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Abstract A phenomenological model for turbulent mixing in a stratified fluid is
presented. This model describes the evolution of the local probability distribution
for the fluid density. It is based on an analogy between the mixing of vorticity in 2D
turbulent flows and the mixing of density in (3D) turbulent flows.

1 Introduction

Models of turbulent mixing in stratified fluids are of wide interest in the context of
oceanic and atmospheric flows, especially for sub-grid scale parameterization [5].
Although the processes of turbulent density mixing occur atsmall scales and short
time scales, they considerably influence large scale dynamics by controlling water
mass properties and the global stratification. It is therefore compulsory to describe
carefully these processes.

We propose in this paper a new approach to describe the evolution of the local
probability density function (PDF) for the fluid density. The advantage of such a
statistical approach is to predict a coarse grained evolution of the system, without
describing the complicated fine grained dynamics, but whilekeeping track of the
conserved quantities of this dynamics, which are importantphysical constraints.

The most commonly used models for small scale density mixingare based on
variations around thek− ε models (see part I and III of [1] for a review). In those
approaches, turbulence is represented locally by two parameters for which a dy-
namical equation based on turbulent diffusivity is proposed: the turbulent kinetic
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energy and either a length or a time scale of the flow. In those models, the effect of
density fluctuations are ignored, and their ability to describe properly mixing pro-
cess strongly relies on parameterization of turbulent diffusion coefficients from the
(locally) averaged quantities. Refinement of those models take into account higher
order moments of the density (up to the fourth), and in some cases nonlocal effects
[14, 5].

In parallel to those approaches, an idealized stochastic model (referred to as one-
dimensional turbulence) has been applied for mixing in stratified flows [4]. This
model mimics the effects of turbulent cascade, buoyancy andadvection on a vertical
realization of the density field.

Surprisingly, there has been no attempt to combine the classical modeling of
mixing in terms of turbulent diffusion, with a model for the temporal evolution for
the probability distribution of density. Beyond the advantage of describing the tem-
poral evolution of the density distribution, such a model can give insight into the
role played by density fluctuations in mixing processes. he density in a turbulent
stratified flow, as vorticity in a 2D turbulent flow, is a scalarquantity that needs to
satisfy conservation laws. Those constraints prevent complete mixing of the scalar.
The idea of equilibrium statistical mechanics that are wellknown for the case of
vorticity in 2D flows have been recently applied for stratified fluids in an idealized
case [12]. We propose in this paper a phenomenological approach for the (out of
equilibrium) turbulent mixing in stratified flows, on the basis of this analogy be-
tween the mixing of vorticity in 2D turbulent flows and the mixing of buoyancy in
3D turbulent stratified flows.

The paper is organized as follows: i) We briefly review the statistical theory of
2D flow, and then present the analogy with stratified flows. ii)We propose relaxation
equations toward the equilibrium states for stratified flows, based on a work devel-
oped previously in the context of 2D flows. Two physical mechanisms are taken
into account: turbulent diffusion and buoyancy effects, that tend to drive back the
system toward a background “sorted” density profile (which minimizes the poten-
tial energy for a given global distribution of density). iii) We incorporate to those
relaxation equations a mechanism of dissipation of the density fluctuations, due to
turbulent cascade effects that tend to smooth out the density field by transfers from
large to small scales iv) we discuss simple limit cases of theprevious model v) we
explain how the dynamical equations proposed in this paper could be adapted in a
more general and realistic context.
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2 An analogy between statistical mechanics of 2D flows and
density stratified fluids

2.1 Statistical mechanics of 2D flows

The Euler equations can be expressed as a transport equationof the vorticity
ω(x,y, t) in a domainD

∂tω +u ·∇ω = 0 with u =

(
−

∂ψ
∂y

,
∂ψ
∂x

)
and ω = ∆ψ , (1)

where the (non-divergent) velocity field is expressed in term of a stream function
ψ. The transport equation conserves the energy functionalE = 1

2

∫
D

(∇ψ)2 dxdy =

−1
2

∫
D

ωψdxdy and the global distribution of vorticity levelsg(σ) =
∫
D

δ (ω −
σ)dxdy (equivalent to the conservation of the infinite number of Casimir functionals
Cg[q] =

