
Towards Completeness via Proof Search in the Linear

Time mu-Calculus

Amina Doumane, David Baelde, Lucca Hirschi, Alexis Saurin

To cite this version:

Amina Doumane, David Baelde, Lucca Hirschi, Alexis Saurin. Towards Completeness via Proof
Search in the Linear Time mu-Calculus: The case of Büchi inclusions. 2016. <hal-01275289>

HAL Id: hal-01275289

https://hal.archives-ouvertes.fr/hal-01275289

Submitted on 17 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01275289
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Towards Completeness via Proof Search
in the Linear Time µ-calculus

The case of Büchi inclusions

Amina Doumane
PPS, IRIF, Université Paris Diderot
doumane@pps.univ-paris-diderot.fr

David Baelde, Lucca Hirschi
LSV, ENS Cachan & CNRS,

Université Paris-Saclay
{baelde,hirschi}@lsv.ens-cachan.fr

Alexis Saurin
PPS, IRIF, CNRS &

Université Paris Diderot
saurin@pps.univ-paris-diderot.fr

Abstract
Modal µ-calculus is one of the central languages of logic and ver-
ification, whose study involves notoriously complex objects: au-
tomata over infinite structures on the model-theoretical side; in-
finite proofs and proofs by (co)induction on the proof-theoretical
side. Nevertheless, axiomatizations have been given for both lin-
ear and branching time µ-calculi, with quite involved completeness
arguments. We come back to this central problem, considering it
from a proof search viewpoint, and provide some new complete-
ness arguments in the linear time µ-calculus. Our results only deal
with restricted classes of formulas that closely correspond to (non-
alternating) ω-automata but, compared to earlier proofs, our com-
pleteness arguments are direct and constructive. We first consider a
natural circular proof system based on sequent calculus, and show
that it is complete for inclusions of parity automata directly ex-
pressed as formulas, making use of Safra’s construction directly
in proof search. We then consider the corresponding finitary proof
system, featuring (co)induction rules, and provide a partial transla-
tion result from circular to finitary proofs. This yields completeness
of the finitary proof system for inclusions of sufficiently determin-
istic parity automata, and finally for arbitrary Büchi automata.

1. Introduction
Modal µ-calculus, i.e., modal logic with least and greatest fixed
point operators, is a central logic in verification, from both theoret-
ical and practical perspectives. Developing a better understanding
of its models and deductions has since long been the focus of nu-
merous works considering their importance to understand and put
this logic in practice.

The linear time µ-calculus has infinite words as models, and
may be used to express trace properties of reactive systems seen as
sets of models. The branching time µ-calculus has infinite trees
as models, and allows higher expressiveness since its formulas
directly express properties of a system’s execution tree. Both logics
enjoy close relationships with automata theory. Any formula F
can be compiled into an automaton AF which accepts exactly
the models of the formula. If the reactive system S to be verified

[Copyright notice will appear here once ’preprint’ option is removed.]

can itself be described by means of an automaton AS , the logical
model-checking problem can be expressed purely in automata-
theoretic terms: is the automaton of the system included in that
of the formula, i.e., L(AS) ⊆ L(AF)? In fact, this approach to
model-checking also gives a way to decide logical entailment in
modal µ-calculi.

Even when decidability of the logic is known, designing a com-
plete proof system is still of interest. For instance, it provides com-
positionality and permits to use an interactive prover and not only a
model-checker for verifying properties of the system. Another per-
spective is given through the problematic of proof certificates. The
goal here is to provide independently checkable artifacts justifying
the answer of verification tools, in the form of proofs of a standard,
well-established proof-theoretical langage. This puts an emphasis
and interest in the question of designing complete proof systems,
with a specific focus on constructivity.

Since Kozen’s seminal paper (Kozen 1983), several works
focused on designing finitary and complete proof systems for
the modal µ-calculus (Walukiewicz 1993, 1995; Kaivola 1995;
Walukiewicz 2000). While completeness for the µ-calculus is a
notoriously difficult problem, we argue that when considering
completeness and its potential applications, the way the result is
established is almost as important as the result itself. Indeed, com-
pleteness only provides a theoretical way to obtain proofs from
validity. The proof of completeness may indeed involve complex,
non-constructive arguments yielding no reasonable method for ac-
tually constructing a proof. On the contrary, a constructive proof
of completeness (for instance, specifying a proof search method)
readily provides a realistic algorithm. In the following, we will refer
to those completeness results proved constructively as constructive
completeness results.

When considering the history of completeness proofs for the
µ-calculus, there seems to be a tension between two require-
ments: having a completeness result for the full logic and ob-
taining constructive completeness. In his seminal paper, Kozen
could not establish completeness for the full logic: he targeted a
fragment, aconjunctive formulas, providing a constructive com-
pleteness proof for this fragment. Later developments either kept
the constructivity property but fell out of Kozen’s axiomatization
(Walukiewicz’ first result of completeness (Walukiewicz 1993),
is constructive but for a deductive system which is stronger than
Kozen’s axiomatization) or stepped back on constructive com-
pleteness: Walukiewicz’ result for branching time (Walukiewicz
1995, 2000) and Kaivola’s result for linear time µ-calculus (Kaivola
1995) are not constructive.

Constructive completeness results for the µ-calculus have been
given for various infinitary systems. Various tableaux systems have

1 2016/2/17

been devised for satisfiability (Kozen 1983; Streett and Emerson
1989; Janin and Walukiewicz 1995; Kaivola 1995) and model-
checking (Stirling and Walker 1991; Bradfield et al. 1996). All
these systems are essentially infinite derivation trees, with validity
criteria over infinite branches. These criteria are the main difference
between all these systems, and resemble more or less closely accep-
tance conditions of automata over infinite structures. More recently,
and considering validity rather than satisfiability, (Dax et al. 2006)
have proposed a system of infinite sequent calculus proofs for lin-
ear time µ-calculus, and used it as a basis for validity checking
algorithms. The above works provide sound and complete deriva-
tion systems, sometimes highly amenable to efficient satisfiability
checking. However, from a proof-theoretical viewpoint, these in-
ference systems are not as simple as one might hope1 and are often
not structured enough to stand as proof objects.

Our problem. In the present paper, we aim at developing con-
structive completeness results for fragments of the linear µ-calculus.
More precisely, we consider fragments corresponding to inclusions
of ω-automata, motivated by the question of producing proof-
theoretical certificates for this important model-checking problem.
To this end, we consider both finitary and infinitary proof systems
for which we establish several constructive completeness results.

Proof certificates as advocated by Miller et al (Miller 2011;
Chihani et al. 2013) aim at formulating verification certificates in
a common language of proof theory bringing new benefits, such as
the ability to run certificates (e.g., to extract examples or algorithms
from them) which is naturally supported by the computational
interpretation of cut elimination. Targeting proof certificates, we
impose special requirements on our proof objects. For instance, we
need our proof system to be structured enough to support properties
such as cut elimination or focalizationn and their computational
interpretation. For instance, we will require sequents to be sets of
occurrences of formulas which is necessary to provide proofs with
a Curry-Howard interpretation. Indeed, the following proofs

(Ax)
Ax ` A

(Wl)
Ax, Ay ` A

(Ax)
Ay ` A

(Wl)
Ax, Ay ` A

have different computational interpretations, exactly as λx.λy.x
and λx.λy.y do. To make this explicit, we have distinguished
the two occurrences of the left formulas by labelling them with
variables x and y. When sequents are modelled as sets or multisets
of formulas, as usual in the studies on µ-calculus, those two proofs
are equated. We will work with sequents containing occurrences of
formulas in the rest of the paper but we will not be so pedantic: we
will keep the labelling of occurrences implicit.

Until now, infinitary derivation systems have mostly been used
as an intermediate step in a series of transformations to obtain com-
pleteness for a finitary proof systems. We wish to go further, and
focus on these infinitary systems as proof-theoretical systems in
their own right. This desire to study infinitary proof systems more
thoroughly is notably motivated by the simplicity of their formu-
lation of (co)induction rules. Among other reasons, this explains a
sustained interest in infinitary proof systems: Santocanale recently
made new progress on cut-elimination in his framework (Santo-
canale 2002; Fortier and Santocanale 2013); circular proofs are
being used in richer logics than µ-calculus, for instance, Brother-
ston designed a complete infinitary proof system for Peano arith-
metic (Brotherston and Simpson 2011), or to infer program invari-
ants in separation logic (Brotherston and Gorogiannis 2014); etc.

1 Although one only ever needs to consider regular derivation trees, check-
ing the validity condition on these derivations remains highly non-trivial —
for instance, validity is reduced to an inclusion of Büchi automata in (Dax
et al. 2006).

Contributions and organization of the paper. We consider linear
time µ-calculus and two proof systems for it: the infinitary system
µLK∞, its regular fragment µLKω and the finitary sequent calcu-
lus µLK featuring (co)induction rules in the style of Kozen; they
are presented in Section 2. We provide completeness arguments for
classes of formulas corresponding to automata inclusions; those
classes are introduced in Section 3, motivated by the encodings
of ω-automata into µ-calculus. As explained above, these specific
statements are central in model-checking, and building proof cer-
tificates for them is thus particularly interesting. Our constructive
completeness argument is based on a new translation result that
does not impose a syntactic condition on formulas, but a weaker
geometric condition on proofs. This result makes crucial use of the
precise structure of µLKω proofs, which are more constraining than
the ones usually found in the litterature, notably (Dax et al. 2006).
As a result, the completeness of our circular proofs is already not
obvious. First, we show in Section 4 that our circular proof system
is complete for inclusions of parity automata. To obtain this result,
we make use of Safra’s determinization construction to build circu-
lar proofs. In other words, we view Safra’s construction as a proof
search method; we claim that the scope of this idea goes beyond
the particular setting considered here. Second, we prove our trans-
lation result in Subsection 5.1 for finitizing circular proofs. Third,
we show in Subsection 5.2 that the proofs constructed in the first
step satisfy the translatability criterion when they are deterministic
enough. This yields completeness of the finitary proof system for
inclusions of sufficiently deterministic parity automata. We finally
obtain Theorem 36, establishing completeness for inclusions of
non-deterministic Büchi automata, by gradually diminishing their
“level of non-determinism” using some specific proof construction
in µLK. In Section 6, we conclude and discuss our contributions:
although we only provide partial completeness results, we argue
that we tackle the main difficulty, that is non-determinism, while
remaining constructive.

