∆1 C ∆1 (we choose466

the identity homomorphism), thus by (L1), we have that Γ1 ·∆1 C Γ2 ·∆1. By (L2), we have467

that Γ2 ·∆1 v Γ2 ·∆2, which concludes the proof.468

To show the first property, we proceed by induction on the length of the sequences469

justifying that Γ1 ≤η,η′ Γ2 and ∆1 ≤η′,η” ∆2, using (L1), (L2) and (L3) for the base cases.470

To show the second property, we follow the same proof schema, showing results similar471

to (L1)− (L3) where · is replaced by ∪. J472

I Remark. Thm. 27 justifies our definition of ≤η,η′ . Indeed, a more permissive definition473

would seem natural, but the first property of Thm 27 would fail. For instance, if Γ1 v Γ2474

and ∆1 Cη,η′ ∆2, we do not have in general that Γ1 ·∆1 ≤η,η′ Γ2 ·∆2.475

The main theorem of this section is Thm 28, stating that the refinement relation is stable476

under iteration. As its proof is very technical, we give only a proof sketch here, and leave477

the technical details to [?, App. B].478

I Theorem 28 (Stability of refinement by _+). If Γ ≤η,η ∆ then there are bowtie choices479

./, ./′ and computation orders �,�′, for Γ and ∆ respectively, such that: Γ+
./,� ≤η,η ∆+

./′,�′ .480

Proof. [Proof sketch]To prove Thm. 28, it is enough to show the following properties.481

If Γ v ∆ then, for every bowtie choices ./, ./′, and every computation orders �,�′ for Γ482

and ∆ respectively, we have that Γ+
./,� v ∆+

./′,�′ .483

If Γ Cη,η ∆ then there are two bowtie choices ./, ./′ and two computation orders �,�′,484

for Γ and ∆ respectively, such that Γ+
./,� ≤η,η ∆+

./′,�′ .485

A. Doumane and D. Pous 18:15

The first property follows from B(Γ+
./,�) = B(Γ)+ for every bowtie choice ./ and order �.486

For the sake of clarity, we give here the proof of the second proposition in the case where487

Γ and ∆ are singletons of atomic boxes {α} and {β} respectively. The general case is treated488

in [?, App. B]. Let ./, ./′ be bowtie choices for α and β respectively, and let h = 〈f, g〉 be a489

homomorphism from β to α.490

Let us first treat the case where f−1(./) = {./′} (we say that α, β are bowtie compatible).491

This is illustrated by the boxes α, β of Fig. 13, where the bowties are the red nodes. If492

we decompose α and β at the level of their bowties, we get α = α1 · α2 and β = β1 · β2,493

where α2 · α1 and β2 · β1 are 1-1 boxes. We write e = e (α2 · α1) and f = e (β2 · β1). The494

boxes α+
./ and β+

./′ are depicted in Fig. 13. Let us show that there is a homomorphism495

from β+
./′ to α+

./. The homomorphism h induces a homomorphism h1 from β1 to α1 and496

a homomorphism h2 from β2 to α2 (Lemma ??, [?, App. B]). Combining h1 and h1, we497

get almost a homomorphism from β+
./′ to α+

./ (See Fig. 13), we need only to show that498

KL− ` e ≤ f . But this follows from Prop. 6: indeed, we can combine h1 and h2 to get a499

homomorphism from β2 · β1 to α2 · α1. We have thus that α+
./ Cη,η β

+
./′ ((η, η)-compatibility500

is easy).501

Let us now treat the case where N := f−1(./) is not necessarily {./′} (N is illustrated502

by the red node of β in Fig. 14). Let γ be the box obtained from β by merging the nodes503

N (see Fig. 14). There are two bowtie choices for γ: a bowtie ./b inherited from β (blue in504

Fig. 14) and a bowtie ./r coming from the nodes of N (red in Fig. 14).505

Let h′ be the homomorphism from β to γ that maps each node (and each edge) to itself,506

except for the nodes of N which are mapped to ./r. If we consider the bowtie ./b for γ, then507