∫
D

g(q)dxdy, whereg is any continuous function onD).
The Euler equations are known to develop complex vorticity filaments at finer

and finer scales as time goes on. Rather than describing the fine-grained structures of
the flow, equilibrium statistical theories of two dimensional turbulent flows predict
final organization of the flow at a coarse grained level [10, 8]. The macroscopic
state is given by a fieldρ(x,y,σ) representing the probability density of finding the
vorticity level σ in a small neighborhood of the position(x,y). From this field, one
can compute the coarse-grained vorticity field and stream function by inverting the
Laplacian with appropriate boundary conditions

ω =

∫
ρσdσ , ω = ∆ψ (2)

The rationale of the theory is that most accessible microscopic states will ap-
proach the macroscopic state which maximizes the mixing entropyS [ρ] =−

∫
D

∫
ρ lnρdxdydσ .

Assuming ergodicity, the equilibrium statistical theory provides a variational prob-
lem : the most probable (or equilibrium) macroscopic stateρ maximizes the mixing
entropy with the constraints provided by the conservation of the energy and the
global distribution of fine-grained vorticity levels (bothquantities can be theoreti-
cally computed from the initial condition):

E [ρ] =
∫

D

∫
ρσψdxdydσ ∀σ , dσ [ρ] =

∫

D

ρdxdy. (3)

Notice that the energy of the fluctuations are supposed to tend to zero due to the
dominance of small scale fluctuations. The variational problem can be summarized
as follows:

S(E,g) = max
{ρ|N[ρ]=1}

{S [ρ] | E [ρ] = E & dσ [ρ] = g(σ)} (4)
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Much effort has been devoted to the study of the equilibrium states of the RSM
theory. It has been applied in particular to explain the robustness of the Great Red
Spot in the Jovian atmosphere [2].

2.2 Statistical mechanics of stratified fluids

Let us consider now the mixing of the density anomalyb = g
(
ρ f luid −ρ0

)
/ρ0 in

the frame of the Boussinesq approximation (b is the opposite of the buoyancy). This
is a tracer advected by a (3D) turbulent non divergent velocity field v:

∂tb+v∇b = κ∆b (5)

∂tv+v∇v = −∇P−bk +ν∆v+F (6)

whereF is a mechanical forcing andk is the vertical unit vector.
In the absence of forcing and dissipation (F = 0, κ = ν = 0), the total energy

of the flow E =
∫
V

(
1
2v2 +bz

)
dxdydz and the global distribution of density levels

g(σ) = 1
|V |

∫
V

δ (b−σ)dxdydz are conserved. We suppose in addition that the mean
value of the velocity field at any location is zero: there is nomean flow.

We define amicroscopic state as a given fine grained density fieldb(x,y,z) and
velocity fieldv(x,y,z). From the knowledge of a microscopic configuration, one can
compute the conserved quantitiesE,g(σ). The problem is assumed to be statisti-
cally homogeneous on the horizontalPz (parallel toOxy). A integration over the
directionsx andy will be considered as an ensemble average, and denoted by an
upper bar :b(z) = 1

|Pz|

∫
Pz

bdxdy.
A macroscopic state of the system is given by the fieldρ(z,σ ,v) that describes

the probability to measure a given scalar and velocity valueat heightz. As for the
mixing of the vorticity in 2D flows, the most probable macroscopic state is the one
that maximize the mixing entropyS = −

∫
[0 H]

∫
]−∞ +∞[3

∫
[σmin σmax]

∫
ρ lnρdσdvdz

(the bounds of integration will be dropped for simplicity) among all the states that
satisfy the constraints of the problem, namely the energy conservation

E [ρ] = Ec[ρ]+Ep[ρ] =
∫ ∫ ∫

ρ
(

v2

2
+σz

)
dzdσdv = E (7)

and the conservation of the global scalar distribution:

Hσ [ρ] =
∫ ∫

ρdzdv = g(σ) (8)

whereH is the total height of the domain. We make at this point the strong
assumption that each microscopic state is accessible, and compute the most probable
macroscopic state satisfying the constraints of the problem, as in the case of vorticity
in 2D flows.
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In order to compute critical points of the variational problem, we introduce the
Lagrange multipliersβ and γ(σ) associated respectively with the energy (7) and
with the constraints of the global vorticity distribution (8), and then compute first
variations with respect toρ :

δS −βδE +
∫

γ(σ)δHσ dσ = 0 . (9)

This gives
∫ ∫ ∫ (

−1− ln(ρ)−βv2−β zσ + γ
)

δρdvdσdz = 0. Since this equal-
ity holds for any variationδρ , we obtain

ρ = Aexp
(
−βv2/2−βσz+ γ(σ)

)
(10)

The value of the Lagrange multipliersβ and γ(σ) are determined by the ex-
pression of the constraintsE [ρ] = E andHσ [ρ] = g(σ), andA is a normalization
factor.

