Modeling mixing in two-dimensional turbulence
and stratified fluids

Antoine Venaille and Joel Sommeria

Abstract A phenomenological model for turbulent mixing in a stradfiguid is
presented. This model describes the evolution of the logaability distribution
for the fluid density. It is based on an analogy between théngiaf vorticity in 2D
turbulent flows and the mixing of density in (3D) turbulentifk

1 Introduction

Models of turbulent mixing in stratified fluids are of wideengst in the context of
oceanic and atmospheric flows, especially for sub-gridespafameterization [5].
Although the processes of turbulent density mixing occlemaall scales and short
time scales, they considerably influence large scale dyssahy controlling water
mass properties and the global stratification. It is theeeémmpulsory to describe
carefully these processes.

We propose in this paper a new approach to describe the Ewoloft the local
probability density function (PDF) for the fluid density. 8ladvantage of such a
statistical approach is to predict a coarse grained ewniudf the system, without
describing the complicated fine grained dynamics, but wkeleping track of the
conserved quantities of this dynamics, which are impompagsical constraints.

The most commonly used models for small scale density migiregbased on
variations around thi — € models (see part | and Il of [1] for a review). In those
approaches, turbulence is represented locally by two peteamfor which a dy-
namical equation based on turbulent diffusivity is progbgie turbulent kinetic
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energy and either a length or a time scale of the flow. In thoseets, the effect of
density fluctuations are ignored, and their ability to digscproperly mixing pro-

cess strongly relies on parameterization of turbulentdiéin coefficients from the
(locally) averaged quantities. Refinement of those moddds into account higher
order moments of the density (up to the fourth), and in sonsesaonlocal effects
[14,5].

In parallel to those approaches, an idealized stochastiehfeeferred to as one-
dimensional turbulence) has been applied for mixing inti§ied flows [4]. This
model mimics the effects of turbulent cascade, buoyancyadrdction on a vertical
realization of the density field.

Surprisingly, there has been no attempt to combine theictdsmodeling of
mixing in terms of turbulent diffusion, with a model for theniporal evolution for
the probability distribution of density. Beyond the adwage of describing the tem-
poral evolution of the density distribution, such a modet gave insight into the
role played by density fluctuations in mixing processes. éesdy in a turbulent
stratified flow, as vorticity in a 2D turbulent flow, is a scatprantity that needs to
satisfy conservation laws. Those constraints prevent éetemmixing of the scalar.
The idea of equilibrium statistical mechanics that are Wathwn for the case of
vorticity in 2D flows have been recently applied for stratfféuids in an idealized
case [12]. We propose in this paper a phenomenological apprfor the (out of
equilibrium) turbulent mixing in stratified flows, on the lm®f this analogy be-
tween the mixing of vorticity in 2D turbulent flows and the rimig of buoyancy in
3D turbulent stratified flows.

The paper is organized as follows: i) We briefly review thdistigal theory of
2D flow, and then present the analogy with stratified flowdMg) propose relaxation
equations toward the equilibrium states for stratified fldwased on a work devel-
oped previously in the context of 2D flows. Two physical metbas are taken
into account; turbulent diffusion and buoyancy effectst ttend to drive back the
system toward a background “sorted” density profile (whidhimizes the poten-
tial energy for a given global distribution of density)) Ve incorporate to those
relaxation equations a mechanism of dissipation of theitjefigctuations, due to
turbulent cascade effects that tend to smooth out the gdfiedd by transfers from
large to small scales iv) we discuss simple limit cases optiegious model v) we
explain how the dynamical equations proposed in this papaidde adapted in a
more general and realistic context.
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2 An analogy between statistical mechanics of 2D flows and
density stratified fluids

2.1 Statistical mechanics of 2D flows

The Euler equations can be expressed as a transport equititme vorticity
w(x,y,t) in a domainZ
. oy oy

gw+u-Ow=0 with u_< dy dx) and w=Ay, Q)
where the (non-divergent) velocity field is expressed imtef a stream function
. The transport equation conserves the energy functEnal% I (D(,U)dedy =
—2 [, wdxdy and the global distribution of vorticity levelg(o) = [, 6(w —
o)dxdy (equivalent to the conservation of the infinite number ofi@asunctionals
%gl0] = J»9(q)dxdy, whereg is any continuous function o).

