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Abstract

We give a new proof that the axioms of left-handed Kleene algebra are complete with
respect to language containments. This proof is significantly simpler than both the proof of
Boffa (which relies on Krob’s completeness result), and the more recent proof of Kozen
and Silva. Our proof builds on a recent non-wellfounded sequent calculus which makes it
possible to explicitly compute the invariants required for left-handed Kleene algebra.

1 Introduction

Kleene algebra is a finitely axiomatised quasi-equational theory over regular expressions [12],
which admits formal languages and binary relations as free models: every equation which is
universally valid in one of those models, or equivalently, whose members denote the same rational
language, is provable from the axioms of Kleene algebra [7, 26, 19, 8]. This theorem is important
in practice since it shows that the equational theory of Kleene algebra is decidable, and actually
PSpace-complete: it reduces to the problem of comparing rational languages. Thanks to the
model of binary relations, Kleene algebra and its extensions have been used to reason abstractly
about program correctness [21, 22, 3, 16, 2]. The aforementioned decidability result actually
made it possible to automatise reasoning steps in proof assistants [9, 25, 27].

Several axiomatisations have been studied in the literature, and the existing completeness
proofs are all technically involved. Redko first proved that every purely equational axiomatisation
must be infinite [28]. Conway then conjectured completeness of fourteen ‘classical’ equations,
plus a family of axioms indexed by finite semigroups [12, page 116]; Krob proved this result
twenty years later, in a 137 pages long paper [26]. At the same time, Kozen proved completeness
of a finite quasi-equational axiomatisation (what is called Kleene Algebra nowadays), using an
ingenious and reasonably short proof [20] where automata computations are replayed algebraically,
using matrices. This axiomatisation comprises two implications to characterise Kleene star.

(L) z + yx ≤ x implies y∗z ≤ x

(R) z + xy ≤ x implies zy∗ ≤ x

By removing the second one, one obtains so-called left-handed Kleene algebras, which are the
structures we consider in the present paper, and whose completeness with respect to rational
language inclusions was stated without proof by Conway [12, Chap. 12, Thm. 5]. Such structures
are important because there are models where one of the implications of Kleene algebra is not
satisfied [18, 24] (see also Ex. 1 below).

Boffa proved [7, 8] that completeness of left-handed Kleene algebra follows from completeness
of Conway’s axioms, thus requiring Krob’s extensive proof [26, Cor. 15.15]. Kozen and Silva
recently gave a shorter but still highly technical proof [23], by relying on the coalgebraic semantics
of regular expressions: Brzozowski’s derivatives [11]. We give a new proof here.

Removing the second implication above disqualifies Kozen’s technique for proving complete-
ness [20]: both implications are needed to replay automata algorithms algebraically. In fact, the
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key difficulty for left-handed completeness consists in finding invariants to exploit the remaining
implication (L). A key feature of our proof is that we compute those invariants explicitly: we do
not need to compute decompositions and solve linear systems of equations, as in [23].

Our completeness proof builds on a sequent-style calculus, HKA, which was proposed
recently [14]. This system admits ‘cyclic’ proofs, where proofs are finite graphs with cycles rather
than trees or dags, and soundness and completeness for rational language inclusions holds under
a simple correctness criterion. These cyclic proofs make it possible to represent computations
on automata in a structured way, which we exploit here to compute invariants and to obtain
completeness. In the end, this results in a simple and direct proof, where the constructed
derivations in left-handed Kleene algebra closely follow the computations on automata.

2 Regular expressions and their proof systems

2.1 Regular expressions and Kleene Algebras

We consider regular expressions over a finite alphabet A:

e, f ::= e · e | e+ e | e∗ | 1 | 0 | a ∈ A

The set of regular expressions is denoted ExpA, and we often write ef for e · f . Each expression
e denotes a rational language L (e) ⊆ A∗, defined in the usual way [17].

A left-handed Kleene algebra is a tuple (K, 0, 1,+, ·, ∗) where (K, 0, 1,+, ·) is an idempotent
semiring (see App. A) and, if we write x ≤ y as a shorthand for x+ y = y, we have that:

(`) 1 + xx∗ ≤ x∗;

(L) if z + yx ≤ x then y∗z ≤ x.

Given two regular expressions e, f , we write `KA ` e ≤ f when e ≤ f is derivable from the
axioms of left-handed Kleene algebra.

Together with the idempotent semiring axioms, Axioms (`) and (L) amount to asking that
y∗z is the least fixpoint of x 7→ z + yx. These axioms admit several equivalent formulations (e.g.
rules ‘P1l’, ‘P2l’ and ‘P3l’ in [12, page 103]). Also note that a few additional axioms are included
in [23], which are all derivable from the ones used here. The point of left-handed Kleene algebra
is that the right-handed versions of axioms (`) and (L), characterising zy∗ as the least fixpoint
of x 7→ z + xy, are omitted. This makes it possible to capture natural models as the one below.

Example 1. Given a complete lattice 〈X,≤,
∨
〉, monotone functions f : X → X such that

f(x ∨ y) = f(x) ∨ f(y) and f(⊥) = ⊥ form a left-handed Kleene algebra (where ⊥ =
∨

∅.).
Addition is computed pointwise: (f + g)(x) = f(x) ∨ g(x); product is composition of functions:
(f · g)(x) = f(g(x)); Kleene star is obtained by iteration: f∗(x) =

∨
n∈N f

n(x) where f0(x) = x
and fn+1(x) = f(fn(x)). Such models do not, in general, satisfy the implication (R) from the
introduction (see App. E). Also note that we must restrict to functions that distribute over finite
suprema to obtain a semiring: otherwise we only have semi-distributivity on the right [18].

Left-handed completeness states that language inclusion implies derivability in `KA:

Theorem 2 (Left-handed completeness [12, 8, 23]). If L (e) ⊆ L (f) then `KA ` e ≤ f .

(The converse implication holds by an easy inspection of `KA axioms.) We reprove this theorem
in the remainder of this paper. The difficulties occur when the expression on the left, e, contains
starred sub-expressions. When such a sub-expression occurs immediately on the left at toplevel,
we shall rely on the following variant of Axiom (L):
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Lemma 3 (Invariant lemma). For all regular expressions e,Γ, X, I,

if


`KA ` Γ ≤ I
`KA ` eI ≤ I
`KA ` I ≤ X

then `KA ` e∗Γ ≤ X .

The reason for the choice of notation Γ and X becomes apparent in the next section when we
deal with proof systems. The expression I in the above lemma is invariant for e on the left
(second assumption of the lemma); it has to be guessed in order to apply the lemma and derive
the inequality e∗Γ ≤ X. The difficulty is that, in general neither Γ nor X can be chosen for I:
some intermediate expression must be used. Most of the work in the present paper consists in
computing such invariants and showing that they fulfil the requirements of the above lemma.