Notice that the PDF (10) of the statistical equilibrium can be expressed as a prod-
uct of a PDF for density and velocity, which means thatb andv are two independent
quantities. The predicted velocity distribution is Gaussian, and is isotropic. The pre-
dicted isotropy is not likely to be observed in a real flow, in which vertical motion
is inhibited by stratification. However, a careful examination of the flow structure at
the interface of two turbulent layers of different density shows that mixing occurs
mainly by the occurrence of intermittent (both in time and space) turbulent patches
that break the interface, stir and mix the density of the patches [6]. At the early stage
of those mixing events, the distinction between vertical and horizontal velocities is
not obvious.

The predicted velocity profile does not depend onz; the kinetic energy profile
e(z) is therefore constant along the vertical axis, with

e =
1
2

∫ ∫
v2ρdσdv =

3
2

β−1. (11)

The inverse ofβ (a “temperature” of the turbulent field) is thus proportional to
the variance of the velocity fluctuations. This implies thatβ > 0. In the following,
we shall focus on the density distributionρ(σ ,z) (and the associated moments),
ignoring the independent distribution in velocity.

ρ(σ ,z) = Bexp(−βσz+ γ(σ)) , bn =
∫

σnρdσ (12)

We can then find another expression forβ , which links this quantity with a form
of potential energy, related to density fluctuations:

β−1 =

∫ H
0

(
b2 −b

2
)

dz

−
∫ H

0 ∂zbdz
=

∫ H
0

(
b2 −b

2
)

dz

b(0)−b(H)
. (13)
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Let us consider as an example an initial state composed of twodensity values
(b = 0 andb = σ0). Let us first assume that both values are in equal proportions.
According to equation (12), the probabilityp to measureb = σ0 at heightz is

p(z) =
e−βσ0(z−H/2)

1+ e−βσ0(z−H/2)
(14)

The vertical profile of the mean density at statistical equilibrium is thenb(z) =
σ0p(z), a Fermi-Dirac distribution, represented in figure (1). This expression has
been proposed recently by [12], using similar arguments.

Assuming ergodicity, such an equilibrium state is expectedto be reached if the
inertial time scaleτ ∼ β 1/2H is smaller than time scales of forcing and dissipating
mechanisms. Let us notice that in the limit of infinit boundaries (H → +∞), the
inertial time scale tends to infinity, and one can not expect to reach the equilibrium
state. More generally, real flows are out of equilibrium systems, and the computation
of the equilibrium states is only a starting point before more complex approaches.

Another case of interest is the dilute limit, for which the global probability
∫

pdz
to measure the levelσ0 tend to zero while keeping constantσ0

∫
pdz. This would

correspond to the case of a sediment suspension, for which the Boussinesq approx-
imation done earlier is no more valid, but it would be straightforward to generalize
this result to a non Boussinesq flow. In this limit, we recoverthe standard expression
p(z) ≃ exp−βσz for a gas in a uniform gravity field.

0
0

H=1

σ=1
 

 

200
20
2
0.2

β

Fig. 1 Equilibrium profile for a two level system. We representb(z) = σ p(z, t) wherep is given
by equation (14), for three different values ofβ .
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3 Relaxation toward statistical equilibrium

We propose in this section an equation describing the relaxation toward the statisti-
cal equilibrium state. The general idea is that the system will evolve with increasing
mixing entropy while preserving its conserved quantities.

We introduce the turbulent flux of probabilityJ(σ ,z, t) (directed alongz) and
still consider that there are neither sinks nor sources for the densityσ . The temporal
evolution of the PDFρ(σ ,z, t) thus satisfies the general conservation law

∂tρ +∂zJ = 0 , (15)

with J = 0 at lower and upper boundaries. This equation conserves theglobal density

distribution, sincedt

(∫ H
0 ρdz

)
= 0. A convenient way to obtain an equation for the

relaxation toward an entropy maximum is to assume thatJ maximizes the entropy
production at fixed energy (with a condition of bounded fluxes). A similar approach
has been previously applied to 2D and geostrophic turbulence [9, 3].