2. Proof systems for the linear-time µ-calculus
In this section we introduce two proof systems for the linear-time
µ-calculus. The first one can be viewed as a refinement of the
system of (Dax et al. 2006) system while the second is a classical
and modal version of µMALL (Baelde 2012).

2.1 Linear-time µ-calculus
Definition 1. Let V = {X,Y, . . . } be a set of variables and
P = {p, q, . . . } a set of atoms. Linear-time µ-calculus formulas
F,G,H, . . . are given by:

F ::= > | ⊥ | p | F⊥ | F∨F | F∧F | ©F | µX.F | νX.F | X

In formulas µX.F and νX.F , the variable X must occur only
positively in F , i.e., under an even number of negations (•⊥).
Bound and free variables are defined as usual and substitution is
capture-avoiding. The subformula ordering is denoted≤ and fv(•)
denotes free variables.

Definition 2. The Fischer-Ladner closure of a formula F , de-
noted by FL(F), is the least set of formulas such that F ∈ FL(F)
and, whenever G ∈ FL(F),

• G1, G2 ∈ FL(F) if G = G1 ∨G2 or G = G1 ∧G2;
• G1 ∈ FL(F) if G =©G1 or G = G⊥1 ;
• B[G/X] ∈ FL(F) if G = σX.B for σ ∈ {ν, µ}.

Formulas of FL(F) are induced by traversals of F with the
possibility of jumping from a variable to the fixed point combinator
that introduced it. Due to this ability to cycle, there are infinitely
many such traversals. However, cycling in a traversal induces the

2 2016/2/17

(Ax)
F ` F

Γ, F ` ∆ Γ ` F,∆
(Cut)

Γ ` ∆

Σ ` Θ
(©)

©Σ ` ©Θ

Γ ` ∆
(Wl)

Γ, F ` ∆

Γ ` ∆
(Wr)

Γ ` F,∆
Γ ` F,∆

(Negl)

Γ, F⊥ ` ∆

Γ, F ` ∆
(Negr)

Γ ` F⊥,∆
Γ, F ` ∆ Γ, G ` ∆

(∨l)
Γ, F ∨G ` ∆

Γ ` F,G,∆
(∨r)

Γ ` F ∨G,∆
(⊥)

Γ,⊥ ` ∆

Γ, F,G ` ∆
(∧l)

Γ, F ∧G ` ∆

Γ ` F,∆ Γ ` G,∆
(∧r)

Γ ` F ∧G,∆
(>)

Γ ` >,∆

Figure 1: Inference rules for propositional connectives.

Γ, F [σX.F/X] ` ∆
(σl)

Γ, σX.F ` ∆

Γ ` G[σX.G/X],∆
(σr)

Γ ` σX.G,∆

Figure 2: Fixed point rules for the µLK∞ proof system.

same formula as is obtained from the traversal before the cycle.
Thus all formulas of FL(F) can be obtained from acyclic traversals,
and there are finitely many.

Definition 3. The semantics JF Kuρ of a formula F with respect to
an ω-word u over Σ = 2P (i.e., u ∈ Σω) and a valuation ρ : V 7→
2ω is a subset of natural numbers inductively defined as follows:
J>Kuρ = ω J⊥Kuρ = ∅ JF⊥Kuρ = ω \ JF Kuρ JXKuρ = ρ(X)

JpKuρ = {i ∈ ω | p ∈ ui} J©F Kuρ = {i ∈ ω | i+ 1 ∈ JF Kuρ}
JF ∨GKuρ = JF Kuρ ∪ JGKuρ JF ∧GKuρ = JF Kuρ ∩ JGKuρ
JνX.F Kuρ =

⋃
{W ⊆ ω |W ⊆ JF Kuρ[X←W] }

JµX.F Kuρ =
⋂
{W ⊆ ω | JF Kuρ[X←W] ⊆W }

The set of models of F (wrt. ρ) is defined to beM(F)ρ = {u ∈
Σω | 0 ∈ JF Kuρ}.

2.2 Infinitary proof system µLK∞

Our proof systems are based on sequent calculus. Depending on
requirements, sequents are sometimes viewed as sets of formulas,
sometimes as multisets. Neither viewpoint is satisfying when the
computational contents of proofs matters; one needs to go further
and distinguish between different occurrences of a formula. We
follow this approach here, viewing sequents Γ ` ∆ as pairs of
sets of occurrences of formulas. This is for two reasons. First, we
ultimately seek to develop a full proof-theoretical account of µ-
calculus. Second and more concretely, our completeness argument
involves a translation result that crucially relies on the precise
tracking of formulas through deduction steps.

Definition 4. A pre-proof of µLK∞ is a possibly infinite tree,
coinductively generated by the rules of Figures 1 and 2.

It is easy to see that pre-proofs are not sound: one may for
instance derive ` µX.X . To obtain proper proofs from pre-proofs,
we add a validity condition which (unlike the rules of Figure 2)
reflects the different meaning of µ and ν.

Definition 5. Let r be a rule of conclusion c and let p be one of its
premises. If F is a formula occurrence in c, and G is one in p, we
write F

c,r,p−→ G if (i) F is not principal in r and F = G or (ii) F is
principal in r and G results from the application of r to F .

Example 6. We have F ∧ G c,∧r,p−→ G when c = Γ ` F ∧ G,∆
and p = Γ ` G,∆.

Definition 7. Let γ = (si)i∈ω be an infinite branch in a pre-proof
of µLK∞, and let (ri)i∈ω be the corresponding instances of infer-
ence rules. A thread t in γ is a sequence of formula occurrences

Γ, S ` ∆ F [S/X] ` S
(µl)

Γ, µX.F ` ∆

Γ ` F [µX.F/X],∆
(µr)

Γ ` µX.F,∆
Γ, F [νX.F/X] ` ∆

(νl)
Γ, νX.F ` ∆

Γ ` S,∆ S ` F [S/X]
(νr)

Γ ` νX.F,∆

Figure 3: Fixed point rules for the µLK proof system.

(Fi)i∈ω such that Fi
si,ri,si+1−→ Fi+1. The set of formulas that oc-

cur infinitely often in (Fi)i∈ω admits a minimum wrt. the subfor-
mula ordering, we denote it by min(t). A thread t is valid if there
are infinitely many indices i such that Fi is principal in ri, and
min(t) is a ν formula (resp. µ formula) occurring infinitely often
on the right-hand side (resp. left-hand side) along the thread.

Definition 8. The proofs of µLK∞ are those pre-proofs in which
every infinite branch admits a valid thread. We call µLKω the
subsystem of µLK∞ where derivations are regular, i.e., possibly
infinite but with only finitely many subderivations.

The weakening rules (Wl) and (Wr) are notably useful to obtain
the following two derived rules:

Proposition 9. The following rules are derivable in µLK∞:

(Ax)
Γ, F ` F,∆

Σ ` Θ
(©)

Γ,©Σ ` ©Θ,∆

Classic tableaux arguments can be adapted to show that the
infinitary proof system is sound and complete for the linear-time
µ-calculus. Roughly, a valid sequent admits a pre-proof that can
be constructed by applying rules in an invertible fashion, and infi-
nite branches of that pre-proof must be valid, since we can extract
counter-models from invalid infinite branches. Conversely, the ex-
istence of a counter-model allows one to find an invalid infinite
branch in any pre-proof of an invalid sequent.

Remark 10. The system µLKω is very close to the one presented
by Dax, Hofmann and Lange (Dax et al. 2006), which we shall call
µLKωDHL in the following. The essential difference is that sequents
of µLKω are sets of occurrences (roughly, multisets of formulas)
while those of µLKωDHL are sets of formulas.

If this difference may look minor at first glance, it is not trivial
how one could transform a µLKωDHL derivation into one of µLKω .
Indeed, if we choose to keep all formula occurrences in sequents,
we may get a non-regular proof, and weakening some occurrences
away may a priori break validity, as one can see in the example of
Appendix B. We will come back to this issue in Section 4.

2.3 Finitary proof system µLK

Unlike the previous system, which requires a non-trivial, global
validity criterion, the validity of a µLK proof is easily established
by checking local inference rules.

Definition 11. The proofs of µLK are finite trees inductively gen-
erated from the rules of Figures 1 and 3.

The fixed point rules of Figure 3 express that µX.F is the least
pre-fixed point of X 7→ F , and dually for νX.F . From this it can
be shown that µ and ν respectively form least and greatest fixed
points: (σl) and (σr) are derivable in µLK. The particular formu-
lation of the rules is such that the system admits cut elimination,
a result that can be shown by adapting arguments from (Baelde
2012). It is also easy to see that this proof system is sound and
complete for linear-time µ-calculus, since it is equivalent (in terms
of provability) to Kaivola’s axiomatization (Kaivola 1995). In order
to get a feel for our two proof systems, and their relationships, an

3 2016/2/17

example is developed in Appendix A. We conclude this section by
introducing a useful construction in µLK, called functoriality:

Proposition 12. Let B be a formula with fv(B) = X , X occur-
ring positively in B and let P1, P2 be two closed formulas. The
following functoriality rule is derivable in µLK.