2.2 The system HKA of cyclic proofs

The sequent-style system HKA was introduced in [14]. It is a ‘cut-free’ proof system for
inequalities between regular expressions and is well-suited for proof search; indeed it admits a
PSpace proof search procedure, which is optimal. HKA works with a form of hypersequents,
which record slightly more structure than plain sequents, and proofs over this system may
contain cycles. Both these features are critical for cut-free completeness. We recall this system
below.

Notation 4 (Lists and multisets). We denote lists (resp. finite multisets) by x1, . . . , xn (resp.
x1; . . . ;xn}), where {xi}i∈[1,n] are the elements. We also use comma (resp. semicolon) to denote
list concatenation (resp. multiset union). We write ε for the empty list. We let Γ,∆ range over
lists of regular expressions, and X,Y range over multisets of such lists. We implicitly interpret
such lists and multisets as regular expressions by converting lists into products and multisets
into sums. For instance, the multiset a, b; c is interpreted as the regular expression ab+ c.

A hypersequent (or simply a sequent) is an expression Γ→ X; its general form is thus:

e1, . . . , el → f11, . . . , f1n1 ; · · · ; fm1, . . . , fmnm .

A hypersequent Γ→ X is valid if L (Γ) ⊆ L (X).
The rules of HKA are given in Fig. 1. In the modal rule (a), we use the following notation:

if X = ∆1; . . . ; ∆n, we write e.X for the multiset e,∆1; . . . ; e,∆n. The rules presented in [14]
are slightly more permissive: here we restrict to leftmost proofs, where logical rules only apply
to regular expressions in head position of a list. Here we impose this condition syntactically
since we do not need the more general setting of [14].

Definition 5 (HKA proofs). A preproof is a potentially infinite derivation built using the rules
of Fig. 1. A proof is a preproof that is fair for ∗-l, i.e. where every infinite branch contains
infinitely many ∗-l steps. A proof is regular if it has finitely many distinct subtrees. We write
HKA `ω Γ→ X if Γ→ X admits a regular proof.

We only work with regular proofs and we require them to be uniform: every two occurrences of
the same sequent conclude identical subproofs. (Every proof can be transformed into a uniform
one.) We moreover exploit the following concrete representation of such proofs.

Lemma 6. Every regular and uniform proof can be represented as a finite tree with back-pointers
to ∗-l steps: a finite derivation using the rules from Fig. 1 where leaves are either axioms (0-l,
id) or pointers to one of their proper ancestors corresponding to a ∗-l step.

3
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Left logical rules:

0-l
0,∆→

∆→ X
1-l

1,∆→ X

e, f,∆→ X
·-l

e · f,∆→ X

e,∆→ X f,∆→ X
+-l

e+ f,∆→ X

∆→ X e, e∗,∆→ X
∗-l

e∗,∆→ X

Right logical rules:

Γ→ Σ;X
1-r

Γ→ 1,Σ;X

Γ→ e, f,Σ;X
·-r

Γ→ e · f,Σ;X

Γ→ e,Σ; f,Σ;X
+-r

Γ→ e+ f,Σ;X

Γ→ Σ; e, e∗,Σ;X
∗-r

Γ→ e∗,Σ;X

Identity, modal and structural rules:

id→ ε
Γ→ X

(a)
a,Γ→ a.X

Γ→ X
wk

Γ→ ∆;X

Γ→ ∆; ∆;X
cntr

Γ→ ∆;X

Figure 1: The rules of leftmost HKA.

Proof. Along each infinite branch, fairness gives infinitely many ∗-l steps, which occur on finitely
many sequents by regularity; cut the branch using a back-pointer on the first such sequent
visited twice. Now each branch is finite so that we have a finite tree (with back-pointers) by
Knig’s lemma. This tree faithfully represents the starting proof, by uniformity.

Example 7. The following derivation represents a regular and uniform proof, where • is used
for back-pointers. We use it as a running example in the rest of the paper. We denote it by Π0.

id→ ε ∗-r,wk
→ (ab∗a)∗; a, (aa)∗

id→ ε ∗-r,wk
→ b∗a, (ab∗a)∗; (aa)∗

a∗ → (ab∗a)∗; a, (aa)∗ (•)
(a)

a, a∗ → a, (ab∗a)∗; a, a, (aa)∗
·-r, ∗-r, ∗-r, ·-r,wk

a, a∗ → b∗a, (ab∗a)∗; (aa)∗
∗-l

a∗ → b∗a, (ab∗a)∗; (aa)∗
(a)

a, a∗ → a, b∗a, (ab∗a)∗; a, (aa)∗
∗-r, ·-r,wk

a, a∗ → (ab∗a)∗; a, (aa)∗
∗-l

a∗ → (ab∗a)∗; a, (aa)∗ (•)

This proof intuitively corresponds to a computation where the language of the antecedent (a∗) is
explored and matched with the language of the succedent ((ab∗a)∗ + a(aa)∗), using an automata
construction reminiscent from partial derivatives [4]. Now introduce the following notations:

X0 , (ab∗a)∗; a, (aa)∗ X1 , b∗a, (ab∗a)∗; (aa)∗

R , ∗-r,wk R0 , ∗-r, ·-r,wk R1 , ·-r, ∗-r, ∗-r, ·-r,wk

we can write Π0 and its subproof Π1 rooted at a∗ → X1 as follows:

Π0 =

id→ ε
R

→ X0

id→ ε
R

→ X1

a∗ → X0 (•)
(a)

a, a∗ → a.X0
R1

a, a∗ → X1 ∗-l
a∗ → X1

(a)
a, a∗ → a.X1

R0
a, a∗ → X0 ∗-l

a∗ → X0 (•)

Π1 =

id→ ε
R

→ X0

id→ ε
R

→ X1

a∗ → X1 (••)
(a)

a, a∗ → a.X1
R0

a, a∗ → X0 ∗-l
a∗ → X0

(a)
a, a∗ → a.X0

R1
a, a∗ → X1 ∗-l

a∗ → X1 (••)

4
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We give other examples of HKA proofs in App. B. Our starting point is the following result:
HKA is complete for rational language inclusions:

Theorem 8 (Completeness of HKA [14]). If L (Γ) ⊆ L (X) then HKA `ω Γ→ X.

The proof of this theorem is not difficult: logical rules of HKA are invertible so that we may
Damien: amina: a te sem-
ble ok?
Amina: Yes!
Anupam: j’ai reformul la
paragraphe un peu

apply them eagerly; when a normal form is reached, we use a weakening (wk) followed by a
modal step (a), as usual in proof search for modal logics. We obtain regular proofs since the
number of sequents appearing is bounded, by appealing to an order on the occurring expressions.

3 Proof of completeness

To prove completeness of left-handed Kleene algebra, it suffices by Thm. 8 to translate (regular)
proofs of HKA into `KA derivations:

Theorem 9 (Translation theorem). If HKA `ω Γ→ X then `KA ` Γ ≤ X.

The rest of the paper is dedicated to the proof of this theorem. We first observe the following:

Proposition 10. If the premisses of a HKA rule are derivable in `KA, so is its conclusion.