The entropy production readsṠ =−
∫

J(∂zρ/ρ)dσdz , and the time derivative of
the energy reads

Ė = dt

(∫ H

0
edz

)
+

∫ H

0
σz∂tρdσdz = dt

(∫ H

0
edz

)
+

∫ H

0
σJdσdz (16)

We assume in addition that the fluxJ is bounded at each location,
∫
(J2/2ρ)dσ <

C(z) (the quantityJ2/ρ can be considered as the square of a diffusion velocity, a
natural quantity to bound). In order to ensure the conservation of the norm

∫
ρdσ =

1, we impose the additional constraint
∫

Jdσ = 0 at any heightz. Then the first
variation (with respect to the fluxJ) of the entropy production with the constraints
of the problem gives

δ Ṡ−βδ Ė −
∫

1
D

J
ρ

δJdσdz−
∫

ζ (z)δJdσdz = 0, (17)

whereβ , ζ (z) and−1/D(z) are Lagrange parameters associated with the differ-
ent constraints. A direct computation of those critical points gives

J = −D
(
∂zρ +β

(
σ −b

)
ρ
)
, (18)

whereζ (z) has been determined by using
∫

Jdσ = 0. The coefficientD must
be positive for the entropy production to be positive. We expect this diffusion co-
efficient to be related to the turbulent kinetic energy and a characteristic turbulent
length scalel, D ∼ le1/2.

We assume at this stage thatl (henceD) is constant, and we make the strong as-
sumption that velocity reaches its equilibrium distribution much faster that density,
which means that the kinetic energy does not depend onz, with e = 3

2β−1 . These
hypothesis will be relaxed later on.
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We distinguish two contributions toJ in (18): a “down-gradient” diffusion term
and a sedimentation term, which tends to drive back a fluid particle with densityσ
to its equilibrium position, whereb = σ .

WhenJ = 0, turbulent diffusion and sedimentation cancel each other, yielding
∂zρ =−βρ

(
σ −b

)
, whose solution is the vertical profile (12) of the statistical equi-

librium.
We use the energy conservationĖ = 0 and equation (16) to compute the kinetic

energy :

e =
3
2

β−1 ,
H
D

dte =
3
2e

∫ (
b2−b

2
)

dz−
(
b(0)−b(H)

)
. (19)

At equilibrium (dte = 0), we recover equation (13) that links the kinetic energye
to the fluctuations of density. Sincee > 0, we see that this equilibrium results from
a competition between density fluctuations that tend to increase the kinetic energy
and the (vertically integrated) stratification

(
b(0)−b(H)

)
that tends to decrease the

kinetic energye if the profile is stable (b(0) > b(H) ). Let us also notice that an
unstable profile (b(0) < b(H) ) cannot correspond to a stationary state, since the
term

(
b(0)−b(H)

)
acts then as a source of kinetic energy.

4 Dissipation of density fluctuations by turbulent cascade

The existence of a turbulent cascade implies that the globaldistribution ofg(σ) is
actually not conserved: fluctuations are transferred to smaller and smaller scales,
until molecular diffusive effects occur. For instance, in asystem initially composed
of two levels{0,σ0}, this will create a third level12σ0, and so on...

This effect has to be taken into account in relaxation equations toward equilib-
rium, by adding a dissipation term in the dynamical equation(15) of the density
distribution:

∂tρ +∂zJ = sDc[ρ] , (20)

wheres(z) is a straining rate depending mainly on the velocity field properties in
each horizontal plane. At a given heightz, the termDc(σ) depends on the whole
PDFρ(·,z). This operator must conserve the norm and the mean of the distribution
(
∫

Dcdσ = 0 and
∫

Dcσdσ = 0), and should dissipate the fluctuations at a rate

s ∼ e1/2/l depending on the local strain of the flow. One should have∂t

(
b2−b

2
)

=

−s
(

b2−b
2
)

in the absence of other processes.

To estimateDc, several models have been developed in the context of mixing
of reactive flows [11]. We choose here a simple model based on aself-convolution
process :

D̂c(κ) = (ρ̂ ln ρ̂ −κ∂κ ρ̂) D̂c(κ) =
∫

e−σκ
Dc(σ)dσ , (21)
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whereρ̂ andD̂c are Laplace transform ofρ andDc. In the absence of other pro-
cesses, the model predict that an initial PDF will evolve by asuccession of self
convolutions of the PDF, corresponding to the addition of concentrations of inde-
pendent scalar sheets becoming adjacent due to random turbulent motion, and si-
multaneously elongated by straining (see [13] for a more detailed presentation and
discussion of the model).