β and γ are bowtie compatible w.r.t. to h′, thus γ+
./b

C β+
./′ using the previous case.508

Let h′′ be the homomorphism from γ to α, which is exactly h except that it maps the509

node ./r to the bowtie ./ of α. If we consider the bowtie ./r for γ, then γ and α are bowtie510

compatible w.r.t. h′′, thus α+
./ Cη,η γ

+
./r

using the previous case again.511

Notice finally that γ+
./r
v γ+

./b
. To sum up, we have: α+

./ Cη,η γ
+
./r
v γ+

./b
C β+

./′ . J512

The last case in this proof explains the need to work with refinement (≤) rather than just513

homomorphisms (C): when starting from templates that are related by homomorphism and514

iterating them, the templates we obtain are not necessarily related by a single homomorphism,515

only by a sequence of homomorphisms and inclusions.516

7 Future work517

We have proven that KL− axioms are sound and complete w.r.t. the relational models of518

identity-free Kleene lattices, and thus also w.r.t. their language theoretic models, by the519

results from [3].520

Whether one can obtain a finite axiomatisation in presence of identity remains open.521

This question is important since handling the identity relation is the very first step towards522

handling tests, which are crucial in order to model the control flow of sequential programs523

precisely (e.g., as in Kleene algebra with tests [19]). A key difficulty here is that unusual524

laws appear in relational models, like 1 ∩ ab ≤ a(1 ∩ ba)b. Moreover, axiomatisability of the525

fragment with composition, intersection and identity (not including transitive closure) is still526

open [2, see errata available online].527

CONCUR 2018

18:16 Completeness for Identity-free Kleene Lattices

References528

1 C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker.529

Netkat: semantic foundations for networks. In Proc. POPL, pages 113–126. ACM, 2014.530

2 H. Andréka and S. Mikulás. Axiomatizability of positive algebras of binary relations. Alg.531

Univ., 66(1):7–34, 2011.532

3 H. Andréka, S. Mikulás, and I. Németi. The equational theory of Kleene lattices. TCS,533

412(52):7099–7108, 2011.534

4 H. Andréka. Representation of distributive lattice-ordered semigroups with binary relations.535

Algebra Universalis, 28:12–25, 1991.536

5 H. Andréka and D. Bredikhin. The equational theory of union-free algebras of relations.537

Alg. Univ., 33(4):516–532, 1995.538

6 A. Angus and D. Kozen. Kleene algebra with tests and program schematology. Technical539

Report TR2001-1844, CS Dpt., Cornell University, July 2001.540

7 A. Armstrong, G. Struth, and T. Weber. Programming and automating mathematics in541

the Tarski-Kleene hierarchy. J. LAMP, 83(2):87–102, 2014.542

8 M. Boffa. Une condition impliquant toutes les identités rationnelles. Informatique Théorique543

et Applications, 29(6):515–518, 1995.544

9 T. Braibant and D. Pous. Deciding Kleene algebras in Coq. Logical Methods in Computer545

Science, 8(1):1–16, 2012.546

10 P. Brunet and D. Pous. Petri automata for Kleene allegories. In Proc. LICS, pages 68–79.547

ACM, 2015.548

11 P. Brunet and D. Pous. Petri automata. Logical Methods in Computer Science, Volume 13,549

Issue 3, 2017.550

12 J. H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.551

13 S. Foster, G. Struth, and T. Weber. Automated engineering of relational and algebraic552

methods in Isabelle/HOL - (invited tutorial). In Proc. RAMiCS, volume 6663 of LNCS,553

pages 52–67. Springer, 2011.554

14 P. Freyd and A. Scedrov. Categories, Allegories. NH. Elsevier, 1990.555

15 C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene algebra. In556

Proc. CONCUR, volume 5710 of LNCS, pages 399–414. Springer, 2009.557

16 P. Höfner and G. Struth. On automating the calculus of relations. In Proc. IJCAR, volume558

5195 of LNCS, pages 50–66. Springer, 2008.559

17 T. Kappé, P. Brunet, A. Silva, and F. Zanasi. Concurrent kleene algebra: Free model and560

completeness. In Proc. ESOP, volume 10801 of LNCS, pages 856–882. Springer, 2018.561