P1 ` P2
(Functo)

B[P1/X] ` B[P2/X]

3. Encoding ω-automata in linear-time µ-calculus
In this section, we briefly recall the definitions of Büchi and parity
automata and define our encoding of these automata into linear-
time µ-calculus formulas. For a fixed finite set of atoms P , we
consider automata over the alphabet Σ = 2P , whose elements will
simply be denoted by a, b, etc. We shall translate these subsets of
atoms as formulas by setting [a] := (∧p∈ap) ∧ (∧q6∈aq

⊥). We
eventually simply write a for [a].

Definition 13. A parity automaton is a tuple A = (Q, qI , δ, c),
where Q is a finite set of states, qI ∈ Q is the initial state, δ :
Q × Σ → P(Q) is the transition relation and c : Q → ω assigns
a priority to each state. A run of A on a word α = (ai)i∈ω ∈ Σω

is a sequence ρ = (qi)i∈ω such that q0 = qI and qi+1 ∈ δ(qi, ai)
for i ≥ 0. RunA(α) denotes the set of runs of A on α. For an
infinite sequence ρ, we denote by Inf(ρ) the set of symbols that
occur infinitely often in ρ. We say thatA accepts α if there exists a
ρ ∈ RunA(α) such that min { c(q) | q ∈ Inf(ρ) } is even. The
language of A is L(A) = { α ∈ Σω | A accepts α }.
Definition 14. A Büchi automaton is a parity automaton (Q, qI , δ, c)
such that the image of c is restricted to { 0, 1 }. In that context, we
say that a state q is accepting when c(q) = 0.

Definition 15 (Encoding of parity automata). LetA = (Q, qI , δ, c)
be a parity automaton. We assume a collection of variables
(Xq)q∈Q. We define the formula [q]Γ encoding the state q ∈ Q
under the environment Γ consisting of a list of states, as follows:

[q]Γ = Xq if
{

Γ = q1, . . . , qn, q,Γ
′ and

qi 6= q, c(qi) ≥ c(q) for all 1 ≤ i ≤ n,
[q]Γ = σXq.

∨
a∈Σ,q′∈δ(q,a)[a] ∧©[q′]q,Γ otherwise, with

σ = ν iff c(q) is even.

When unspecified, Γ is taken to be empty. We finally set [A] = [qI].

The encoding builds on the well-known correspondence be-
tween the µ-calculus and parity games. The key ingredient is the
side condition of the first case of the definition, relying on Γ. The
aim here is to bridge the gap between the acceptance condition on
runs of the automaton and the validity condition on threads. The
latter is almost a parity condition, but with a parity ordering cor-
responding to the subformula ordering. To obtain a match between
the two orderings, we need to control the formation of cycles.

Example 16. Consider the following Büchi automata, where even
states are double-circled:

A1:

p q
a

a A2:

p q p′
a

a

a

A naive encoding ofA1 would be µXp.(a∧©(νXq.a∧©Xp)). It
is incorrect since that formula is equivalent to⊥. Syntactically, the
problem is that the infinite traversal of the formula corresponds to
a cycle on Xp, with a regeneration of Xq at each step. In a sense,
Xq is hidden by Xp in this encoding. Our encoding of A1 is the
same as for A2, which is an unfolding of A1. More generally, the
encoding can be seen as duplicating states so as to avoid that an

accepting state is hidden by a non-accepting one:

[A1] = [A2] = µXp. a ∧©(νXq. a ∧©(µXp′ . a ∧©Xq)))
Proposition 17. For any parity automaton A,M([A]) = L(A).

We now transpose automata-theoretic notions to an appropriate
class of formulas that contains the image of our encoding. This will
be useful since most of our work is done directly on formulas, and
it allows us to state simpler and slightly more general results.

Definition 18. Disjunctive formulas are defined as follows:

F ::= X | σX.∨i∈I (ai ∧©Fi) with X ∈ X , ai ∈ Σ.

The set of disjunctive formulas is denoted by F∨. A Büchi formula
is any F ∈ F∨ such that, for all µX.G ≤ F , there is no
νY.H ≤ G with X ∈ fv(νY.H).

Our disjunctive formulas are similar to the ones of (Walukiewicz
2000). They present the form of non-determinism that makes it dif-
ficult to translate circular proofs into finite proofs: their negations
are not aconjunctive in the sense of (Kozen 1983).

Definition 19. Let F be a disjunctive formula. The states of F are
the formulas of Q(F) := FL(F) ∩ F∨. For G,H ∈ Q(F) we
write G a→ H if G = σX.∨i∈I Fi and Fi = (a∧©H ′) for some
i ∈ I such that H = H ′[G/X]. We set a−1G := {H : G

a→ H},
and define δ(F) to be (G, a) 7→ a−1G. A parity automaton AF
is associated to F if it is of the form (Q(F), F, δ(F), c) where
c is any priority assignment such that (i) G is a ν-formula iff
c(G) is even and (ii) if G1 and G2 are co-accessible (i.e., Gi ∈
FL(G3−i), i ∈ {1, 2}), G1 ≤ G2 iff c(G1) ≤ c(G2).

Proposition 20. For any closed disjunctive formula F , and any
associated parity automaton AF , one hasM(F) = L(AF).

Note that Definition 19 may be understood as dealing with for-
mulas or with occurrences of formulas. The second, more precise
viewpoint should be taken in the rest of the paper, as it is the
one that makes sense proof theoretically. For instance, in the next
proposition, a−1G (where G is a formula occurrence) really ex-
tracts a set of sub-occurrences of (the unfolding of) G.

Proposition 21. For any closed disjunctive formulas F , G1, . . . ,
Gn, the following rule is derivable in µLKω:

{Fa ` a−1G1, . . . , a
−1Gn}a∈Σ,F

a→Fa
(→)

F ` G1, . . . , Gn

Proof. We restrict to n = 1 for clarity, but the general case is
similar by applying the right-hand side rules successively on all
Gi formulas. In that case, assuming F = σX.

∨
i∈I(ai ∧ ©Fi),

we derive (→) as follows:
π1

a1,©F1[F/X] ` G1 . . .

πn

an,©Fn[F/X] ` G1
(σl),(∨l),(∧l)

σX.
∨
i∈I(ai ∧©Fi) ` G1

with πi being defined as:

Fi[F/X] ` a−1
i G1

(©)
ai,©Fi[F/X] ` { ©Gik }G1

ai→Gi
k

(∧r),(Ax),(Wl)

ai,©Fi[F/X] ` { ai ∧©Gik }G1
ai→Gk

(σr),(∨r),(Wr)
ai,©Fi[F/X] ` G1

Note that threads of this derived inference rule do not encounter
fixed-point formulas except the ones visible at the premise and con-
clusion of the rule. Therefore, one can ignore the internal construc-
tion of the rule when checking the validity of pre-proofs.

4 2016/2/17

4. Parity automata inclusions in µLKω

We shall establish the completeness of µLKω for automata inclu-
sions. Here we can actually work with the full class of parity au-
tomata, which we exploit later.

Theorem 22. For any disjunctive formulas F and G one has:

L(F) ⊆ L(G) iff F ` G is derivable in µLKω .

The soundness of µLK∞ implies one direction of the result. For
the other direction, the completeness of µLK∞ is not enough to
conclude. Proposition 21 indicates that we can embed the powerset
construction in the logic, suggesting a natural strategy for building
proofs of language inclusions. But we face a problem here due to
the fact that our sequents are not made of sets of formulas, but keep
track of distinct occurrences of formulas. This means that we are
in fact considering a “powermultiset” construction, accounting for
all possible runs rather than reachable states only. If we apply this
naive construction, keeping all the copies of a state coming from
different states, we are certainly going to get a µLK∞ proof, but
this proof has no chance of being regular in general, since sequents
will become larger and larger.

In order to recover regularity, we have to weaken some occur-
rences. The challenge is to do so whilst preserving validity: for each
word accepted by F , we need to preserve at least one valid thread
among the ones witnessing the fact thatG also accepts the word. In
other words, we need to select a bounded subset of the possible runs
ofG. The recipe for such a selection can be found in the Safra trees
used to determinize ω-word automata. In order to translate non-
deterministic parity automata into deterministic Rabin automata,
two distinct problems are solved in Safra’s construction. The first
problem is to refine the powerset construction in a way that bounds
the set of alternative runs to consider. Safra trees achieve this, keep-
ing only a single run per reachable state. Once this is achieved,
determinization is realized in an abstract sense, but a second prob-
lem remains: that of designing a Rabin acceptance condition for the
refined powerset (the Safra tree) that matches the acceptance con-
ditions of the individual threads that it represents. While the first
problem is precisely the one that we are facing in order to obtain
regular proofs, the second one is not immediately relevant to our
task. In the simple case of Büchi automata, this remark could mo-
tivate the use of simpler tools than Safra trees, e.g., the reduced
trees of (Kähler and Wilke 2008). In the case of parity automata,
it seems difficult to find such a clear cut decomposition, and so we
directly use Safra trees for parity automata. Anyway, we shall see
that the structure of the trees pertaining to the acceptance condition
is a useful device for reasoning about our proofs.

We specialize Safra’s construction for Streett automata (Safra
1992; Grädel et al. 2002) to parity automata, in order to obtain
a more direct presentation. This is important since the precise
construction will impact the structure of µLKω derivations.

We assume a fixed formula G of interest, and an associated
automatonAG = (Q(G), G, δ(G), c). We consider without loss of
generality that the priorities ofAG are in P = {0, 1, . . . , 2k, 2k+
1}.