Let us discuss the consequence of the addition of such a dissipation termDc,
whatever its explicit form. The total energyE = 3

2Hβ−1 +
∫

bzdz is still a con-
served quantity in the presence of this dissipation term. Then equation (19) is still
valid. If the initial condition is an equilibrium state, thedissipation will lower the

contribution of the fluctuation term
(

b2−b
2
)

in equation (19), which will imply a

decrease of the kinetic energy, and thus an increase of the potential energy of the
system.

5 A simple example: mixing of a two layer stratified fluid

To illustrate the mechanisms presented in previous sections, we consider an ideal-
ized situation for which the kinetic energy (henceβ ) is fixed and study the time
evolution of the PDFρ by equations (18), (20) and (21). The unrealistic hypothesis
of a fixed kinetic energy will be relaxed later on.

Since the diffusion coefficientD is assumed to be constant, the time unit can be
always chosen such thatD = 1, then the dynamical equation for the PDF is

∂tρ = ∂zzρ +β∂z ((σ −σ)ρ)+ τ−1
dissDc , (22)

whereτ−1
diss = s. There are two independent parameters, namelyβ , linked to the

imposed kinetic energy, and the time scale of the dissipation processτdiss. The pa-
rameterβ can be expressed as a sedimentation time scaleτsedim = L/βσ0, whereσ0

is the density of the unmixed dense fluid, andL is a characteristic scale of the mean
profile b(z). The behavior depends on the values ofτdiss andτsedim with respect to
the diffusion time scaleτdi f f = L2. We distinguish four limit cases:

• i) Diffusion and sedimentation dominate dissipation (τdi f f ∼ τsedim ≪ τdiss:
The system relaxes toward the statistical equilibrium state corresponding to the
(fixed) value ofβ . On a longer time scale, new density levels are created or de-
stroyed by the dissipation mechanism. The system then goes through a sequence
of equilibrium states until it reaches the homogeneous (fully mixed) state.

• ii) Dissipation dominates sedimentation and diffusion (τdiss ≪ τdi f f ∼ τsedim):
The fluctuations of the initial state are first dissipated. Then the mean profile
evolves through the diffusive mechanism∂tb = ∂zzb until complete mixing is
achieved.
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• iii) Diffusion dominates dissipation which dominates sedimentation (τdi f f ≪

τdiss ≪ τsedim). The mean profile evolves mainly by the diffusive process∂tb =
∂zzb, until reaching an homogeneous mean vertical profile. Fluctuations around
the mean are then dissipated.

• iv) Sedimentation dominates dissipation, which dominates diffusion (τsedim ≪
τdiss ≪ τdi f f ). The system relaxes first toward the sorted profile (the potential
energy minimum for a given global distribution of density levels). There are no
more fluctuations in this state, and the vertical profile evolves by the diffusive
process∂tb = ∂zzb until complete homogenization is achieved.

In casesii) and iii), taking into account fluctuations around the mean profile is
not particularly relevant, since the evolution of the mean vertical profile does not
depends on these fluctuations. In caseiv), the fluctuations are important in the early
evolution of the flow, but the knowledge of the initial condition is sufficient to de-
termine the sorted profile, and then the evolution equation does not imply any fluc-
tuations.

0
0

H

σ 0
0

H

σ 0
0

H

σ

a) b) c)

Fig. 2 Relaxation toward the equilibrium state (dashed red line) fora two level system, withβ =
20,H = 1, σ0 = 1, for three different initial profiles represented in bold plain green line. The thin
plain blue curve represent the density profile at successive times with constant time interval.

Let us then consider casei). We first display in figure 2 the relaxation toward an
equilibrium state for a two level system (b = 0 or b = σ0 = 1 in equal proportions),
in a case without dissipation. The value ofβ = 2/(3e) is still supposed to be fixed.
Three different initial conditions are considered: a) the initial state is completely
mixed (∀z, ρ(0,z) = ρ(σ0,z) = 1/2); b) the initial state is the sorted profile (the
dense fluid is at the bottom) c) the initial state correspondsto the highest possible
potential energy (the dense fluid is at the top, which is an instable initial condition).

