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Baroclinic turbulence in the ocean: analysis with primitive equation and quasi-geostrophic simulations
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ABSTRACT

This paper examines the factors determining the distributeEmgth scale, magnitude and structure of mesoscale
oceanic eddies in an eddy-resolving primitive equation st of the Southern Ocean (MESO). In particular, we
investigate the hypothesis that the primary source of mekoeddies is baroclinic instability actirigcally on the
mean state. Using local mean vertical profiles of shear antfis@#ion from the MESO simulation, we integrate
the forced-dissipated quasi-geostrophic equations irualgigperiodic domain at various locations. We also perform
a linear stability analysis of the profiles. The scales, gnésvels and structure of the eddies found in the MESO
simulation are compared to those predicted by the linear sisalgs well as to the eddying structure of the quasi-
geostrophic simulations,. This allows us to quantitativedyimate the role of local non-linear effects and cascade
phenomena in the generation of the eddy field.

We find that typically there is a modest transfer of energy {averse cascade’) to larger scales in the horizontal,
with the length scale of the resulting eddies typically corapte to or somewhat larger than the wavelength of
the most unstable mode. The eddies are, however, manifestlineanand in many locations the turbulence is
fairly well-developed. Coherent structures also ubiqustp emerge during the non-linear evolution of the eddy
field. There is a near universal tendency toward the proougif grave vertical scales, with the barotropic and
first baroclinic modes dominating almost everywhere, but therm degree of surface intensification that is not
captured by these modes. Although the results from the lagadiegeostrophic model compare well with those of
the primitive equation model in many locations, some profiles aloequilibrate in the quasi-geostrophic model.
In many cases bottom friction plays an important quantitatdle in determining the final scale and magnitude of
eddies in the quasi-geostrophic simulations.

1. Introduction even in the highly-idealized case of two-layer quasi-gepstic

Altimetric observations of the sea surface (e.g. Fu and Miana{rlnogg?l\g ?Ar/] ?ﬁe?er}:r:son?t”r{ohggfeg de?;]e:;s, ftc')r:]fh_éngsgemstgs_
1983; Stammer 1997) reveal mesoscale eddies throughout the ' y y y

world’s oceans, especially near western boundary curiaamds ucs (see Held and Larichev 1996; Thompson and Young 2007,

in the Antarctic Circumpolar Current (ACC). Mesoscale eddi Iﬁre?(Efrrr?pl?ia?g?hgm:girrzs()l.:a:—rlgf éﬂg?ﬁgﬁﬁg; T;;; 2::’; fur
are likely generated by baroclinic instability of the meaowfl P P '

- . . . . Pedlosky 2007). In order to take into account the more coxple
gaining their energy from the massive potential energyrvese

. . . ; L local mean flows that arise in a general circulation model, pa
associated with horizontal gradients of the mean stratiioa rameterizations must therefore make rather drastic agsums
(Gill et al. 1974). The eddies dominate the oceanic kinatic e P

. S about the structure of the unresolved flow (e.g. Gent et &519
ergy, and thro_ugh thelr effect on transport_, play a majoe roll Visbeck et al. 1997). But even parameterizations that gitéon
the general circulation. _Yet, we have ne|th_er_a we_ll-a ; Pt better account for the full vertical structure of the meawf(e.g.
consistent theory for their structure and statistics, egfig in

. e e . Ferrari et al. 2010) still implicitly assume a horizontalbcal
cases with realistic stratification, nor are eddies resbimeop- . .
. : X . relationship between the resolved flow and the unresolveyg ed
erational medium- and long-term climate forecasting madel

From the practical point-of-view, because they affectgran fluxes — this will not be accurate if, for example, the eddying

port of heat, salt and other tracers, unresolved eddies beust TIOW ata given location was generated elsewhere and advected

parametrized in climate forecasting models, and this nesd h in by the mean flow.
. . o L A great deal of work has been done both to understand how
yielded various parametrization schemes. A paramet@izat

of mesoscale eddies attempts to mimic the turbulent flux thal?ESt to implement parameterizations in general circutatiod-

. . els, and to understand the scale and magnitude of eddies gene

would arise had the eddies been resolved, and at the heart g . ) ’
any such scheme is a “theory” for the eddy statistics Hovvevefe1 ed by a given mean flow, but rela_tlvely_llttle has been dane t
' investigate the assumed local relationship. One apprdalkén



by Smith (2007b) and Tulloch et al. (2010), is to use the hydroscale of the equilibrated flow (Arbic and Flierl 2004a; Gian
graphic or model mean state to compute local linear bariaclin et al. 2004). In short, even when the flow is ‘local,” and negle
instability scales and growth rates at each lateral, opeao ing the effects of topography, variations in the local #fiic-
location, and compare these directly to either observatmm tion, mean shear and dissipation can result in a great diyeifs
model output. If the dynamics is effectively close to thag-pr possible equilibrated eddy fields.
dicted by the local linear model, then these quantities draldo In the present paper we take a more direct approach, and
characterize the observed eddy field. Nottoo surprisimgllya  try to avoid the need for a complete ‘theory’ of equilibrated
rough, inconclusive correspondance between the obserldd fi mesoscale eddies in a homogeneous mean flow. Beginning with
and the local linear prediction was found. Moreover, recent high-resolution, eddy-rich ocean global circulation elsim-
analyses of the altimetric data show that a large fractiothef ulation, we ask, to what extent is the steady-state eddy dield
mesoscale field is organized into coherent structures, aach a particular location consistent with a homogeneous moflel o
rings (Chelton et al. 2007) and jet-like striations (Maxike = mesoscale turbulence? To address this question, we analyze
et al. 2005; Richards et al. 2006), which are likely the resfil  the output from the 1/6run of the Mesoscale Eddy Southern
highly non-linear processes. Ocean project (Hallberg and Gnanadesikan 2006), a series of