This means that every finite proof of HKA can be translated; the difficulty consists in handling
cyclic—and thus infinite—proofs. To show Thm. 9, we need to slightly generalise it (Thm. 14
below), to deal with a certain form of hypotheses, which we define below.

Definition 11 (Hypotheses). A hypothesis is an expression x ≤ e where x ∈ A and e ∈ ExpA.
Let H be a set of hypotheses. We denote by `KA+H the union of `KA axioms and H. We write
HKA+H for the system obtained from HKA by adding, for every (x ≤ e) ∈ H, the following rule:

H
x→ e

A straightforward induction yields the following lemma.

Lemma 12. Suppose x ∈ L (e) for a letter x. Then HKA `ω x→ e and `KA ` x ≤ e.

Proviso 13. Let H0 , {x ≤ e | x ∈ L (e)}. We assume that all sets of hypotheses contain H0

and that in HKA proofs, the modal rule (a) is applied only when Γ 6= ∅: instances of this rule
breaking this assumption can be removed using hypotheses from H0.

Our goal is now to prove the following generalisation of Thm. 9:

Theorem 14. If HKA,H `ω Γ→ X, then `KA,H ` Γ ≤ X.

Thm. 8 follows by taking H = H0; note that while Thm. 9 actually yields an equivalence, the
converse of Thm. 14 does not hold—see App. D.

We prove Thm. 14 by lexicographic induction on 〈#Γ,#π〉, where #Γ is the number of the
∗-subexpressions occurring in Γ, and #π is the number of (distinct) nodes in the starting regular
proof π. We proceed by analysing the last rule ρ applied in π.

If ρ is the H rule, the result is immediate. Suppose that ρ is a HKA rule which is not ∗-l,
and let {πi}i be the sub-proofs of π rooted at the premisses of ρ. Let Γi → Xi be the conclusion
sequent of πi. Observe that #Γi ≤ #Γ. Since ρ is not a ∗-l, there is no back-pointer from πi to
the conclusion of π, thus #πi < #π. We have 〈#Γi,#πi〉 <lex 〈#Γ,#π〉, and we can apply the
induction hypothesis to πi. We conclude using Prop. 10.

5



Left-Handed Completeness via Cyclic Proofs A. Das, A. Doumane and D. Pous

Suppose now that ρ is ∗-l, so that π is of the following form:

π1

Γ→ X

π2

e, e∗,Γ→ X
∗-l

e∗,Γ→ X

We cannot in general apply the induction hypothesis to π2: we have #(e, e∗,Γ) ≥ #(e∗,Γ) and
since π2 might have back-pointers to the conclusion of π, we might have #π2 = #π.

Instead, to find a derivation of e∗,Γ ≤ X in `KA+H, we use the invariant lemma (Lem. 3).
A naive idea is to use X as invariant, which implies showing that `KA,H ` Γ ≤ X and
`KA,H ` eX ≤ X. The first inequality can be obtained by applying the induction hypothesis
to π1 (since #Γ < #(e∗,Γ)). Let us show the second inequality in the simple case where π has
the following property:

whenever a sequent e∗,Γ→ Y appears in π, we have Y = X. (?)

In this case, if we replace e∗,Γ by X in all the antecedents of sequents in π2, we can close all
the back-pointers to e∗,Γ→ X by an identity rule as shown below.

...

e∗,Γ→ X

... π2

e, e∗,Γ→ X

;

...
id

X → X

... π2[(e∗,Γ)/X]

e,X → X

We conclude by applying the induction hypothesis to π2[(e∗,Γ)/X], since #(e,X) < #(e∗,Γ).

Unfortunately, π may contain sequents of the form e∗,Γ → X ′ where X ′ 6= X (e.g. as in
Ex. 7). In such a case, when we replace e∗,Γ by X in π2, we get stuck with sequents of the form
X → X ′, for which we potentially do not even have L (X) ⊆ L (X ′):

...

e∗,Γ→ X ′

...

e∗,Γ→ X

... π2

e, e∗,Γ→ X

;

?

X → X ′

...
id

X → X

... π2[(e∗,Γ)/X]

e,X → X

If we had an intersection operator in our syntax, we could choose X ∩X ′ as invariant. Since we
do not have such an operator, the challenge is to find an expression which will play the role
of the intersection and for which we can derive the tree inequalities required for an invariant.
(Blindly computing a regular expression for the rational language L (X) ∩ L (X ′) does not work
since we would not know how to derive those three inequalities.)

We handle this case in the next two sections: let us fix a regular proof π of e∗,Γ→ X1 and
ending with a ∗-l step. Let X1, . . . , Xn be an enumeration of the multisets such that e∗,Γ→ Xi

is a conclusion of a ∗-l step in π. In the following sections, we compute an expression I, the
invariant, which intuitively corresponds to the intersection of e∗Γ and X1, . . . , Xn (Sect. 4), and
we derive the following inequalities (resp. in Sect. 5.1, 5.2 and 5.3):

`KA,H ` Γ→ I `KA,H ` e, I → I `KA,H ` I → X1

We underlined π, e,Γ, Xi and I, to distinguish these global variables of the external induction
from the local variables we will use in the subsequent lemmas and propositions.

6
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Left rules:

{Γi ⇒ X}i∈I
l

Γ⇒ X
If the following is a left HKA rule:

{Γi → X}i∈I
l

Γ→ X

Right rules: (including weakening and contraction rules)

Γ⇒ X , X,Y
r

Γ⇒ X , Y,Y
If the following is a right HKA rule:

Γ→ X
r

Γ→ Y

Identity, hypothesis, and modal rules:

id⇒ ε, . . . , ε
H

x⇒ e1, . . . , en
Γ⇒ X1, . . . , Xn

(a)
a,Γ⇒ a.X1, . . . , a.Xn

Figure 2: The rules of synchronised HKA; the rule H applies only when the hypothesis x ≤ ei
belongs to H for every i ∈ [1, n].

4 Computing the invariant

For every i ∈ [1, n], let πi be the subproof of π rooted at e∗,Γ→ Xi. To construct the invariant,
we proceed in three steps:

1. First, we synchronise the proofs {πi}i by taking their product. This product is a structure
that we call a synchronised proof.

2. Second, we convert this synchronised proof into a non-deterministic automaton (NFA).

3. Third, we extract the invariant I from this NFA.

Several standard algorithms make it possible to extract regular expressions from finite automata
(e.g. state removal from Kleene’s theorem). We however need to design our own algorithm to
retain control on the produced expressions, and derive the three inequalities of an invariant.

4.1 Synchronised proofs

We let X ,Y range over n-uples of multisets (of lists of regular expressions).

Definition 15 (Synchronised proof system). A synchronised sequent is an expression of the
form Γ⇒ X . A synchronised proof is a (potentially infinite yet regular) derivation built using
the rules of Fig. 2, which is fair for ∗-l. As for HKA, we implicitly work with finite representations
of synchronous proofs as trees with back-pointers.

Intuitively, a synchronised proof of Γ⇒ X1, . . . , Xn is just a product of proofs for the sequents
Γ→ Xi. Left logical rules are applied synchronously: at most one left logical rule applies for a
given antecedent Γ; right logical rules are applied independently.