The Euler equations are known to develop complex vorticlgnfents at finer
and finer scales as time goes on. Rather than describing &éigrfiined structures of
the flow, equilibrium statistical theories of two dimensibturbulent flows predict
final organization of the flow at a coarse grained level [10,T8le macroscopic
state is given by a fieldo(x,y, o) representing the probability density of finding the
vorticity level o in a small neighborhood of the positidr y). From this field, one
can compute the coarse-grained vorticity field and strearotion by inverting the
Laplacian with appropriate boundary conditions

?):/pada, w=Ay (2)

The rationale of the theory is that most accessible micrascstates will ap-
proach the macroscopic state which maximizes the mixingpyt” [p] = — [, [ pInpdxdydao.
Assuming ergodicity, the equilibrium statistical theompyides a variational prob-
lem : the most probable (or equilibrium) macroscopic stateaximizes the mixing
entropy with the constraints provided by the conservatibthe energy and the
global distribution of fine-grained vorticity levels (botjuantities can be theoreti-
cally computed from the initial condition):

slpl= | [powdxdydo Vo delpl = [ paay, 3)

Notice that the energy of the fluctuations are supposed tbttemero due to the
dominance of small scale fluctuations. The variational femmlcan be summarized
as follows:

SE,Q) = {p‘mgil}{f[p] | &[p] =E & dg[p] =9(0)} (4)
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Much effort has been devoted to the study of the equilibritates of the RSM
theory. It has been applied in particular to explain the sbhess of the Great Red
Spot in the Jovian atmosphere [2].

2.2 Statistical mechanics of stratified fluids

Let us consider now the mixing of the density anomiaky g(pﬂuid —po) /po in
the frame of the Boussinesq approximatibrngthe opposite of the buoyancy). This
is a tracer advected by a (3D) turbulent non divergent vsidigld v:

b+ vOb=kAb %)
ov+vliv=—-0P—-bk+vAv+F (6)

whereF is a mechanical forcing andis the vertical unit vector.

In the absence of forcing and dissipatidh=€ 0, Kk = v = 0), the total energy
of the rowE Iy ( 24 bz) dxdydz and the global distribution of density levels
g(o) = \“f/\ J 6(b— o)dxdydzare conserved. We suppose in addition that the mean
value of the velocity field at any location is zero: there ismean flow.

We define amicroscopic state as a given fine grained density figbdx, y,z) and
velocity fieldv(x,y, z). From the knowledge of a microscopic configuration, one can
compute the conserved quantitiEsg(og). The problem is assumed to be statisti-
cally homogeneous on the horizont#d, (parallel toOxy). A integration over the
directionsx andy will be considered as an ensemble average, and denoted by an
upper bar b(z) = 7 [, bdxdy.

A macroscopic state of the system is given by the fiejgl(z, o, v) that describes
the probability to measure a given scalar and velocity valueeightz. As for the
mixing of the vorticity in 2D flows, the most probable macrogit state is the one
that maximize the mixing entropy” = — fig j f|—c 103 Jior oma J P INPAOdVAZ
(the bounds of integration will be dropped }or simp&icit)mang all the states that
satisfy the constraints of the problem, namely the energgewation

E[p] = &[p] + &plp] ///p( +oz> dzdodv=E (7)

and the conservation of the global scalar distribution:

://pdzdv:g(a) 8

whereH is the total height of the domain. We make at this point thengjr
assumption that each microscopic state is accessible pamgiute the most probable
macroscopic state satisfying the constraints of the propées in the case of vorticity
in 2D flows.
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In order to compute critical points of the variational prerl, we introduce the
Lagrange multiplierg3 and y(o) associated respectively with the energy (7) and
with the constraints of the global vorticity distributioB)( and then compute first
variations with respect tp:

55A/35£+/y(o)5%da:o. ©)

This gives/ [ [ (—1—In(p) — Bv? — Bzo +y) dpdvdodz= 0. Since this equal-
ity holds for any variatiordp, we obtain

p = Aexp(—pv?/2— Boz+y(0)) (10)

The value of the Lagrange multiplief$ and y(o) are determined by the ex-
pression of the constraint§[p] = E and 7% [p] = g(o), andA is a normalization
factor.