Definition 23. A Safra tree is a finitely branching tree whose
leaves are labelled with non-empty subsets of Q(G) and whose
edges are labelled by priorities from P . Descendants of a node
are ordered, from left (younger) to right (older). Leaves’ labels are
pairwise disjoint. Every internal node has at least one outgoing
edge with an odd label. On every branch, edge labels appear in
increasing order starting from the root. Further, only even labels
can appear more than once on a branch and if two labels occur on
a branch then odd labels in between must occur too. Each node is
identified by a name in a finite set N ; we say that v ∈ N is a node

in T if T contains a node of name v. We denote by eT (v) the union
of the labels of all leaves of the subtree of T rooted in node v.

Note that the conditions on leaves and edges alone imply that
only finitely many trees exist, so that the finiteness condition on
N is not constraining. The role of node names is to be able to
track nodes through the modifications of the trees corresponding
to automata transitions. Given a Safra tree T and a letter a, we
now describe the transition function ∆(T, a) by the following
procedure. A detailed example of that construction is given in
Appendix C. Whenever we create a new node in the procedure,
we assume that it is given a fresh name, i.e., one that does not yet
occur in the whole tree.

(1) For any leaf node v0 of T , let 2m + 1 be the least odd label
that does not occur from the root to v0 (skip this step if all odd
labels occur). Create nodes v1, . . . , vk−m+1 such that for each
i = 0, . . . , k−m, vi+1 is the son of vi, with an edge (vi, vi+1)
labelled 2(m+ i) + 1. The leaf vk−m+1 takes the label of v0.

(2) Replace each leaf label S by a−1S.

(3) For each leaf v and state q appearing in it, let (w,w′) be the
edge appearing in the path from the root to v, that is labelled by
c(q) if c(q) is odd, c(q)+1 otherwise. Remove q from the label
of v and append to w a new child leaf v′, to the right, labelled
{q}, with the edge (w, v′) labelled c(q).

(4) Whenever a state q belongs to the labels of two distinct leaves
w1 and w2, let b1, b2 be two branches starting from the root and
ending inw1, w2 respectively. Let v be the node on which these
branches fork, and vi be the child of v in bi, i ∈ {1, 2}. If the
label of the edge (v, v1) is strictly greater than that of (v, v2)
then remove q from w1 and conversely. If they have the same
label, remove q from the rightmost wi.

(5) Remove any subtree whose leaves all have empty labels.

(6) If after the previous steps all edges going from a node v to its
children are labelled by the same even priority, make v a leaf
and label it eT (v).

Safra’s construction yields a deterministic Rabin automaton
equivalent to the original parity automaton. We only need the com-
pleteness direction of that equivalence, established next.

Remark 24. The following properties are invariants of our Safra
construction, i.e., they are satisfied by the initial singleton trees and
are preserved by ∆:

• If l is a leaf of a Safra tree T and q appears in the label of l,
then c(q) ≥ p, where p is any edge label from the root to l.

• If v is an internal node in a Safra tree T , then there is an even
priority p such that all the outgoing edges from v in T are
either labelled p or p + 1. In the following, this even priority
will be denoted by pT (v), or simply p(v) when T is obvious or
irrelevant.

• Moreover, if T ′ = ∆(T, a) and v appears in both T and T ′ as
an internal node, then pT (v) = pT ′(v).

Proposition 25. Let α := (ai)i∈ω ∈ Σω and ρ := (Gi)i∈ω be
a run of AG over α. Let T0 be the Safra tree with a single leaf
node labelled {G0}, and Ti+1 := ∆(Ti, ai) for all i ∈ ω. If ρ is
accepting then there is a node v ∈ N and an index j such that for
all i > j, v is a node in Ti and v becomes a leaf infinitely often.

Proof. Let us first prove the following assertion:
Assertion: Let v ∈ N . If there is iv ∈ ω such that for all i > iv , v
is a node of Ti and Gi ∈ eTi(v), then there are two possibilities:

1. The node v becomes a leaf infinitely often.

5 2016/2/17

2. There is w ∈ N and iw ∈ ω such that for all i > iw, w is a son
of v in Ti and Gi ∈ eTi(w).

Proof of the assertion: Let m be the minimal priority that appears
infinitely often in ρ. Suppose that v does not become a leaf in-
finitely often: let k be an index such that for all i > k, the node v is
never a leaf in Ti and c(Gi) ≥ m. By Remark 24, there is an even
priority p such that p = pTi(v) for all i > iv . Since Gi ∈ eTi(v)
for all i > k, and again by Remark 24, we have that p ≤ m. For all
i > k, Gi ∈ eTi(wi) for some child wi of v; we seek to establish
that (wi)i>k is eventually constant. We distinguish two cases:

(i) If p <m, we actually have p + 1 < m. Let T ′i be the tree
obtained after steps (1–3) of the construction of Ti+1 = ∆(Ti, ai).
Because c(Gi+1) > p+ 1 we still have Gi+1 ∈ eT ′i (wi). We now
consider the rest of the construction, from T ′i to Ti+1. Step (4) may
remove the occurrence of Gi+1 ∈ eT ′i (wi) in favor of another one
in eT ′i (wi+1) for wi+1 6= wi. However, this can only happen if (a)
the edge (v, wi+1) is labelled p while (v, wi) is labelled p + 1, or
(b) the edge labels are the same but the rank of wi+1 among the
children of v is less than that of wi. Thus, this can happen only
finitely many times, and the sequence (wi)i is eventually constant.
(Obviously, Step (5) is irrelevant in this argument, and Step (6)
cannot happen because v never becomes a leaf by assumption.)

(ii) Otherwise, p = m. We first show that there is some i such
that (v, wi) is labelled p. Consider any position j > k such that
c(Gi) = m. If (v, wi) = p + 1 then Gi+1 will be moved by step
(3) of the construction of Ti+1 to a new child w′ of v, with an
edge (v, w′) labelled p. Then step (4) may not keep the occurrence
of Gi+1 in w′, but it will preserve an occurrence in a child w′′

with (v, w′′) labelled p too. Next we observe that, once (v, wi)
is labelled p, we have (v, wj) labelled p as well for all j ≥ i.
This follows from a simple inspection of the procedure, arguing as
above. From this point on, we can only havewj 6= wj+1 because of
step (4) but, as observed before, this can only decrease the rank of
wj+1 among the children of v. This can only happen finitely often,
which concludes the proof.

To prove the initial proposition, we iterate the assertion starting
from the root node, which satisfies trivially the hypothesis of the
lemma, and iterate it as many times as necessary to find the wanted
node. This iteration is bound by the maximal height of Safra trees.

For a Safra tree T , we define Φ(T) to be the union of the labels
of the leaves of T (which contain formula occurrences), forgetting
all the tree structure. In the following, when unambiguous, we will
sometimes write T instead of Φ(T). The Safra tree structure corre-
sponds to a refined powerset construction, in the sense that, if T is
a Safra tree and a ∈ Σ, Φ(∆(T, a)) ⊆ a−1(Φ(T)). We now ob-
serve that Safra’s construction can be immediately adapted to proof
theory, in a way that yields proofs of inclusions for disjunctive for-
mulas.

Proposition 26. Given a disjunctive formula F and a Safra tree
T , the following rule is derivable:

{ Fa ` Φ(∆(T, a)) }
a∈Σ,F

a→Fa
(S)

F ` Φ(T)

Proof. Since Φ(∆(T, a)) ⊆ a−1(Φ(T)), rule (S) can be obtained
by applying rule (→) of Proposition 21 and some weakenings.
It is however crucial to perform those weakenings in a way that
selects appropriate threads in the powerset construction, to be able
to replay Safra’s argument in the rest of the development. This
is done in the obvious manner, once one understands that Safra’s
construction is selecting runs, and that threads are runs.

Definition 27 (Π(F, T),Π(F,G)). Given a disjunctive formula
F and a Safra tree T , we coinductively define Π(F, T) to be the
following µLKω pre-proof:{

Π(Fa,∆(T, a))

Fa ` Φ(∆(T, a))

}
a∈Σ,F

a→Fa
(S)

F ` Φ(T)

In other words, it is the infinite derivation obtained by repeatedly
applying rule (S). It is obviously regular, as only finitely many F
and T may be encountered. Note that Π(F, T) is a standard µLKω

pre-proof, whose sequents are sets of occurrences, but those se-
quents have been obtained by forgetting the structure of Safra trees
which form the blueprint of the construction. If G is a disjunctive
formula, we set Π(F,G) := Π(F, T) where T is the single-node
Safra tree with label {G}.

Proposition 28. Let F,G ∈ F∨. If L(F) ⊆ L(G), then Π(F,G)
is a µLKω proof.

Proof. Let us establish the validity of each infinite branch γ =
(si)i∈ω of Π(F,G). For each such branch, there is an ω-word
α = (ai)i∈ω such that, for all i, si = Fi ` Φ(Ti) where F0 = F ,
T0 is the tree with a single node labeled by {G}, Fi

ai→ Fi+1 and
∆(Ti, ai) = Ti+1. Hence ρF := (Fi)i∈ω corresponds to a run of
F and ρG := (Ti)i∈ω corresponds to a run of the Rabin automaton
obtained by Safra’s construction on AG.

If the run ρF is not accepting, we have that min(Inf(ρF)) is a
µ-formula and thus ρF , seen as a thread, validates the branch γ.

Otherwise, the run ρF is accepting, thus α ∈ L(F), and α ∈
L(G) by hypothesis. By Proposition 25, there is a node v and an
index j such that ∀i ≥ j, v is a node of Ti and v appears as a leaf
infinitely often. Now, let us extract a valid thread from this node.
To do so, we prove the following assertion:
Assertion 1: Let m > n ≥ j such that the node v is a leaf in
Tn and Tm, and it is not a leaf in Ti for all n < i < m. For
every K ∈ eTm(v), there is a sequence of formulas Fn, . . . , Fm
satisfying the following conditions:

• Fm = K;

• for all i = n, . . . ,m− 1, Fi
si,(S),si+1−→ Fi+1

• min(Fn, . . . , Fm) is a ν-formula.