If Γ⇒ X1, . . . , Xn is a synchronised sequent, we call the sequent Γ→ Xi its ith projection.
When we replace the synchronised sequents of a synchronised proof π by their ith-projection and
remove irrelevant right steps, we get an HKA+H proof, which we call the ith projection of π.

Conversely, one can construct synchronous proofs from independent ones:

Definition 16. Let {πi}i∈[1,n] be a collection of HKA+H regular proofs, such that Γ→ Yi is
the conclusion of πi and let ρi be the last rule applied in πi (note that all πi have the same
antecedent Γ). We let Π

i∈[1,n]
πi be the synchronous proof defined coinductively as follows:

7
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• If some rule ρk, where k ∈ [1, n] is a right rule r, whose premiss is Γ→ Zk, we set θk to
be the sub-proof of πk rooted at Γ→ Zk, and set:

Π
i∈[1,n]

πi ,

Π
i∈[1,k−1]

πi × θk × Π
i∈[k+1,n]

πi

Γ⇒ Y1, . . . , Yk−1, Zk, Yk+1, . . . , Yn
r

Γ⇒ Y1, . . . , Yk−1, Yk, Yk+1, . . . , Yn

• If all the rules ρi are left logical rules, they are necessarily the same HKA rule l. Let
{Γj}j∈J be the antecedents of the premisses of l, and let θij be the sub-proof of πi rooted
at Γj → Yi. We set:

Π
i∈[1,n]

πi ,

{
Π

i∈[1,n]
θij

Γj ⇒ Y1, . . . , Yn

}
j∈J

l
Γ⇒ Y1, . . . , Yn

• If all the rules ρi are the modal rule (a), let ∆→ Zi be the premiss of ρi in πi and θi be
the sub-proof of πi rooted in ∆→ Zi. We set:

Π
i∈[1,n]

πi ,

Π
i∈[1,n]

θi

∆⇒ Z1, . . . , Zn
(a)

Γ⇒ Y1, . . . , Yn

• If all the rules ρi are the hypothesis rule H, we use the synchronised hypothesis rule.

• If all the rules ρi are the identity rule, we use the synchronised identity rule.

Thanks to Proviso 13, if Γ is of the form Γ = a,∆, the rules ρi are either all hypothesis rules
(if ∆ = ∅) or all modal rules (otherwise). Our definition thus covers all the possible cases.

Remark 17. Note that the ith projection of Π
i∈I
πi is an unfolding of πi. The above product of

proofs can be seen as a way to find a ‘common unfolding’ for them, as illustrated by Ex. 18.
Also note that the product is not uniquely defined, but we can fix one arbitrarily.

Example 18. The product of the proofs Π0 and Π1 of Ex. 7 is the following synchronised proof.

Π0 ×Π1 =

id⇒ ε, ε
R

⇒ ε,X1
R

⇒ X0, X1

id⇒ ε, ε
R

⇒ ε,X0
R

⇒ X1, X0

a∗ ⇒ X0, X1 (•)
(a)

a, a∗ ⇒ a.X0, a.X1
R0

a, a∗ ⇒ a.X0, X0
R1

a, a∗ ⇒ X1, X0 ∗-l
a∗ ⇒ X1, X0

(a)
a, a∗ ⇒ a.X1, a.X0

R1
a, a∗ ⇒ a.X1, X1

R0
a, a∗ ⇒ X0, X1 ∗-l

a∗ ⇒ X0, X1 (•)

4.2 Automata of synchronised proofs

Definition 19 (Automaton of a synchronised proof). Let π be a synchronised proof. The
automaton of π is the NFA A(π) = 〈Q,T, ι, F 〉, where the set of states is Q = S ] F , S being
the set of synchronised sequent occurrences of π and F being a copy of the conclusions of H
and id steps, the initial state ι is the root of π, and the transition table T ⊆ Q×A∪ {1} ×Q is
defined as follows. (p, l, q) ∈ T if either:

8
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a∗ ⇒ X0, X1

a∗ ⇒ X1, X0
⇒ ε, ε

f1

⇒ ε, ε

f2

a
1

a

1
1

1

Figure 3: Automaton of the synchronised proof Π0 ×Π1 from Ex. 18.

• q is a premiss of p, the applied rule is not a modal rule, and l = 1.

• q is a premiss of p, the applied rule is a modal rule (a), and l = a.

• p = (x⇒ X ) (resp. p = (⇒ X )) is the conclusion of a H (resp. id) rule, q ∈ F is its copy,
and l = x (resp. l = 1).

Proviso 20. Since synchronised proofs are represented as finite trees with back-pointers, their
automata also have this shape. We call the tree structure underlying automata of this shape
simply their trees. In the sequel we suppose that all our NFA have this shape, and that their
trees are rooted in the initial state1.

Example 21. The automaton A of the synchronised proof Π0 ×Π1 of Ex. 18 is given in Fig. 3.
The accepting states are f1 and f2, which are the copies of the two occurrences of ⇒ ε, ε. The
initial state is a∗ ⇒ X0, X1, the root of Π0 ×Π1. We omitted states and epsilon transitions for
the sake of readability. This automaton recognises the language a∗, which is the intersection
of the languages of X0 and X1. Note that if we had started with the multiset X0; a∗c in the
right-hand side of the sequent from Ex. 7, we would have obtained a similar automaton, not an
automaton for a∗c: in general, the constructed automaton recognises the intersection of e∗Γ and
the X1, . . . , Xn.

We will use some graph theoretic terminology for NFA; we introduce it below.

Definition 22 (Paths, labels, proper loops). LetA = 〈Q,T, ι, F 〉 be a NFA and let l : Q→ ExpA
be a labelling of the states of A.

A path is a sequence p = q1, a1, . . . , qk−1, ak1 , qk where qi ∈ Q and 〈qi, ai, qi+1〉 ∈ T . It is
simple if qi 6= qj when i 6= j. We denote by Simpl(p, q) the set of simple paths from p to q. The
label of p, denoted l(p) is the sequence l(q1), a1, . . . , l(qk−1), ak1 , l(qk).

A proper loop of q is a sequence a, q′, b s.t. q, a, q′ and q′, b, q are simple paths and all states
of q′ are descendants of q in the tree of A. We write Loop(q) for the set of proper loops of q.

Remark 23. There are two differences between proper loops and what is usually called a loop:
they are not paths in the sense of the previous definition because they do not begin and do not
finish by a node. (For that one can complete them by adding nodes to both extremities.) The
second difference, more fundamental, is that we do not have the right to visit nodes which are
ancestors (in the tree of the automaton) of the node on which we loop.