Notice that the PDF (10) of the statistical equilibrium carelxpressed as a prod-
uct of a PDF for density and velocity, which means thandv are two independent
quantities. The predicted velocity distribution is Gaassiand is isotropic. The pre-
dicted isotropy is not likely to be observed in a real flow, ihigh vertical motion
is inhibited by stratification. However, a careful examioatof the flow structure at
the interface of two turbulent layers of different densifyws that mixing occurs
mainly by the occurrence of intermittent (both in time andag) turbulent patches
that break the interface, stir and mix the density of thelpegd6]. At the early stage
of those mixing events, the distinction between vertical harizontal velocities is
not obvious.

The predicted velocity profile does not dependzptthe kinetic energy profile
€(z) is therefore constant along the vertical axis, with

_1 2 _ 3,1
e_z//v pdadv_ZB . (12)

The inverse of3 (a “temperature” of the turbulent field) is thus proportibtma
the variance of the velocity fluctuations. This implies tBat 0. In the following,
we shall focus on the density distributi@{o,z) (and the associated moments),
ignoring the independent distribution in velocity.

p(0,2) = Bexp(—Boz+y(o)), b= /a”pda (12)

We can then find another expression fomwhich links this quantity with a form
of potential energy, related to density fluctuations:

L B(P-B)az [ (22" dz
pla— 2 = (13)
—§'obdz ~ b(0)—b(H)
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Let us consider as an example an initial state composed ofiemgity values
(b =0 andb = 0y). Let us first assume that both values are in equal propartion
According to equation (12), the probabilipto measuré = gy at heightzis

o Boo(z-H/2)
P = 1 o Boz F/2) (14)

The vertical profile of the mean density at statistical éuiiim is thenb(z) =
oop(2), a Fermi-Dirac distribution, represented in figure (1).sTBkpression has
been proposed recently by [12], using similar arguments.

Assuming ergodicity, such an equilibrium state is expettelde reached if the
inertial time scaler ~ BY2H is smaller than time scales of forcing and dissipating
mechanisms. Let us notice that in the limit of infinit bouridarH — +), the
inertial time scale tends to infinity, and one can not expeceach the equilibrium
state. More generally, real flows are out of equilibrium eys$, and the computation
of the equilibrium states is only a starting point before encomplex approaches.

Another case of interest is the dilute limit, for which thelghl probability[ pdz
to measure the levedy tend to zero while keeping constaog [ pdz. This would
correspond to the case of a sediment suspension, for whedAdhssinesq approx-
imation done earlier is no more valid, but it would be str#figiward to generalize

this result to a non Boussinesq flow. In this limit, we recaerstandard expression
p(z) ~ exp—Lozfor a gas in a uniform gravity field.

H=1

0

0 T o=l

Fig. 1 Equilibrium profile for a two level system. We represe(it) = ap(z t) wherep is given
by equation (14), for three different values[f
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3 Relaxation toward statistical equilibrium

We propose in this section an equation describing the rétaxtoward the statisti-
cal equilibrium state. The general idea is that the systdirevolve with increasing
mixing entropy while preserving its conserved quantities.

We introduce the turbulent flux of probabilit}y(o,zt) (directed alongg) and
still consider that there are neither sinks nor sourcesdensityo. The temporal
evolution of the PDFp( 0,z ) thus satisfies the general conservation law

op+0J1=0, (15)
with J =0 at lower and upper boundaries. This equation conservegdbal density

distribution, since (_[3* pdz) = 0. A convenient way to obtain an equation for the

relaxation toward an entropy maximum is to assume Jhatximizes the entropy
production at fixed energy (with a condition of bounded flyx@ssimilar approach
has been previously applied to 2D and geostrophic turbelEhc].