Let us now consider the evolution of the density profile when the dissipation term
is taken into account, figure 3. The initial condition is the equilibrium profile of the
two level system forβ = 200. The time scale for dissipation isτdiss ∼ 1000, which is
much greater than the characteristic time for relaxation toward equilibrium, of order
one. The temporal evolution of the mean profile is represented in figure 3-a. Far from
the interface (figure 3-b), the PDF is a sharp peak, there is almost no fluctuation, but
the density of the peak decreases little by little. Closer tothe interface (figure 3-c),
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0

0.4

σ0
0

H

σ

0
0

0.05

σ
0

0.4

σ

a)

z

t=Tmax
t=0

z=H
b)

z=0.7H z=0.5H
c) d)

Fig. 3 a) Temporal evolution of the mean profile betweent = 0 andTmax = 1000. The initial
condition is the equilibrium profile of a two-level system characterized byβ = 200,τdiss = 1000
b-c-d) Temporal evolution of the PDF at different altitudesz.

the PDF is asymmetric, with important fluctuations. Finally, at the middle of the
interface (figure 3-d), the PDF is symmetric. The extreme valuesσmin andσmax of
density progressively diminish.

Let us stress that the evolution of the vertical profile is notgiven by a classic
turbulent diffusion: at leading order, diffusion is compensated by sedimentation.
The temporal evolution is driven by the dissipation term that creates intermediate
density levels, changing little by little the equilibrium profile.

6 Coupling the model with an equation for the kinetic energy

In the general case, the kinetic energye (and thenβ ) is not uniform, but should
satisfy itself a diffusion equation. We assume that its diffusivity has a similar form as
for density fluctuations, namelyD ∼ le1/2. We furthermore introduce a dissipation
terma4l−1e3/2 (the usual Kolmogoroff scaling for a turbulent cascade), a production
termP = F.v and take into account the exchange with potential energy dueto the
buoyancy flux. This yields the energy equation

∂te = a3∂z

(
le1/2∂ze

)
−

∫
σJdσ −a4l−1e3/2 +P . (23)
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One can check that in the absence of production and dissipation, the total energy
E =

∫ H
0 (σz+ e)dz is indeed conserved by equations (15) and (23).

Now that the kinetic energye varies in space and time, let us assume that the
kinetic energy still satisfies locally the link (11) with theinverse temperatureβ
obtained at equilibrium:e(z, t) = (3/2)β−1(z, t).

Since the diffusion coefficientD in the buoyancy flux (18) depends on the kinetic
energy,D = a1le1/2, it is also time and space dependent. The mean density flux is
then ∫

σJdσ = −a1

(
le1/2(

∂zb
)
−

3l

2e1/2

(
b2−b

2
))

. (24)

Notice that this buoyancy term has the same form as in the caseof the “level 3 con-
figuration” in the hierarchy of models by Mellor and Yamada [7].

Let us summarize the full model for the temporal evolution ofthe kinetic energy
e(z, t) and the density PDFρ(z,σ , t):

∂tρ = −∂zJ +a2l−1e1/2
Dc (25)

J = −a1

(
le1/2∂zρ +3e−1/2ρ (σ −σ)/2

)
(26)

D̂ = (ρ̂ ln ρ̂ −κ∂κ ρ̂) D̂c =
∫

e−σκ
D(σ)dσ (27)

∂te = a3∂z

(
le1/2∂ze

)
+

∫
Jσdσ −a4l−1e3/2 +P (28)

There are four intrinsic non-dimensional constants of order unity, : i) a1 and a3

quantify the turbulent diffusivity for density fluctuations and kinetic energy (veloc-
ity fluctuations) respectively. ii)a2 anda4 quantify the rate of cascade of density
and velocity fluctuations respectively. An additional relation should be given to de-
termine the turbulent scalel. This could be done in the spirit of the k-ε model or
mixing length theories. Finally the forcing termP could represent energy injection
by external effects, like oscillating grid. Extension to shear driven turbulence should
be proposed for more general cases.

7 Conclusion and perspectives

We have proposed a model for turbulent mixing in a stratified fluid. While most
turbulence models deal with the mean and variance of fluctuating quantities, this
model predicts the whole probability distribution of density fluctuations. It can deal
with highly non-Gaussian distributions. The structure of the model is derived from
conservation laws and general principles of entropy production maximization. It can
account for re-stratification by gravity. Tests are needed for the validation in more
realistic configurations.
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