We first show that the assertion allows us to conclude the main
proof. Let j < i0 < i1 < . . . such that v is a leaf in Ti where
i > j iff i = in for some n ∈ ω. We define a tree T whose set of
nodes N is

N := {r} ∪ { (F, n) | n ∈ ω, F ∈ eTin
(v) },

where r is a distinguished root node, with an edge from r to any
node of the form (F, 0), and an edge from (H,n) to (K,n + 1)
iff there is a thread FinFin+1 . . . Fin+1 such that H = Fin ,
K = Fin+1 and min(Fin , Fin+1, . . . , Fin+1) is a ν-formula. By
the previous assertion, every node except r have at least a parent.
The tree T is thus an infinite tree which is finitely branching, hence
by König’s lemma it has an infinite branch. It is easy to see that this
branch corresponds to a valid thread.

Before proving Assertion 1, we will first enunciate and prove a
stronger version of it. By Remark 24, there exists an even priority p
such that for all i ≥ j, the outgoing edges from v are either labelled
p or p + 1. We actually prove, by induction on i = n, . . . ,m − 1
the following:
Assertion 2: Let w be a child of v in Ti and K ∈ eTi(w), then
there are formulas Fk, . . . , Fi satisfying the following conditions:

6 2016/2/17

• Fi = K;

• For all l = n, . . . , i− 1, Fl
sl,(S),sl+1−→ Fl+1;

• For all l = n, . . . , i, Fl ∈ eTl(v);
• If c is the label of the edge (v, w), then
min(c(Fn+1), . . . , c(Fi)) = c.

Let us prove Assertion 2. When i = n, the result is obvious,
notably because v is a leaf in Tn. Now, suppose that the result is
true for i and let us prove it for i+ 1. Let w be a child of v in Ti+1

and K ∈Ti+1 (w). The edge (v, w) is labelled c. Notice first that
c(K) ≥ c, otherwise it would be absorbed by a parent of v.

There exists L ∈ eTi(v) such that L
si,(S),si+1−→ K. Actually, L

should belong to one of the children of v in Ti; call it w′ and let c′

be the label of the edge connecting v and w′ in Ti. We distinguish
two cases:

1. If w = w′ we conclude by applying the induction hypothesis.
2. If w 6= w′, that is w is a new child in Ti+1, created by Step 3,

then we distinguish two cases: if c = c′, here again we apply
directly the induction hypothesis. Otherwise, the node w has
been created because c(Fi+1) = p and c′ = p + 1. We then
have that c = p. Here again we apply induction hypothesis to
conclude.

We finally prove Assertion 1. Let K ∈ eTm(v) and let w be
a child of v in Tm−1 and L a formula such that L ∈ eTm−1(w)

and L
sm−1,(S),sm−→ K. By the previous result instanciated for

i = m − 1, we have a thread Fn, . . . Fm−1 such that Fm−1 = L
and min(c(Fn), . . . , c(Fm−1)) = c where c ∈ {p, p + 1} is the
label of the edge (v, w). As v is a leaf in Tm, it has been obtained
after Step 6, which means that before Step 6, the tree Tm−1 has
only ongoing edges labelled p. Let w′ be the child of Tm−1 just
before Step 6 such that K is in the label of this subtree rooted in
w′. There are two possibilities:

• If w′ = w, we have c = p and, since c(Fm) ≥ p, then
min(c(Fn), . . . , c(Fm−1)) = p.

• Otherwise, w′ has been created in Step 3, and c(Fm) = p.
Hence we also have min(c(Fn), . . . , c(Fm)) = p.

Anyway, the threadFn, . . . Fm satisfies min(c(Fn), . . . , c(Fm)) =
p. Since p is even, min(Fn, . . . , Fm) is a ν-formula.

5. Büchi automata inclusions in µLK
The problem of relating finite and infinite proof systems for fixed
point logics is still insufficiently understood. In the case of modal
µ-calculi, some partial connections have been identified and ex-
ploited as part of completeness arguments, but no care has been
taken to make these observations generic in proof-theoretical terms.
Santocanale (Santocanale 2001, 2002) provided a technique to
give a semantics to his circular proof system with fixed points
in µ-bicomplete categories. This technique can be used to translate
purely additive circular proofs into (the purely additive fragment
of) µLK. Dealing with with multiplicative connectives or structural
rules remains a challenge. We shall extend this technique to obtain a
new partial translation result, that applies to Safra proofs, allowing
us to finally obtain µLK proofs of Büchi inclusions. The translation
is based on a combinatorial condition on threads, which makes it
quite generic and directly applicable to other circular proof systems
than µLKω .

5.1 A translation result from µLKω to µLK
We give a sufficient condition on µLKω proofs which guarantees
that they can be translated into µLK proofs, using an adaptation

of Santocanale’s procedure. The translation procedure works on
any finite representation of regular derivations. To get a handle
on this notion, we shall work with annotated µLKω derivations
throughout the whole section. Such derivations are simply µLKω

derivations where each sequent is given an annotation in a finite
set, in such a way that regularity is not lost and if two sequents
of a µLKω derivation have the same annotation, they also have the
same derivation. Later on, annotations will be used to keep track of
the Safra trees that generated sequents in inclusion proofs, giving
a formal way to distinguish identical sequents that originate from
distinct Safra trees.

Definition 29 (Translatable proofs). Let π be an annotated µLKω

proof and γ = (si)i∈ω an infinite branch of π. A thread t =
(Fi)i∈ω in γ is said to be strongly valid if t is valid and there is an
annotated sequent sk such that, for all i ≥ k such that si and sk
correspond to the same annotated sequent, Fi = min(t) and Fi is
active in the rule of conclusion si. A proof is said to be translatable
if every infinite branch contains a strongly valid thread.

Proposition 30. Let π be a µLKω proof of a sequent s. If π is
translatable then there is a proof of s in µLK.

To prove this, we extend both µLKω and µLK with an assump-
tion rule:

(A)
Γ ` ∆

We call the resulting systems µLKω? and µLK?. The validity con-
dition remains the same, as it is about infinite branches only.

Definition 31. Let π be an annotated proof in µLKω? or in µLK?.
We define Sπ as the set of annotated sequents appearing in π. We
define the assumptions of π, written A(π), as the set of annotated
conclusion sequents of (A)-rules in π. Finally, we define Cπ :=
Sπ \ A(π) and the complexity of π as #π := card(Cπ).

Definition 32. Let π be a proof in µLKω? or in µLK?, and let s be
an annotated sequent. The proof πs is obtained from π by replacing
all subtrees rooted in s by an assumption on s.

Proof of Proposition 30. We actually establish that if Π is a trans-
latable µLKω? proof of a sequent s, there is a µLK? proof π of s
such that A(π) ⊆ A(Π). The proof is by induction on #Π. When
#Π = 0, the derivation is reduced to an assumption on the conclu-
sion sequent s, and the result obviously holds by using rule (A) on
s in µLK?. Otherwise, we distinguish two cases.

The proof is not “strongly connected”. If there exist s1, s2 ∈ CΠ

such that no occurrence of sequent s2 appears above an occur-
rence of s1 in Π, let Π1 be a sub-tree of Π rooted in s1 and
Π2 = Πs1 . Both Π1 and Π2 are translatable and have strictly
smaller complexity than Π. By induction hypothesis we obtain
µLK? proofs π1 of s1 and π2 of s, such that A(π1) ⊆ A(Π) and
A(π2) ⊆ A(Π) ∪ {s1}, which we plug together at the level of s1

to get a proof π of s satisfying A(π) ⊆ A(Π).

The proof is “strongly connected”. Otherwise, we can find an
infinite branch γ = (si)i∈ω containing all sequents of CΠ. Further,
we choose this branch such that it contains any finite branch that
connects two consecutive occurrences of a sequent; the reasons for
this condition will become clear next.

By hypothesis, this branch admits a strongly valid thread t =
(Fi)i∈ω . We assume that the minimum of the formulas occurring
infinitely often in t is a µ formula occurring on the left-hand sides
of sequents; the case of a ν on the right is similar. Let F :=
min(t) = µX.B. By strong validity, there is an annotated sequent
s′ ∈ CΠ such that if si = s′ then Fi = F and Fi+1 = B[F/X].
We assume, without loss of generality, that Π is rooted in s′, i.e.,
s = s′.

7 2016/2/17

The sequent s is of the form Γ, F ` ∆; this allows us to define
the environment of F in s:

env(s) := (
∨
G∈Γ

G⊥) ∨ (
∨
H∈∆

H).

Note that Γ, env(s) ` ∆ is then obviously derivable. We finally
consider the formula I , which will be shown to be an invariant of
F :

I := µX.(B ∧ env(s))

Observe that I ` F is easily derivable using rule (µl) with F itself
as the invariant.

Let Πu be the immediate subderivation of Π; the conclusion
of Πu is thus the premise of the (µl) rule applied to F in s. Con-
sider now the derivation Πs

u. Its conclusion sequent contains an
occurrence B[F/X]. We construct Θ from Πs

u by replacing that
occurrence byB[I/X] in the conclusion sequent, and simply prop-
agating that substitution, unfolding I when the corresponding F is
unfolded. Note that assumptions may be affected by the substitu-
tion, so we do not have A(Θ) = A(Πs

u) in general. Still, one has
#Θ < #Π since CΘ does not contain the sequent s and, if two
annotated sequents were equal in CΠ, they are similarly impacted
by the substitution and remain equal in CΘ. Moreover, Θ is still
translatable. Thus, we obtain by induction hypothesis a µLK proof
θ satisfying A(θ) ⊆ A(Θ).