The entropy production read-= — [ J(d,0/p)dodz, and the time derivative of
the energy reads

&=d (/OHedz> +/O'H ozapdodz= d (/OHedz> +/0H oJdodz  (16)

We assume in addition that the flixs bounded at each locatiofi(J?/2p)do <
C(2) (the quantityJ?/p can be considered as the square of a diffusion velocity, a
natural quantity to bound). In order to ensure the consienvatf the norm/ pdo =
1, we impose the additional constraififdo = 0 at any heighz. Then the first
variation (with respect to the flu¥) of the entropy production with the constraints
of the problem gives

. . 1J
0S—Bo&— | =—
P / Dp
wheref3, {(z) and—1/D(z) are Lagrange parameters associated with the differ-
ent constraints. A direct computation of those criticalnp®igives

53dodz— / Z(2)63dadz—0, (17)

J=-D(d,p+B(c—Db)p), (18)

where {(z) has been determined by usirffigddo = 0. The coefficienD must
be positive for the entropy production to be positive. Weesxhis diffusion co-
efficient to be related to the turbulent kinetic energy andharacteristic turbulent
length scalé, D ~ le/2.

We assume at this stage thghenceD) is constant, and we make the strong as-
sumption that velocity reaches its equilibrium distribatimuch faster that density,
which means that the kinetic energy does not depeng wiith e = %[3‘1 . These
hypothesis will be relaxed later on.
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We distinguish two contributions tdin (18): a “down-gradient” diffusion term
and a sedimentation term, which tends to drive back a fluidgbamwith densityc
to its equilibrium position, wherb = o.

WhenJ = 0, turbulent diffusion and sedimentation cancel each ptfielding
9,0 = —Bp (0 —b), whose solution is the vertical profile (12) of the statistiequi-
librium.

We use the energy conservatién= 0 and equation (16) to compute the kinetic
energy :

e= 3B gdtezzie/(@_ﬁz) dz— (b(0)—bB(H)) . (19)

At equilibrium (die = 0), we recover equation (13) that links the kinetic enexgy
to the fluctuations of density. Sinee> 0, we see that this equilibrium results from
a competition between density fluctuations that tend toeimee the kinetic energy
and the (vertically integrated) stratificatifh(0) — b(H)) that tends to decrease the
kinetic energye if the profile is stable p(0) > b(H) ). Let us also notice that an
unstable profile (0) < b(H) ) cannot correspond to a stationary state, since the
term (b(0) —b(H)) acts then as a source of kinetic energy.

4 Dissipation of density fluctuations by turbulent cascade

The existence of a turbulent cascade implies that the gliibaibution ofg(o) is
actually not conserved: fluctuations are transferred tollemand smaller scales,
until molecular diffusive effects occur. For instance, igyatem initially composed
of two levels{0, gp}, this will create a third Ieve%ao, and so on...

This effect has to be taken into account in relaxation equattoward equilib-
rium, by adding a dissipation term in the dynamical equaf{its) of the density
distribution:

op + 0, =sZ[p] , (20)

wheres(z) is a straining rate depending mainly on the velocity fieldpemties in
each horizontal plane. At a given heightthe term%; (o) depends on the whole
PDFp(-,2). This operator must conserve the norm and the mean of thébdison
(J2.do=0 andf Z.0do = 0), and should dissipate the fluctuations at a rate

S~ e1/2/l depending on the local strain of the flow. One should hh(d?—ﬁz) =

—s(@—Bz) in the absence of other processes.

To estimateZ., several models have been developed in the context of mixing
of reactive flows [11]. We choose here a simple model basedsatf-@onvolution
process :

~ ~

Te(K) = (PINP — KOP)  Te(K) = / e 9% 7y(0)da (21)
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wherep and 9, are Laplace transform g and Z.. In the absence of other pro-
cesses, the model predict that an initial PDF will evolve bsuacession of self
convolutions of the PDF, corresponding to the addition ofaamtrations of inde-

pendent scalar sheets becoming adjacent due to randontetufrioaotion, and si-

multaneously elongated by straining (see [13] for a moraitbet presentation and
discussion of the model).