1Note that every NFA can be put into this form.
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4.3 Extracting regular expressions from automata

Definition 24 (Expression of a NFA). Let A = 〈Q,T, ι, F 〉 be a NFA. We define a state
labelling function l : Q→ ExpA recursively on the tree of A, starting from the leaves. Suppose
that we are processing the node n, we set:

l(n) =

(
Σ

p∈Loop(n)
l(p)

)∗
(Since leaves cannot have proper loops, they are labelled with 0∗, which is equivalent to 1 in
`KA; the map l is well defined: thanks to the definition of Loop(n), we use only the descendants
of n in the tree of A to compute l(n).) The expression of A, I(A), is defined as follows2:

I(A) = {l(p) | f ∈ F, p ∈ Simple(ι, f)}

Example 25. Let us compute the expression of the automaton A of Ex. 21. First, we need
to compute its state labelling l. The only state having a proper loop is the initial state. Thus,
modulo `KA axioms, we get:

l : q 7→

{
(aa)∗ if q is a∗ ⇒ X0, X1

1 otherwise

There are two paths from the initial state to final states: one going to f1 and the other to f2. The
expression corresponding to the automaton A is then I(A) = (aa)∗; (aa)∗, a. (Again, modulo
`KA.) Of course, there are many other expressions recognising the language of A; I(A) is
convenient because it is closely related to both X0 and X1.

Remark 26. We do not state the Kleene theorem (L (A) = L (I(A))) for this construction as
we do not need it in the sequel. Know however that it holds.

We set I , I(A) where A is the automaton of the synchronous proof Π
i∈[1,n]

πi.

4.4 Regular expressions for arbitrary nodes

The computation of I(A) relies on the precise tree structure of A. We will also need to compute
the expression of A considering another state n of A as the initial state, which we will denote by
JnK. One could reorganise A as a tree rooted in n, but this would be very tedious. Another way
to proceed is to use the labelling l of A (with ι as the root of A), and generalise the computation
of I(A) to arbitrary nodes. To do so, we need to generalise the notion of simple path:

Definition 27 (Forward path, expression of an arbitrary node). A path p = n1, a1, . . . , ak−1, nk
in a NFA A is forward if for every i < j such that ni = nj , there is o such that i < o < j,
no 6= ni and no is an ancestor of ni in the tree of A. For every state n, we write Forward(n) for
the set of forward paths from n to a final state, and

JnKA , {l(p) | p ∈ Forward(n)} .

We write JnK instead of JnKA when the automaton is clear from the context or when A = A.

We compute forward paths in a concrete graph in App. C; note that they are finitely many: a
forward path may visit a given node at most twice.

2Formally, I(A) is a multiset; we however interpret it as a single regular expression, as usual in this paper.
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Remark 28. If ι is the initial state of A, then a path starting from ι is forward if and only if
it is simple, since ι is the root of the tree of A. Thus we have that I(A) = JιKA.

Remark 29. If π is a synchronised proof and A = A(π), then Jx⇒ X K = x (resp. J⇒ X K = 1)
if x⇒ X (resp. ⇒ X ) is the conclusion of a H (resp. id) rule.

We do not need to show that JnK is indeed the expression of A when n is the initial state.
Instead, we just need to relate JnK and JmK of two close nodes n and m.

Lemma 30. Let A = 〈Q,T, ι, F 〉 be a NFA, q ∈ Q, and {qi}i∈[1,k], {ai}i∈[1,k] be sequences such
that 〈q, ai, qi〉 ∈ T ∀i ∈ [1, k]. We have `KA,H ` a1Jq1K + · · ·+ akJqkK ≤ JqK, and the following
rule is derivable in HKA+H:

Damien: I’m quite con-
fident that we can get
a slightly simpler proof,
without using contrac-
tion...

Γ→ a1.Jq1K; . . . ; ak.JqkK

Γ→ JqK

Proof. The inequality of `KA+H follows from derivability of the rule by taking Γ to be a1Jq1K +
· · · + akJqkK, using Prop. 10 and distributivity. Let us show that the rule is derivable in
HKA+H. For every i ∈ [1, k], we set Fi = {qi, p|q, ai, qi, p ∈ Forward(q)} the set of paths starting
from qi which can be prolongated into forward paths of q by going through ai; and we set
Li = {qi, p|ai, qi, p ∈ Loop(()q)}. First, let us show that:

Forward(qi) ⊆ Fi ∪ Li,Forward(q)

Let p ∈ Forward(qi). There are three cases to distinguish:

• The path p does not visit q. In this case q, ai, p ∈ Forward(q) thus p ∈ Fi.

• p is of the form qi, s, q, t where s does not contain q but contains an ancestor of q. In this
case q, ai, p ∈ Forward(q) thus p ∈ Fi.

• p is of the form qi, s, q, t where s does not contain q and contains only descendents of q.
Note that ai, qi, s is a proper loop of q, hence qi, s ∈ Li moreover q, t ∈ Forward(q) since
the suffixe of a forward path is a forward path. We have then p ∈ Li,Forward(q).

Let us now find our derivation.

Γ→ {ai, l(p) | i ∈ [1, k], p ∈ Fi} ∪ {aj , l(r), l(q), ai, l(p) | i, j ∈ [1, k], p ∈ Fi, r ∈ Lj}
∗-r,+-r,wk

Γ→ {l(q), ai, l(p) | i ∈ [1, k], p ∈ Fi}
wk

Γ→ JqK

We have that:

{ai, l(p) | i ∈ [1, k], p ∈ Fi} = ∪i∈[1,k]ai,Fi
{aj , l(r), l(q), ai, l(p) | i, j ∈ [1, k], p ∈ Fi, r ∈ Lj} = ∪i∈[1,k]ai, Li,Forward(q)

We can conclude using some weakenings.

4.5 A minorant lemma

We end up this section by a generic lemma which we use twice in the proofs of the next section.
This lemma states that the expression of a node n, JnKA, is provably smaller (in `KA+H) than
the value of any compatible function at n. Let us define first this notion of compatibility.
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Definition 31. Let A = 〈Q,T, ι, F 〉 be a NFA and f : Q → ExpA a function from states to
expressions. We say that f is compatible with A if `KA,H ` 1 ≤ f(n) whenever n is a leaf of A
and for all transitions 〈n, a,m〉 ∈ T , we have `KA,H ` af(m) ≤ f(n).

For instance, the function J·KA : n 7→ JnKA is compatible with A thanks to Lem. 30.

Lemma 32 (Minorant lemma). Let f be compatible with a NFA A; for all state n, we have:

`KA,H ` JnKA ≤ f(n)

Proof. Since JnKA =
∑
p∈Forward(n) l(p), we should show that for all path p ∈ Forward(n),

`KA,H ` l(p) ≤ f(n). We proceed by induction on the length of the path p. Let p ∈ Forward(n).
We can write p = n, a,m, r where m is a child of n in A. Since l(p) = l(n)al(mr), it is enough
to show that `KA,H ` l(n)f(n) ≤ f(n) and `KA,H ` al(mr) ≤ f(n). Let us show the second
inequality first; we will show the first inequality afterwards, out of the induction. Note that
mr ∈ Forward(m) thus l(mr) ≤ f(m) by induction, and then al(mr) ≤ af(m). By compatibility
of f we have that af(m) ≤ f(n) which concludes the proof.