We now seek to adapt θ in order to obtain a µLK derivation β
such thatA(β) ⊆ A(Π). Every assumption h of θ is an assumption
of Θ, which has been obtained from an assumption of Πs

u. That
original assumption is either an assumption of Π, or s. In each
case, we modify the assumption h of θ into a µLK derivation with
assumptions in A(Π):

• If h originates from an assumption h0 of Π, some occurrences
of F in h0 have been substituted for I during the construction
of Θ. In other words we have h0 = (Γ[F/X] ` ∆[F/X])
and h = (Γ[I/X] ` ∆[I/X]). Note that, by positivity of F ,
all substituted occurrences of X must be positive in Γ (resp.
negative in ∆). As observed before, I ` F is derivable. Thus
we can derive h from h0, by repeatedly applying functoriality
and cut.

• Otherwise, h originated from an assumption on s in Πs
u, which

has also been affected by the substitution of F by I during the
construction of Θ. By construction of the infinite branch γ, and
because s is the sequent associated to the thread that strongly
validates γ, we have that the occurrence of F in the assumption
s = (Γ, F ` ∆) in Πs

u must be traced back to B[F/X] in the
conclusion of that derivation. Thus, that toplevel occurrence of
F in s has been impacted by the substitution in the construction
of Θ, and it becomes I in h. More precisely, h is of the form
(Γ′, I ` ∆′) where Γ′ (resp. ∆′) is obtained from Γ (resp. ∆)
by substituting some positive (resp. negative) instances of F by
I . We can conclude by completely eliminating that assumption,
deriving instead h from Γ, I ` ∆, which itself can be derived
from Γ, env(s) ` ∆, which is easily derivable as observed
before.

We have thus obtained a derivation β of Γ, B[I/X] ` ∆ such
thatA(β) ⊆ A(Π). We are now ready to conclude by constructing
a µLK derivation π of s = (Γ, F ` ∆) such that A(π) ⊆ A(Π).
The derivation starts with a (µl) rule on F , using I as invariant.
As the second subderivation of that inference, we derive Γ, I ` ∆
from Γ, env(s) ` ∆, which itself is easily derived. For the first

subderivation, we proceed as follows:

(Ax)
B[I/X] ` B[I/X]

β

B[I/X] ` env(s)
(∧r)

B[I/X] ` B[I/X] ∧ env(s)
(µr)

B[I/X] ` I

Note that this development makes crucial use of the difference
between µLKω and µLKωDHL: our translatability criterion and trans-
lation procedure rely in a fundamental way on the precise thread
structure of µLKω proofs.

5.2 Weakly deterministic parity inclusions and Büchi
inclusions in µLK

We show that inclusion proofs are translatable for a particular
class of disjunctive formulas called weakly deterministic, and use
this as a stepping stone for constructing µLK proofs for all Büchi
inclusions.

Definition 33. We say that a disjunctive formula F is determinis-
tic iff for any G ∈ Q(F) and a ∈ Σ, a−1G contains at most one
formula. The level of non-determinism lvl(F) of F is the number
of its even states that are not deterministic:

lvl(F) = #{ G ∈ Q(F) |
c(G) is even, G is not deterministic }.

Finally, F is said to be weakly deterministic iff lvl(F) = 0.

Proposition 34. Let F be a disjunctive formula and G a weakly
deterministic disjunctive formula. If L(F) ⊆ L(G) then Π(F,G)
is translatable.

Proof. Since G is weakly deterministic, it has the form G =
N [Di/Xi]i=1...n where Dk are deterministic formulas and N is
a formula that does not contain the ν connective. Let us denote the
set of states of Dk by Qk and those of N by QN .

The construction of Π(F,G) depends on the choice of automa-
ton associated to G. We choose it here with a priority assignment c
for the states of the formulaG such that c(K) = 1 for allK ∈ QN ,
and c(K) > 1 for all K ∈ Qi, 1 ≤ i ≤ n. Such an assignment
exists since QN contains only µ-formulas and, for all 1 ≤ i ≤ n,
the states in QN and Qi are not coaccessible.

Let us first make some observation about Safra’s construction
over weakly-deterministic formulas, with the chosen priority as-
signment. Consider a run (Ti)i∈ω on some word (ai)i∈ω , as in the
proof of Proposition 28.
Assertion: Let i ∈ ω and v be a child of the root r in Ti. One has:

• the edge (r, v) is labelled by 1;
• either eTi(v) = {K}whereK ∈ QN and in this case v is a leaf

(call it child of Type 1); or eTi(v) = {K1, . . . ,Kp} such that
for all k ∈ [1, p] there exists jk ∈ [1, n] such that Kk ∈ Qjk ,
and k 6= k′ implies jk 6= jk′ (call it child of Type 2);

• if v is also a node in Ti+1, then v is of Type 2 in Ti+1.

We prove this assertion by induction on i. When i = 0 it is
trivial since the root has no child. Suppose that the assertion is true
for some i and let us prove it for i + 1. Let v be a child of the
root in Ti+1. The edge (r, v) is labelled by 1: indeed the outgoing
edges from the root can only be 1 or 0. But by definition of the
priority assignment we gave above, no state has priority 0. On the
other hand, the only way to create an edge of label 0 is by Step 3
when a formula has a priority 0. Hence the outgoing edges from r
are labelled by 1. To prove the second item, we separate two cases:

8 2016/2/17

• If v does not exist in Ti this means that w has been created in
Step 3, hence it is a leaf labelled by a singleton {K}. We have
that K ∈ QN since only formulas from QN have priority 1.

• Otherwise, v is a child of r in Ti. By induction hypothesis, the
node v is of Type 2 in Ti+1.

Suppose that v is also a child of r in Ti+2. There are two cases:

• If v is of Type 1 in Ti+1, let eTi+1(v) = {K} and δ(K, ai+1) =

{ ~M, ~K}, ~M ⊆ QN and ~K ⊆ ∪1≤i≤nQi. The tree structure
of G implies that ~K is of the form ~K := {K1, . . . ,Kn} with
at most one Kk per Qj , and none in QN . After Step 3, all for-
mulas of ~M will be in new child of the root in Ti+2. Hence, v
will be of Type 2 in Ti+2.

• If v is of Type 2 in Ti+1, it is also of Type 2 in Ti+2 since Dk
are deterministic.

Having proved our assertion, we now establish the result. Let
v be a node and j an index such that for all i ≥ j, v is a node
in Ti and v is a leaf infinitely often. As the outgoing edges of the
root all have label 1, v cannot be the root. Indeed, to become a leaf
infinitley often, a node has to collapse in Step 6, and this is possible
only when the outgoing edges are of even priority. Hence v appears
in the subtree of a child w of the root in Ti, for all i > j. Since v is
persistent, w is also persistent, and by the above assertion, the node
w is of Type 2 in Ti, for all i > j. Hence v is also of Type 2, that
is, eTi(v) has at most one formula from each Qk and no formulas
from QN .

We finally come back to the proof of Proposition 28, and show
that each time we exhibited a valid thread t in that proof, t was
actually strongly valid. This follows from the following remarks:

(i) When the sequents of a branch contain only one formula in
their left-hand side, any valid thread visiting only left-hand side
formulas is strongly valid. Since all the sequents in Π(F,G) have
only one formula in their left-hand side, the left-hand side thread
exhibited in the first case of the proof of Proposition 28 is actually
strongly valid.

(ii) Consider the right-hand side thread t that we extracted
from the persistent node v in the second case of the proof of
Proposition 28. Let Fr := min(t), there is some k such that
Fr ∈ Qk. Let s be a sequent appearing infinitely often in γ such
that (i) the thread meets s at the level of the formula Fr (ii) s is
the conclusion of the unfolding of Fr . We prove that s satisfies the
property in the definition of strong validity. Suppose that there is
some i such that si = s and Fi 6= Fr . Since Fi is in the thread, we
have that Fi ∈ Qk. But si = s hence eTi(v) contains the formula
Fr also, which means that eTi(v) contains two distinct elements
from Qk contradicting the last observation above.

Note that the previous argument easily yields a slightly more
general result:

Proposition 35. Let F be a disjunctive formula and (Gj)1≤j≤n
be weakly deterministic ones. If L(F) ⊆

⋃
j L(Gj) then there is a

translatable proof of F ` G1, . . . Gn.

Theorem 36. Let F and G be two Büchi formulas. We have
L(F) ⊆ L(G) iff there is a µLK proof of F ` G.

Proof. Let us consider the following more general result:

Let F be a disjunctive formula and (Gj)1≤j≤n be disjunc-
tive formulas of the form Bj [P

i
j /X

i]1≤i≤k where Bj is a
Büchi formula and the P ij are deterministic, disjunctive ν-
formulas. If L(F) ⊆ ∪jL(Gj) then there is a µLK proof of
F ` G1, . . . , Gn.

We prove the latter by induction on max{lvl(Gj)}j .
Base case: When lvl(Gj) = 0 for all j, the formulas Gj are

obviously weakly deterministic. We thus apply Proposition 35 and
Proposition 30 to get a µLK proof of F ` G1, . . . , Gn.

Inductive case: For the sake of readability we assume n = 1,
i.e., we consider only one G = G1 = B[P1/X1, . . . , Pk/Xk].
Notice first that since B is a Büchi formula, it can be written as
B = Bµ[Q1/Y1, . . . , Ql/Yl] where Bµ does not contain any ν-
formulas and, for all 1 ≤ i ≤ l, Qi = νZi.Bi, with fv(Qi) ⊆
{X1, . . . , Xk} and variables (Yi)i and (Xj)j being pairwise dis-
joint. We have that G = Bµ[Ri/Yi]i where Ri = Qi[Pj/Xj]j .

Since Ri is a closed disjunctive formula, there exists a parity
automaton Ai associated to it. Let A′i be any deterministic parity
automaton accepting the same language as Ai, and let R′i be the
disjunctive formula encoding A′i. We thus have L(Ri) = L(R′i).
Further, L(G) = L(Bµ[R′i/Yi]i) since any accepting run of G
starts by a finite run in Bµ and continues with an accepting run of
some Ri.