Let us discuss the consequence of the addition of such gadigsi termZ,
whatever its explicit form. The total enerdy = %H,B*H—fﬁzdz is still a con-
served quantity in the presence of this dissipation ternenTéguation (19) is still
valid. If the initial condition is an equilibrium state, tligssipation will lower the

contribution of the fluctuation ter ?—62) in equation (19), which will imply a

decrease of the kinetic energy, and thus an increase of teatfa energy of the
system.

5 A simple example: mixing of a two layer stratified fluid

To illustrate the mechanisms presented in previous sestiwa consider an ideal-
ized situation for which the kinetic energy (henBgis fixed and study the time
evolution of the PDFp by equations (18), (20) and (21). The unrealistic hypothesi
of a fixed kinetic energy will be relaxed later on.

Since the diffusion coefficierd is assumed to be constant, the time unit can be
always chosen such thBt= 1, then the dynamical equation for the PDF is

&p = 0zp+ PO ((0—-0)p) + 1557 . (22)

where r&; = s. There are two independent parameters, nanfellinked to the
imposed kinetic energy, and the time scale of the dissipgiiocesggiss. The pa-
rameterB can be expressed as a sedimentation time sgalg = L/ 00, whereag

is the density of the unmixed dense fluid, dni$ a characteristic scale of the mean
profile b(z). The behavior depends on the values@f and Tsegim With respect to
the diffusion time scalegrt = L2. We distinguish four limit cases:

e i) Diffusion and sedimentation dominate dissipatiagiif ~ Tsedim < Tdiss:
The system relaxes toward the statistical equilibriumestatresponding to the
(fixed) value off3. On a longer time scale, new density levels are created or de-
stroyed by the dissipation mechanism. The system then fomsgh a sequence
of equilibrium states until it reaches the homogeneousy(fulxed) state.

e ii) Dissipation dominates sedimentation and diffusiofs{ < Tgift ~ Tsedim):
The fluctuations of the initial state are first dissipatedeithe mean profile
evolves through the diffusive mechanisib = db until complete mixing is
achieved.
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e iii) Diffusion dominates dissipation which dominates sediragon (Tgif; <
Tgiss < Teedim)- The mean profile evolves mainly by the diffusive procégs=
d,,b, until reaching an homogeneous mean vertical profile. Batains around
the mean are then dissipated.

e iv) Sedimentation dominates dissipation, which dominatfsiitn (Tsgim <
Tgiss < Tgiff)- The system relaxes first toward the sorted profile (theriate
energy minimum for a given global distribution of densityéés). There are no
more fluctuations in this state, and the vertical profile esslby the diffusive
processib = d,b until complete homogenization is achieved.

In casesi) andiii), taking into account fluctuations around the mean profile is
not particularly relevant, since the evolution of the meartigal profile does not
depends on these fluctuations. In ce3gethe fluctuations are important in the early
evolution of the flow, but the knowledge of the initial condlt is sufficient to de-
termine the sorted profile, and then the evolution equata@sadhot imply any fluc-
tuations.

a) b),, o,

0

0 o 0Op s 9% 0

Fig. 2 Relaxation toward the equilibrium state (dashed red linepftwo level system, witlfs =
20,H =1, gp = 1, for three different initial profiles represented in boldiplgreen line. The thin
plain blue curve represent the density profile at successive tiites@anstant time interval.

Let us then consider cage We first display in figure 2 the relaxation toward an
equilibrium state for a two level systera £ 0 orb = gp = 1 in equal proportions),
in a case without dissipation. The value®f= 2/(3e) is still supposed to be fixed.
Three different initial conditions are considered: a) thi¢ial state is completely
mixed (Vz, p(0,z) = p(0op,z) = 1/2); b) the initial state is the sorted profile (the
dense fluid is at the bottom) c) the initial state correspdndbe highest possible
potential energy (the dense fluid is at the top, which is atabis initial condition).