Now, let us show now that `KA,H ` l(n)f(n) ≤ f(n). We proceed by induction on n,
starting from the leaves of the tree of A. Recall that l(n) = S∗ where S =

∑
p∈Loop(n) l(p). By

the implication (L) of `KA, it suffices to show that `KA,H ` Sf(n) ≤ f(n), or equivalently
that for all path p ∈ Loop(n), `KA,H ` l(p)f(n) ≤ f(n).

Let p = a0, n1, . . . , nk, ak ∈ Loop(n). We set n0 , n and nk+1 , n. For every i ∈ [1, k], we
set si , ai, ni+1 . . . nk, ak and ti , ni, ai . . . nk, ak. We have that:

l(si) = ail(ti+1) and l(ti+1) = l(ni+1)l(si+1)

We show by an internal induction on the length of si that:

`KA,H ` l(si)f(n) ≤ f(ni)

By compatibility of f , we have that `KA,H ` aif(ni+1) ≤ f(ni), so it is enough to show that
l(si)f(n) ≤ aif(ni+1), or simplifying ai from both sides, that l(ti+1)f(n) ≤ f(ni+1). For that,
we show that l(ni+1)f(ni+1) ≤ f(ni+1) and l(si+1)f(n) ≤ f(ni+1). The first holds thanks to
the external induction on n, while the second one comes from the internal induction.

5 Deriving the inequalities for the invariant

5.1 Deriving `KA,H ` Γ ≤ I
Let us show the first inequality that should be satisfied by the invariant:

Theorem 33. `KA,H ` Γ ≤ I

Since #Γ < #(e∗,Γ), this follows from the global induction hypothesis and:

Proposition 34. HKA,H `ω Γ→ I.

We generalise the statement into the following lemma.

Lemma 35. Let π be a synchronised proof of Γ⇒ X . We have HKA,H `ω Γ→ JΓ⇒ X KA(π).

Prop. 34 follows from Lem. 35 by considering π and by remembering that I = JΓ⇒ X1, . . . , XnK
as noticed in Rmk. 28.
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Proof of Lem. 35. Let A = A(π); we build the desired proof θ(π) coinductively, by case analysis
on the last rule ρ applied in π.

• ρ is a left rule:

If π =

{ πi

Γi ⇒ X

}
i∈I

l
Γ⇒ X

then θ(π) =


θ(πi)

Γi → JΓi ⇒ X KA
wk

Γi →
⋃

j∈IJΓj ⇒ X KA


i∈I

l
Γ→

⋃
j∈IJΓj ⇒ X KA

(Lem. 30†)
Γ→ JΓ⇒ X KA

(†) {Γi ⇒ X}i∈I are the children of Γ⇒ X in A; the transitions from the latter to the former are
labelled with 1.

• ρ is a right rule:
Damien: slight abuse of
notation since X , Y s are
shorter than expected be-
low
Amina: I do not get your
point Damien

Damien: this is not impor-
tant: variables X , Y s are
reserved for n-uples but
used here for m- and m′-
uples with n = m+1+m′.

If π =

π′

Γ⇒ X , Z,Y
r

Γ⇒ X , Y,Y
then θ(π) =

θ(π′)

Γ→ JΓ⇒ X , Z,YKA
(Lem. 30)

Γ→ JΓ⇒ X , Y,YKA

• ρ is the hypothesis rule.

If π = H
x⇒ X then θ(π) =

H
x→ Jx⇒ X KA

This is because Jx⇒ X KA = x as noticed in Rmk 29.

• Similarly when ρ is the identity rule.

• ρ is the modal rule.

If π =

π′

Γ⇒ Y1, . . . , Yn
(a)

a,Γ⇒ a.Y1, . . . , a.Yn

then θ(π) =

θ(π′)

Γ→ JΓ⇒ Y1, . . . , YnKA
(a)

a,Γ→ a.JΓ⇒ Y1, . . . , YnKA
(Lem. 30)

a,Γ→ Ja,Γ⇒ a.Y1, . . . , a.YnKA

The obtained HKA+H preproof is clearly regular and fair for ∗-l.

5.2 Deriving `KA,H ` e, I ≤ I
We now show that I is stable by composition with e on the left. This is the part of the proof
that justifies the introduction of hypotheses.

Theorem 36. `KA,H ` e, I ≤ I.

Notation 37. If Y = Y1, . . . , Yn and σ : [1, n]→ [1, n] we write Yσ for the n-uple Yσ(1), . . . , Yσ(n).

Let x be a fresh letter (not appearing in e, I nor in H), and let Hx be the following set of

hypotheses, where X , X1, . . . , Xn:

Hx , {x ≤ Je∗,Γ⇒ X σK | σ : [1, n]→ [1, n]}

To prove Thm. 36, we first show that under these new hypotheses about x, the sequent e, x→ I
is provable in HKA+H+Hx (Prop. 38 below). Intuitively, we do so by mimicking the proof of
e, e∗,Γ→ X1: when we reach a sequent of the form e∗,Γ→ Xi in the latter, we reach a sequent
of the form x→ Je∗,Γ⇒ X σK in the former, which can be closed using a hypothesis from Hx.
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Once we get this HKA+H+Hx proof of e, x→ I, we translate it into a `KA+H+Hx proof
using the induction hypothesis, since #(e, x) < #(e, e∗,Γ). To get rid of the variable x and the
hypotheses about it, we show that I satisfies all the hypotheses about x (Prop. 40 below), thus
x can be safely replaced by I, and the hypotheses Hx that were introduced to characterise x
are not needed anymore. Since x does not appear in e, Γ, and I, we obtain Thm. 36.

We now show Props. 38 and 40. As before, we first need to generalise their statements.

Proposition 38. HKA,H,Hx `ω e, x→ I.

Lemma 39. Let δ be a subproof of π rooted at ∆, e∗,Γ⇒ Y. We have HKA,H,Hx `ω ∆, x→
J∆, e∗,Γ⇒ YK.

Proof. We proceed in the exact same way as for Lem. 35, that is by building the desired proof
θ(δ) coinductively, by case analysis of the last rule applied in δ and by mimicking this rule in
HKA+H+Hx using Lem. 30. The only new case is when the conclusion of δ is e∗,Γ⇒ Y (that
is, ∆ = ∅). By construction of π, we know that Y = X σ for some σ : [1, n]→ [1, n]. The proof
θ(δ) in this case is just an application of a hypothesis from Hx.

Prop. 38 follows: since every πi ends with an application of ∗-l rule to e∗,Γ→ Xi, we have that
π has the form on the left below. Recall that I = Je∗,Γ⇒ X K; we get the HKA+H+Hx proof
on the right.