Consider the following derivation:

π0

F ` Bµ[R′i/Yi]1≤i≤l

π1

R′1 ` R1 . . .

πl

R′l ` Rl
(Functo)

Bµ[R′i/Yi]1≤i≤l ` Bµ[Ri/Yi]1≤i≤l
(Cut)

F ` G
The sub-proof π0 can be obtained by applying the base case

since L(F) ⊆ L(Bµ[R′i/Yi]i), lvl(Bµ[R′i/Yi]i) = 0, and the
formula on the right is of the expected form.

For each 1 ≤ i ≤ l, the sub-proof πi is obtained by applying
the coinduction rule (νr) with coinvariantR′i forRi. The non-trivial
premise of that rule is then R′i ` Bi[Pj/Xj]j [R′i/Zi]. We derive
it using rule (→), slightly modified because the formula on the
right is not a fixed point formula. We are left to construct, for each
R′i

a→ R′i,a, a derivation πi,a of R′i,a ` ∆i,a where ∆i,a is (with a
slight abuse of notation) a−1(Bi[Pj/Xj]j [R

′
i/Zi]).

Let us show that each πi,a can be obtained by induction hypoth-
esis. We obviously have L(R′i,a) ⊆ L(∆i,a). Moreover, any for-
mula H ∈ ∆i,a is of the expected form. It suffices to establish that
it is the case for Bi[P j/Xj]j [R

′
i/Zi], which follows from the fact

that B[P j/Xj]j = Bµ[(νZi.Bi[Pj/Xj]j)/Yi]i: indeed, if a ν-
formula contains a variable of a greater (outermost) µ formula inBi
then this is also the case inB contradicting the hypothesis thatB is
a Büchi formula. Finally, lvl(Bi[Pj/Xj]j [R′i/Zi]) = lvl(Ri) − 1
and thus lvl(H) < lvl(G) for all H ∈ ∆i,a.

Underlying this final result, we have successfully given an algo-
rithm that checks for Büchi inclusions and yields proofs in case of
success. At the heart of the procedure, given two automata encoded
as F andG, we first build a circular proof by means of Safra’s con-
struction. If we were interested in a µLKω certificate, we should
check for the proof’s validity at this point, which can be done using
Ramsey-based techniques. But if the target is µLK, there is no need
to do so: we can simply run the translation algorithm underlying
the proof of Proposition 30 specialized for Safra proofs. In the case
of a strongly connected proof the algorithm searches, along some
branch that visits all sequents, for a persistent node that becomes
a leaf infinitely often in Safra trees. If this is found, the translation
can continue. Otherwise, it actually means that the branch is in-
valid, and it immediately yields a word accepted by F but not by
G. Thus our proof-producing verification algorithm can also pro-
duce counterexamples.

6. Conclusion
Contributions. We have given a new completeness argument in
the linear time µ-calculus, for sequents corresponding directly to

9 2016/2/17

inclusions of Büchi automata. We have done so in µLK, a cousin
of the well understood proof system µMALL. This proof system
has a complete, well understood proof theory. It notably enjoys
cut elimination, and its proofs are checkable in polynomial time.
Although our result does not imply completeness for the full calcu-
lus2, the result is non-trivial, dealing with one of the main problems
in such proofs, namely the non-determinism induced by disjunc-
tions appearing on cycles over ν formulas — this is the exact prob-
lem avoided by Kozen with aconjunctivity when translating refu-
tations rather than proofs. On the way to this final result we have
also obtained an intermediate result for inclusions of sufficiently
deterministic parity automata; here, non-determinism is avoided to
some extent, but fixed point alternations are arbitrary.

Unlike the full proof of completeness for linear time µ-calculus
(Kaivola 1995), our argument is constructive and gives a central
role to circular proofs. As by-products of this result, we have de-
fined µLKω , a new circular proof system for linear µ-calculus, and
given a strong translation result from µLKω to µLK. This result
does not rely on syntactic conditions on formulas, but on a ge-
ometric condition on circular proofs. By its nature, the result is
quite generic; it obviously carries to similar circular proof for other
µ-calculi, e.g., µMALL. The translation exploits a key difference
between µLKω and previous circular deductive systems for linear
time µ-calculus : in µLKω , we distinguish occurrences of formu-
las, which induces a very structured notion of thread. Because of
this structure, completeness of µLKω itself is not obvious. In fact,
we had to tackle non-determinism already when building circu-
lar proofs for automata inclusions. We did so by exploiting deter-
minization techniques for ω-automata to guide a complete proof
search strategy, thus giving a logical meaning to Safra’s construc-
tion.

Future work. We are considering several directions for further
investigation. An obvious one is to extend our argument to obtain
completeness for inclusions of parity automata, and then for the full
calculus. It would also be interesting to investigate the efficiency of
the algorithm underlying our argument. There might be room for
improvements, for instance by attempting to build more compact
circular proofs by improving the proof search technique used in
Theorem 22. Here, other determinization techniques than the Safra
trees used in this paper (e.g., Piterman trees (Piterman 2007)) could
be leveraged, if they can be shown to yield translatable circular
proofs. We are also interested in giving a proper proof-theoretical
status to µLKω . We believe that the precise structure of this proof
system makes it a good candidate to investigate important prop-
erties such as cut elimination and focalisation; cut elimination for
circular proof systems is an open question beyond the purely addi-
tive calculus of (Fortier and Santocanale 2013). This would make it
possible to propose circular proofs as proof certificates themselves;
although non-trivial to check, such proofs can be simpler to pro-
duce and smaller, as seen in this study.

References
D. Baelde. Least and greatest fixed points in linear logic. ACM Transactions

on Computational Logic (TOCL), 13(1):2, 2012.
J. C. Bradfield, J. Esparza, and A. Mader. An effective tableau system for

the linear time µ-calculus. In F. M. auf der Heide and B. Monien, editors,
ICALP96, Paderborn, Germany, 8-12 July 1996, volume 1099 of Lecture
Notes in Computer Science, pages 98–109. Springer, 1996. ISBN 3-540-
61440-0. doi: 10.1007/3-540-61440-0 120.

J. Brotherston and N. Gorogiannis. Cyclic abduction of inductively defined
safety and termination preconditions. In M. Müller-Olm and H. Seidl,
editors, SAS 2014, Germany, September 2014. Proceedings, volume

2 Any linear time µ-calculus formula is equivalent to a Büchi formula, but
it is far from obvious to prove that equivalence in, say, µLK.

8723 of Lecture Notes in Computer Science, pages 68–84. Springer,
2014. ISBN 978-3-319-10935-0.

J. Brotherston and A. Simpson. Sequent calculi for induction and infinite
descent. 21(6):1177–1216, Dec. 2011.

Z. Chihani, D. Miller, and F. Renaud. Foundational proof certificates in
first-order logic. In Automated Deduction–CADE-24, pages 162–177.
Springer, 2013.

C. Dax, M. Hofmann, and M. Lange. A proof system for the linear time
µ-calculus. In S. Arun-Kumar and N. Garg, editors, FSTTCS 2006,
Kolkata, India, December 13-15, 2006, volume 4337 of Lecture Notes in
Computer Science, pages 273–284. Springer, 2006. ISBN 3-540-49994-
6. doi: 10.1007/11944836 26.

J. Fortier and L. Santocanale. Cuts for circular proofs: semantics and cut-
elimination. In S. R. D. Rocca, editor, Computer Science Logic 2013
(CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23
of LIPIcs, pages 248–262. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2013. ISBN 978-3-939897-60-6.

E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite
Games: A Guide to Current Research. Springer-Verlag New York, Inc.,
New York, NY, USA, 2002. ISBN 3-540-00388-6.

D. Janin and I. Walukiewicz. Automata for the modal mu-calculus and
related results. In J. Wiedermann and P. Hájek, editors, MFCS’95,
Prague, Czech Republic, September 1995, volume 969 of Lecture Notes
in Computer Science, pages 552–562. Springer, 1995. ISBN 3-540-
60246-1. doi: 10.1007/3-540-60246-1 160.

D. Kähler and T. Wilke. Complementation, disambiguation, and deter-
minization of büchi automata unified. In Automata, Languages and Pro-
gramming, pages 724–735. Springer, 2008.

R. Kaivola. Axiomatising linear time mu-calculus. In I. Lee and S. A.
Smolka, editors, CONCUR ’95, Philadelphia, PA, USA, August 21-24,
1995, Proceedings, volume 962 of Lecture Notes in Computer Science,
pages 423–437. Springer, 1995. ISBN 3-540-60218-6. doi: 10.1007/3-
540-60218-6 32.

D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci.,
27:333–354, 1983. doi: 10.1016/0304-3975(82)90125-6.

D. Miller. A proposal for broad spectrum proof certificates. In Certified
Programs and Proofs, pages 54–69. Springer, 2011.

N. Piterman. From nondeterministic büchi and streett automata to deter-
ministic parity automata. Logical Methods in Computer Science, 3(3),
2007. doi: 10.2168/LMCS-3(3:5)2007.

S. Safra. Exponential determinization for ω-automata with strong-fairness
acceptance condition (extended abstract). In STOC’92, pages 275–
282, New York, NY, USA, 1992. ACM. ISBN 0-89791-511-9. doi:
10.1145/129712.129739.

L. Santocanale. A calculus of circular proofs and its categorical semantics.
Technical Report RS-01-15, BRICS, Department of Computer Science,
University of Aarhus, May 2001.

L. Santocanale. A calculus of circular proofs and its categorical semantics.
In M. Nielsen and U. Engberg, editors, Foundations of Software Science
and Computation Structures, volume 2303 of Lecture Notes in Computer
Science, pages 357–371. Springer, 2002. ISBN 3-540-43366-X.