Let us now consider the evolution of the density profile whendissipation term
is taken into account, figure 3. The initial condition is tlggidibrium profile of the
two level system fof3 = 200. The time scale for dissipationtigss ~ 1000, which is
much greater than the characteristic time for relaxatioratd equilibrium, of order
one. The temporal evolution of the mean profile is represkintégure 3-a. Far from
the interface (figure 3-b), the PDF is a sharp peak, therernisstino fluctuation, but
the density of the peak decreases little by little. Closeh#interface (figure 3-c),
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a)H

0
o] oO o

Fig. 3 a) Temporal evolution of the mean profile betwdea 0 and Tmax = 1000. The initial
condition is the equilibrium profile of a two-level system chaterized by3 = 200, 14iss = 1000
b-c-d) Temporal evolution of the PDF at different altitudes

the PDF is asymmetric, with important fluctuations. Finadly the middle of the
interface (figure 3-d), the PDF is symmetric. The extremeesty, and Opyax Of
density progressively diminish.

Let us stress that the evolution of the vertical profile is given by a classic
turbulent diffusion: at leading order, diffusion is compated by sedimentation.
The temporal evolution is driven by the dissipation ternt dr@ates intermediate
density levels, changing little by little the equilibriumngfile.

6 Coupling the model with an equation for the kinetic energy

In the general case, the kinetic enemgyand thenf) is not uniform, but should
satisfy itself a diffusion equation. We assume that itaugiffity has a similar form as
for density fluctuations, namel ~ le'/2. We furthermore introduce a dissipation
termayl ~1e2 (the usual Kolmogoroff scaling for a turbulent cascade)papction
term &2 = F.v and take into account the exchange with potential energyaltiee
buoyancy flux. This yields the energy equation

de= agd, (Iel/zdze) - / oJdo —ayl "le¥2 4+ 2. (23)
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One can check that in the absence of production and dissipdlie total energy
E= fOH (0z+e)dzis indeed conserved by equations (15) and (23).

Now that the kinetic energg varies in space and time, let us assume that the
kinetic energy still satisfies locally the link (11) with tlheverse temperaturg
obtained at equilibriume(z,t) = (3/2)371(z t).

Since the diffusion coefficie? in the buoyancy flux (18) depends on the kinetic
energy,D = a;1€'/2, it is also time and space dependent. The mean density flux is

then
/ 0ddo = —ay <|e1/2 (05b) — 22’1' > (bz—b2)> . (24)

Notice that this buoyancy term has the same form as in theafdake “level 3 con-
figuration” in the hierarchy of models by Mellor and Yamada [7

Let us summarize the full model for the temporal evolutiothef kinetic energy
e(zt) and the density PDB(z o,1):

ap = —d:)+axl te’? 9, (25)
J=—a (Iel/202p+3e*1/2p (0—0) /2) (26)
9 = (PINP—KP) To— /e*“"@(a)da 27)

de = asd; (1€/20) + /Jada _al 2y 28)

There are four intrinsic non-dimensional constants of prdgty, : i) a; and ag
quantify the turbulent diffusivity for density fluctuatisrand kinetic energy (veloc-
ity fluctuations) respectively. iigp anday quantify the rate of cascade of density
and velocity fluctuations respectively. An additional tigla should be given to de-
termine the turbulent scale This could be done in the spirit of thegkmodel or
mixing length theories. Finally the forcing terg# could represent energy injection
by external effects, like oscillating grid. Extension teahdriven turbulence should
be proposed for more general cases.

7 Conclusion and perspectives

We have proposed a model for turbulent mixing in a stratifieedfl While most

turbulence models deal with the mean and variance of fluomapuantities, this
model predicts the whole probability distribution of dapsiuctuations. It can deal
with highly non-Gaussian distributions. The structurehef tmodel is derived from
conservation laws and general principles of entropy prbdanenaximization. It can
account for re-stratification by gravity. Tests are neededtfe validation in more
realistic configurations.
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