σ

Γ⇒ X
δ

e, e∗,Γ⇒ X
∗-l

e∗,Γ⇒ X

θ(δ)

e, x→ Je, e∗,Γ⇒ X KA
wk

e, x→ JΓ⇒ X K; Je, e∗,Γ⇒ X K
(Lem. 30)

e, x→ I

Proposition 40. For every σ : [1, n]→ [1, n], we have:

`KA,H ` I ≤ Je∗,Γ ≤ X σK

Proof. If n = (∆⇒ Y) is a state of A, we write nσ for the state ∆⇒ Yσ.
Using this notation, and remembering that I = JιK, we can rephrase the statement as

`KA,H ` JιK ≤ JισK. To prove this statement we generalise it into the following one. For every
state n of A we have:

`KA,H ` JnK ≤ JnσK

This is a consequence of Lem. 32, when we consider the function f : n 7→ JnσK. Indeed, f is
compatible, since when 〈n, a,m〉 ∈ T , we have also that 〈nσ, a,mσ〉 ∈ T , thus by Lem. 30 we
have that `KA,H ` aJmσK ≤ JnσK, which concludes the proof.

5.3 Deriving `KA,H ` I ≤ X1

We finally prove the third requirement for the invariant:

Theorem 41. `KA,H ` I ≤ X1.

Proof. Given a state n of a NFA A, if n = ∆ ⇒ Y1, . . . , Yn we set π1(n) = Y1; if n is a final
state, we set π1(n) = 1. We can write Thm. 41 using this notation as `KA,H ` JιK ≤ π1(ι). To
show this statement, we generalise it into the following one. For every state n of A, we have:

`KA,H ` JnK ≤ π1(n)
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KA

`KA

|

rKA

BA CA

Figure 4: Relationships between complete axiomatisations.

This is a consequence of Lem. 32, when we consider the function f : n 7→ π1(n). Indeed, by
analysing all the synchronised rules, it is easy to show that `KA,H ` aπ1(m) ≤ π1(n), whenever
〈n, a,m〉 is a transition of A, thus f is compatible.

This concludes our proof of left-handed completeness (Thm. 2).

6 Conclusion

We have given a new and direct proof of completeness for left-handed Kleene algebra with respect
to rational language inclusions. The left-handed derivations we construct closely follow the
cyclic proofs of HKA, whose structure in turn corresponds to standard coinductive algorithms
for comparing regular expressions. We use the implication of `KA (L) at two places: when a
starred sub-expression of the left-hand side is unfolded, through the invariant lemma (Lem. 3),
and to prove the the minorant lemma (Lem. 32, which is used twice to show that the constructed
invariants fulfil the requirements of the invariant lemma).

Unlike Krob[26], Boffa [7], or Silva and Kozen [23], we do not need to exploit any specific
laws about Kleene star, like Conway’s axioms C11 and C12 (‘sumstar’ and ‘productstar’). Our
proof actually implies that those already follow from the characterisation of y∗z as the least
fixpoint of x 7→ z + yx (axioms (`) and (L)).

From a metalogical perspective, this work constitutes an example of translating cyclic proofs
to ones that are ‘inductive’, a matter of considerable interest recently, cf. [29, 15, 1, 6, 13].
While the converse direction is, in general, routine (see, e.g., [10]), the technicalities encountered
in this work contribute to our understanding of when the two proof-theoretic phenomena are
equipotent. We point out that, despite the aforementioned recent breakthroughs in simulating
cyclicity via induction, there are several settings where they do not coincide, e.g. [5].

We conclude with a summary of the complete axiomatisations known so far in Fig. 4. There,
KA stands for Kleene algebra, rKA stands for right-handed Kleene algebra (the dual of left-
handed Kleene algebra), CA stands for ‘Conway algebra’, those algebra satisfying Conway’s
axioms, proven complete by Krob [26], and BA stands for ‘Boffa algebra’ [8], which is a
symmetrical axiomatisation where the only implication is ee = e⇒ e∗ = 1 + e.

Every left (or right) handed Kleene algebra is a Boffa algebra [8], and every Boffa algebra is
a Conway algebra [7]. The converse implications do not hold. There is a Conway algebra which
is not even a Boffa algebra [23] (even a finite one); Ex. 1 shows that there are left-handed Kleene
algebras which are not right-handed (and vice-versa by symmetry); and one can find Boffa
algebras which are neither left nor right handed—see App. F. Note however that the four classes
on the left coincide on finite structures: every finite Boffa algebra is a Kleene algebra—App. G.

Krob’s completeness result [26] ensures once and for all that the five notions are com-
plete for rational language inclusions. Much simpler proofs have been given for KA [20] and
`KA [23][present work], and thus rKA by symmetry. Whether relying on Krob’s extensive proof

15



Left-Handed Completeness via Cyclic Proofs A. Das, A. Doumane and D. Pous

can be avoided for BA remains open: the techniques developed in the present paper do not
seem to apply to such structures.
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A Idempotent semirings

We list here the axioms of idempotent semirings, for the sake of self-containedness.

e+ (f + g) = (e+ f) + g e+ f = f + e e+ e = e e+ 0 = e

e · (f · g) = (e · f) · g e · 1 = e = 1 · e

e·(f + g) = e·f + e·g (e+ f)·g = e·g + f ·g e·0 = 0 = 0·e

We also recall that in such semirings, one gets a partial order by setting x ≤ y if x + y = y.
Sum acts as a supremum operation for this partial order: x+ y ≤ z iff x ≤ z and y ≤ z, 0 is a
bottom element, and product is monotone.

B More HKA proofs

In order to illustrate the sequent system HKA, we give proofs of Conway’s axioms C11 and
C12 [12, p. 25]:

(C11) (a+ b)∗ = a∗(ba∗)∗ (C22) (ab)∗ = 1 + a(ba)∗b

(C11) left to right:

id→ ε
wk

→ ε; ba∗, (ba∗)∗; a, a∗, (ba∗)∗
∗-r

→ (ba∗)∗; a, a∗, (ba∗)∗
∗-r

→ a∗, (ba∗)∗

(a+ b)∗ → a∗, (ba∗)∗ (•)
(a)

a, (a+ b)∗ → a, a∗, (ba∗)∗
wk

a, (a+ b)∗ → (ba∗)∗; a, a∗, (ba∗)∗
∗-r

a, (a+ b)∗ → a∗, (ba∗)∗

(a+ b)∗ → a∗, (ba∗)∗ (•)
(b)

b, (a+ b)∗ → b, a∗, (ba∗)∗
wk

b, (a+ b)∗ → ε; b, a∗, (ba∗)∗
·-r

b, (a+ b)∗ → ε; ba∗, (ba∗)∗
∗-r

b, (a+ b)∗ → (ba∗)∗
wk

b, (a+ b)∗ → (ba∗)∗; a, a∗, (ba∗)∗
∗-r

b, (a+ b)∗ → a∗, (ba∗)∗
+-l

a+ b, (a+ b)∗ → a∗, (ba∗)∗
∗-l

(a+ b)∗ → a∗, (ba∗)∗ (•)
·-r

(a+ b)∗ → a∗(ba∗)∗
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(C11) right to left:

id→ ε
wk

→ ε; a+ b, (a+ b)∗
∗-r

→ (a+ b)∗

a∗, (ba∗)∗ → (a+ b)∗ (•)
(b)