C. Stirling and D. Walker. Local model checking in the modal mu-
calculus. Theor. Comput. Sci., 89(1):161–177, 1991. doi: 10.1016/0304-
3975(90)90110-4.

R. S. Streett and E. A. Emerson. An automata theoretic decision procedure
for the propositional mu-calculus. Inf. Comput., 81(3):249–264, 1989.
doi: 10.1016/0890-5401(89)90031-X.

I. Walukiewicz. On completeness of the mu-calculus. In (LICS ’93),
Montreal, Canada, June 19-23, 1993, pages 136–146, 1993. doi:
10.1109/LICS.1993.287593.

I. Walukiewicz. Completeness of kozen’s axiomatisation of the proposi-
tional mu-calculus. In LICS’95, USA, June 26-29, 1995, pages 14–24.
IEEE Computer Society, 1995. ISBN 0-8186-7050-9.

I. Walukiewicz. Completeness of kozen’s axiomatisation of the propo-
sitional mu-calculus. Inf. Comput., 157(1-2):142–182, 2000. doi:
10.1006/inco.1999.2836.

10 2016/2/17

(Ax)
a, . . . ` a

(Ax)
b,©Φ ` b

...
Φ ` Ψ

(Wl),(©)
b,©Φ ` ©Ψ

(∧r)
b,©Φ ` b ∧©Ψ

(∨r),(Wr)
b,©Φ ` (a ∧©Ψ′) ∨ (b ∧©Ψ)

(∧l),(σr)
b ∧©Φ ` Ψ′

(©)
©(b ∧©Φ) ` ©Ψ′

(Wl)
a,©(b ∧©Φ) ` ©Ψ′

(∧r)
a,©(b ∧©Φ) ` a ∧©Ψ′

(∧l),(∨r),(Wr)
a ∧©(b ∧©Φ) ` (a ∧©Ψ′) ∨ (b ∧©Ψ)

(σl),(σr)
Φ ` Ψ

Figure 4: Regular proof of Φ ` Ψ in µLK∞

(Ax)
a, . . . ` a

(Ax)
b,©Φ ` b

(Ax)
Φ ` Φ

(Wl),(©)
b,©Φ ` ©Φ

(∧r)
b,©Φ ` b ∧©Φ

(∨r),(Wr)
b,©Φ ` (a ∧©Ψ′′) ∨ (b ∧©Ψ)

(∧l),(µr)
b ∧©Φ ` Ψ′′

(©)
©(b ∧©Φ) ` ©Ψ′′

(Wl)
a,©(b ∧©Φ) ` ©Ψ′′

(∧r)
a,©(b ∧©Φ) ` a ∧©Ψ′′

(∧l),(∨r),(Wr)
a ∧©(b ∧©Φ) ` (a ∧©Ψ′′) ∨ (b ∧©Φ)

(νl),(µr)
Φ ` Ψ′′

Figure 5: Finite proof of Φ ` Ψ′′ in µLK

A. Example proofs in µLKω and µLK
We consider proving a simple implication which, informally, ex-
presses that (ab)ω is included in (a∗b)ω . More precisely, we will
prove Φ ` Ψ where:

Φ := νX. a ∧©(b ∧©X)

Ψ := νX.µY. (a ∧©Y) ∨ (b ∧©X)

We show in Figure 4 a µLKω pre-proof of Φ ` Ψ, where
the vertical dots denote a repetition of the tree, and Ψ′ stands for
µY. (a∧©Y)∨(b∧©Ψ) — this formula is obtained by unfolding
the two fixed point expressions of Ψ and accessing the first subfor-
mula under©. The threads in this pre-proof are unambiguous, as
there is at most one occurrence of a formula in a given sequent.
It is easy to see that the pre-proof is valid, and is thus a proof in
µLKω: indeed, it has a single infinite branch, which admits a single
thread on the right-hand side of sequents, and that thread unfolds
Ψ infinitely often, and is thus valid.

We prove the same sequent in µLK. Instead of cycling in a
way that unfolds Ψ infinitely often on the right-hand side, we
show that Φ is a coinvariant of Ψ. Specifically, we apply rule
νr of Figure 3 with S := Φ. The first premise is an instance
of the axiom. The second one is Φ ` Ψ′′ where Ψ′′ stands for
µY. (a ∧©Y) ∨ (b ∧©Φ); its derivation is shown in Figure 5.

Our two derivations are obviously related. The most part of the
µLK derivation has the same structure as the µLKω derivation, with
Φ replacing Ψ (and, consequently, Ψ′′ replacing Ψ′) so that the cy-
cle can be replaced by an axiom. In fact, the µLK derivation would
be obtained (modulo minor adjustments) from the translation result
of Section 5. This simple example illustrates the obvious fact that
cycles can be translated by means of (co)induction, but not the dif-
ficulty of doing so in a way that terminates (in the case of nested
cycles, translating one may expand the other, so that a naive trans-
lation process would not terminate).

B. Comparison with µLKωDHL: an example
We give here a proof of inclusion in µLKωDHL that cannot be di-
rectly translated to µLKω , for the reasons explained in Section 2.
Consider the automata B1 and B2 depicted in Figures 6 and 7. The
first one has an empty language, but this is irrelevant to our exam-
ple, which illustrates a problem on the traces induced by B2.

estart

a,b,c

Figure 6: Automaton B1

istartp q

u

vr

s

c

c
a

b

c

a

b
c

a

b

b

a

Figure 7: Automaton B2

The sequent e ` i is provable in µLKωDHL. The proof has
the following shape where (†) and (?) rules denote “back edges”
closing cycles:

...

...

...
(?)

e ` p, q

e ` u, s

...
(?)

e ` p, q

e ` r, v
(†)

e ` i

e ` p, q (?)

e ` i (†)
In the sequent e ` i on the top right, the formula i comes from

both p and q; there are two threads leading to it. In µLKω , this is
not allowed. To keep a sequent e ` i and close the cycle in the same
way, we would need to choose one of the two threads. However that
is not possible, since any choice would break the validity condition.
The Safra construction used in the proof of Theorem 22 proceeds
differently. It corresponds to choosing one of the two threads, but
the resulting Safra tree will be different from the one used at the
root. Therefore the cycle is not closed there, but later in the proof
construction, which does result in a valid proof.

11 2016/2/17

C. Example of Safra construction
We develop in this section an example of Safra’s construction illus-
trating the different steps of the construction and Proposition 25.
Let us consider the parity automaton A = ({q1, q2}, q1, δ, c) de-
picted in Figure 8 where priorities are such that c(qi) = i. We thus
consider the following set of priorities P = {0, 1, 2, 3}.

q1 q2

a a
a

a

Figure 8: Automaton A

We now consider a run of Safra trees starting with T1 (i.e., a
single node of name n0, labelled by {q1}) on the word w = aω .
This run is given in Figure 9, i.e., T1.(T2.T3)ω . We denote node
names by using brackets (e.g., [n0]) and we indicate the leaves’
labels to the right of their names (e.g., [n0] {q1}). We simply write
T T ′ when T ′ = ∆(T, a). We also detail the construction of
T3 = ∆(T2, a) in Figure 10, where i

 denotes the application of
Step (i) of Safra’s construction as defined in Section 4.

In the stationary part of the run, i.e., (T2.T3)ω , the node of
name [n1] is persistent (i.e., it is never removed from the trees)
while the ones named [n2] and [n3] are not. This reflects the fact
that all (non-accepting) runs visiting both states q1 and q2 infinitely
often are removed by our Safra’s construction. Indeed, Safra trees
remove some runs when performing Step (4) of the construction.
Concretely, the non-accepting run (q1.q2)ω is discarded in the Safra
run (Ti)i∈ω when the node [n8] {q1} is removed by Step (4) in
Figure 10 — we assume here that the state q1 in node n3, which we
decided to keep, comes from node n5. In this simple example, the
only run that is never removed is ρ = q1.q

ω
2 ; it is associated to the

persistent node [n1].
More generally, a persistent node v whose incoming edge is la-

belled p intuitively selects all runs for which the minimum priority
p′ visited infinitely often is even and equal to either p or p+ 1, de-
pending on the priority of p. If at some point, a run visits a state of
priority p1 < p′ then the node would discard it when applying Step
(3). Moreover, it may be the case that this run will not be selected
by another node and will be removed at Step (4). This is happening
in our example (cf. Figure 10) for nodes n1 and n2 and states q1
(in n6 and n5). Further, if this node becomes a leaf infinitely often,
it means that Step (6) is applied infinitely often and thus all runs it
has selected have visited infinitely many times a state of priority p′.
This is happening in our example for the node n1 when performing
Step (6). Altogether, we can obtain that the node only selects runs
that are accepting for the priority p′.

12 2016/2/17

[n0] {q1}

[n0]

[n1] {q2}

1

[n2] {q1}

1

[n0]

[n1] {q2}

1

[n3] {q1}

1

[n0]

[n1] {q2}

1

[n2] {q1}

1 . . .

T1 T2 T3 T2

Figure 9: The run of Safra trees associated to A on w = aω

T2
1+2

[n0]

[n1]

[n4] {q1, q2}

3

1
[n2]

[n5] {q1, q2}

3

1

3

[n0]

[n1]

[n4] {∅}

3

[n6] {q2}

2

1

[n2]

[n5] {∅}

3

[n7] {q2}

2

1

[n3] {q1}

1

[n8] {q1}

1

4+5

[n0]

[n1]

[n6] {q2}

2

1
[n3] {q1}

1

6

[n0]

[n1] {q2}

1

[n3] {q1}

1

Figure 10: Internal steps of ∆(T2, a) = T3

13 2016/2/17