18 D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.562

I. and C., 110(2):366–390, 1994.563

19 D. Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems,564

19(3):427–443, May 1997.565

20 D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, CS Dpt., Cornell University,566

1998.567

21 D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log.,568

1(1):60–76, 2000.569

22 D. Kozen, K. Mamouras, and A. Silva. Completeness and incompleteness in nominal kleene570

algebra. J. Log. Algebr. Meth. Program., 91:17–32, 2017.571

23 D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene algebra572

with tests. In Proc. CL2000, volume 1861 of LNAI, pages 568–582. Springer, 2000.573

24 A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation algebra.574

JAR, 49(1):95–106, 2012.575

25 D. Krob. Complete systems of B-rational identities. TCS, 89(2):207–343, 1991.576

http://dx.doi.org/10.1145/2535838.2535862
http://dx.doi.org/10.1007/s00012-011-0142-3
http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1007/BF01225472
http://hdl.handle.net/1813/5831
http://dx.doi.org/10.1016/j.jlap.2014.02.001
http://dx.doi.org/10.1016/j.jlap.2014.02.001
http://dx.doi.org/10.1016/j.jlap.2014.02.001
http://archive.numdam.org/.../ITA_1995__29_6_515_0.pdf
http://dx.doi.org/10.2168/LMCS-8(1:16)2012
http://dx.doi.org/10.1109/LICS.2015.17
http://dx.doi.org/10.23638/LMCS-13(3:33)2017
http://dx.doi.org/10.1007/978-3-642-21070-9_5
http://dx.doi.org/10.1007/978-3-642-21070-9_5
http://dx.doi.org/10.1007/978-3-642-21070-9_5
https://books.google.fr/books?id=fCSJRegkKdoC
http://dx.doi.org/10.1007/978-3-642-04081-8_27
http://dx.doi.org/10.1007/978-3-540-71070-7_5
http://dx.doi.org/10.1007/978-3-319-89884-1_30
http://dx.doi.org/10.1007/978-3-319-89884-1_30
http://dx.doi.org/10.1007/978-3-319-89884-1_30
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1145/256167.256195
http://www.cs.cornell.edu/~kozen/papers/typed.pdf
http://dx.doi.org/10.1145/343369.343378
http://dx.doi.org/10.1016/j.jlamp.2017.06.002
http://dx.doi.org/10.1016/j.jlamp.2017.06.002
http://dx.doi.org/10.1016/j.jlamp.2017.06.002
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/s10817-011-9223-4
http://dx.doi.org/10.1016/0304-3975(91)90395-I

A. Doumane and D. Pous 18:17

26 M. R. Laurence and G. Struth. Completeness theorems for pomset languages and concurrent577

kleene algebras. CoRR, abs/1705.05896, 2017.578

27 D. Pous. Kleene Algebra with Tests and Coq tools for while programs. In Proc. ITP,579

volume 7998 of LNCS, pages 180–196. Springer, 2013.580

28 V. R. Pratt. Dynamic algebras and the nature of induction. In Proc. STOC, pages 22–28.581

ACM, 1980.582

29 V. N. Redko. On defining relations for the algebra of regular events. Ukrainskii Matem-583

aticheskii Zhurnal, 16:120–126, 1964.584

30 J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs. In585

Proc. STOC, pages 1–12. ACM, 1979.586

CONCUR 2018

http://arxiv.org/abs/1705.05896
http://arxiv.org/abs/1705.05896
http://arxiv.org/abs/1705.05896
http://dx.doi.org/10.1007/978-3-642-39634-2_15
http://dx.doi.org/10.1145/800141.804649
http://dx.doi.org/10.1145/800135.804393