b, a∗, (ba∗)∗ → b, (a+ b)∗
wk

b, a∗, (ba∗)∗ → b, (a+ b)∗
+-r

b, a∗, (ba∗)∗ → a+ b, (a+ b)∗
∗-r

b, a∗, (ba∗)∗ → (a+ b)∗
·-l

ba∗, (ba∗)∗ → (a+ b)∗
∗-l

(ba∗)∗ → (a+ b)∗

a∗, (ba∗)∗ → (a+ b)∗ (•)
(a)

a, a∗, (ba∗)∗ → a, (a+ b)∗
wk

a, a∗, (ba∗)∗ → ε; a, (a+ b)∗; b, (a+ b)∗
+-r

a, a∗, (ba∗)∗ → ε; a+ b, (a+ b)∗
∗-r

a, a∗, (ba∗)∗ → (a+ b)∗
∗-l

a∗, (ba∗)∗ → (a+ b)∗ (•)
·-l

a∗(ba∗)∗ → (a+ b)∗

(C12) left to right:

id→ ε
wk

→ ε; a, (ba)∗, b

(ab)∗ → ε; a, (ba)∗, b (•)
(b)

b, (ab)∗ → b; b, a, (ba)∗, b
·-r

b, (ab)∗ → b; ba, (ba)∗, b
∗-r

b, (ab)∗ → (ba)∗, b
(a)

a, b, (ab)∗ → a, (ba)∗, b
wk

a, b, (ab)∗ → ε; a, (ba)∗, b
·-l

ab, (ab)∗ → ε; a, (ba)∗, b
∗-l

(ab)∗ → ε; a, (ba)∗, b (•)
1-r

(ab)∗ → 1; a, (ba)∗, b
·-r, ·-r

(ab)∗ → 1; a(ba)∗b
+-r

(ab)∗ → 1 + a(ba)∗b

(C12) right to left:

id→ ε
wk

→ ε; ab, (ab)∗
∗-r

→ (ab)∗
1-l

1→ (ab)∗

∗-r,wk , id
→ (ab)∗

(b)
b→ b, (ab)∗

(ba)∗, b→ b, (ab)∗ (•)
(a)

a, (ba)∗, b→ a, b, (ab)∗
·-r

a, (ba)∗, b→ ab, (ab)∗
∗-r,wk

a, (ba)∗, b→ (ab)∗
(b)

b, a, (ba)∗, b→ b, (ab)∗
·-l

ba, (ba)∗, b→ b, (ab)∗
∗-l

(ba)∗, b→ b, (ab)∗ (•)
(a)

a, (ba)∗, b→ a, b, (ab)∗
·-r

a, (ba)∗, b→ ab, (ab)∗
∗-r,wk

a, (ba)∗, b→ (ab)∗
·-l, ·-l

a(ba)∗b→ (ab)∗
+-l

1 + a(ba)∗b→ (ab)∗

(Note that we could use a back-pointer earlier, right after the top-right modal (b)-step, but this
back-pointer would not point to a ∗-l step.)
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Unlike the proof from Ex. 7, those four proofs are easy to translate to `KA: all their ∗-l
steps satisfy the simplifying assumption (?) from Sect. 3 so that we do not need to compute
complicated invariants: their (unique) succedent does the job.

C Examples and non-examples of forward paths

We compute l(·) (Def. 24) and forward paths (Def. 27) in the following graph:

0

1

23

4

5

a

b
c

d

e

f

g

n l(n)
0 (a(bd)∗bef)∗

1 (bd)∗

2 1
3 1
4 1
5 1

n Forward(n)
0 0a1c3, 0a1b2e4g5
1 1c3, 1b2e4f0a1c3, 1b2e4g5, 1b2e4f0a1b2e4g5
2 2d1c3, 2e4f0a1c3, 2d1b2e4f0a1c3, 2e4g5, 2e4f0a1b2e4g5
3 3
4 4f0a1c3, 4g5, 4f0a1b2e4g5
5 5

We did underline the nodes that permit loops in forward paths: in the path 1b2e4f0a1c3, the
node 0 makes it possible to visit 1 twice; in the path 2d1b2e4f0a1c3, the node 1 makes it possible
to visit 2 twice, and the node 0 makes it possible to visit 1 twice.

The paths 1b2d1b2e4g5 and 2e4f0a1b2d1c3 are not forward: there is no node permitting to
visit 1 twice. (Intuitively, these paths are already covered by the labels of the forward paths
1b2e4g5 and 2e4f0a1c3, since l(1) = (bd)∗.)

D Counter-example to the converse of Thm. 14

It suffices to consider a hypothesis a ≤ b, and the sequent ac → bc. We immediately get
`KA, a ≤ b ` ac ≤ bc, but HKA, a ≤ b 6`ω ac → bc. Whether one can find a cut-free variant of
HKA+H to capture derivability in `KA+H remains open—decidability is also open.

E A left-but-not-right handed Kleene algebra

Here we show that the construction from Ex. 1 may yield left-handed Kleene algebra which are
not right handed. Consider the complete lattice of extended natural numbers, N ∪ {∞}. This
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lattice is totally ordered so that every monotone function preserves finite suprema. Take the
following monotone functions:{

g(i) = 0 i <∞
g(∞) =∞

{
f(i) = i+ 1 i <∞
f(∞) =∞

We have g + g · f ≤ g, but g · f∗ 6≤ g: (g · f∗)(0) = g(f∗(0)) = g(∞) =∞, while g(0) = 0.

F A Boffa algebra which is neither left nor right handed

We take natural numbers ordered in the usual sense, completed with three elements ⊥, ω and >
such that ⊥< i < ω < > for all i ∈ N. We define a commutative Boffa algebra as follows; the
bottom element (0) of the algebra is ⊥ and the identity element (1) is 0.

+ ⊥ j ω >
⊥ ⊥ j ω >
i i max i j ω >
ω ω ω ω >
> > > > >

· ⊥ j ω >
⊥ ⊥ ⊥ ⊥ ⊥
i ⊥ i+ j ω >
ω ⊥ ω > >
> ⊥ > > >

·∗
⊥ 0
0 0

i > 0 ω
ω >
> >

The idempotent elements are ⊥ 0 and >; ω is not idempotent so that the equality ω∗ = >
does not break Boffa’s implication. This algebra is however not left-handed (and thus not
right-handed since it is commutative): for x = z = ω and y = 1, we have z + yx = ω = x but
y∗z = > 6≤ x.

G Every finite Boffa algebra is a Kleene algebra

Let x be an element of a finite Boffa algebra; we show that that x∗ = x′, where x′ is the
(necessarily finite) sum of all powers of x: x′ = Σix

i. First, x∗ is above all powers of x, so
that x′ ≤ x∗. Then, by distributivity, we have x′x′ = x′, so that x′∗ = 1 + x′ = x′ by Boffa’s
implication. Since x ≤ x′, we conclude x∗ ≤ x′∗ = x′ by monotonicity.

The two implications of Kleene algebra follow from distributivity and this characterisation
of Kleene star.
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