Although it is more likely the case that the nonlinear evo-simulations using an isopycnal primitive equation modele W
lution of the instability determines the eddy propertide te- consider first the statistical and structural propertiethefeddy
lationship between the mean state and the eddying flow mafjeld throughout the model domain, and perform a local stabil
still be local. Of particular importance is the degree toehhi ity analysis like that of Smith (2007b). We then choose a et 0
the nonlinear evolution of local baroclinic instabilitiesads to  six locations, and use the time-averaged mean fields at those
an inverse cascade of energy, in both the horizontal and vetations to drive a horizontally-periodic quasigeostrapirbu-
tical. Altimetric observations do suggest that an inveras-c lence model to steady-state. The primary metrics of corapari
cade to larger horizontal scales exists at the ocean syi@actt  are i) the horizontal length scale, ii) the magnitude andtfie
and Wang 2005). However, determining which combinationvertical structure of the eddy field — to what extent are these
of vertical modes is sampled by the surface flow remains aiguantities consistent in the global circulation model andsit
open problem. Which modes are sampled by the observatiorgeostrophic simulations?
is important for the following reasons. In the case of thesgjua The paper is organized as follows: section 2 is devoted to
geostrophic dynamics with two equal-depth layers, thesidat  the studies of eddy properties in MESO simulations, with an
picture of Rhines (1979) and Salmon (1980) is that baraxlini emphasis on their vertical structure, and a comparisonagith-
energy cascades toward the first baroclinic wavelength ef dgutations of linear baroclinic instability. Section 3 disses the
formation, at which the baroclinic energy is transferredite  quasi-geostrophic simulations carried out at varioustiona in
barotropic mode, and the barotropic energy then cascades the Southern Ocean. A comparison between eddies in MESO
ward larger scales, until finally dissipative mechanism=bee  simulations and the forced-dissipated quasi-geostraghiala-
effective. In this picture, the steady-state flow will be doated  tions is presented in section 4, and a summary is given imsect
by the barotropic mode. However, when realistic oceanifitrat 5.
cation is present, the flow does not completely barotropgze,
cept possibly on very long timescales, and a large portidgheof 2. Eddiesin a comprehensive primitive equation ocean model
energy remains in the baroclinic mode (Smith and Vallis 2001 . . : :
2002). This picture may be further modified by the presence of In this sgctlon We examine th? njgsoscale _turbulence in the

: : - : eddy resolving comprehensive primitive equation oceanahod
the ‘surface quasigeostrophic’ mode (Lapeyre and Kleir6200 g o . . .

. . ; specifically the 16° resolution MESO simulations of Hallberg
which undergoes its own inverse cascade (Capet et al. 2008).

As well as the vertical structure of the cascade, and its pro"’}nd Gnanadesikan (2006). This is an isopycnal hemispheric

I ocean model with realistic geometry but somewhat idealized

jection on the observed surface, the structure of the eddlog/ ) . . .

is also highly dependent on the nature of the mean PV gradielg?rcmg.' There are 20 interior vertical layers and a theael
S . . . bulk-mixed layer on the top.

and the dissipation mechanism. Even relatively small giratdi

of the Coriolis parameter (thg effect) can result in a steady

flow dominated by zonal jets (Rhines 1975; Vallis and Maltrud

1993). When the mean flow is not strictly zonal, as is the case The surface eddy kinetic energy (EQEn MESO simula-

in most oceanic locations, the eddy field may take on a ver§ions, computed by considering a one-year time averageeof th

complex structure, still dominated by jets, but with extedyn  square of velocity fluctuations, is presented on the loweepa

high eddy energy (Spall 2000; Arbic and Flierl 2004b; Smithof Fig. 1. This map of EKE compares reasonably well with

2007a). On the other hand, the presence of sufficiently gtronobservations from altimetry (see Hallberg and Gnanadasika

drag may overwhelm thg-effect and yield a nearly isotropic (2006) for more details). It shows an inhomogeneous distrib

flow (Thompson and Young 2006, 2007). Finally, the nature oftion of oceanic eddies: regions of high EKE are mostly lodate

the drag term — quadratic versus linear — may also change tharound western boundary currents and in some regions in the

a. Eddy properties in MESO simulations



main body of the Antartic Circumpolar Current (ACC). Baroclinic modes and deformation scales are computed lo-
A snapshot of the surface current speed on the upper panedlly from the one-year averaged density profiles. The bl

of Fig. 1 shows that these regions of high Efd®rrespond to (1) is discretized as in (Smith 2007b, Appendix A), and the pa

regions where mesoscale turbulence tends to be organited irticular discretization used here is the same as that in thEME

rings with typical velocities of 1 ms and diameterding of  simulations, but with a minimum upper-layer depth of 30 me-

about 200 km. To extract coherent structures in an objectivéers. Velocity fields are projected onto these modes at eaicl, p

way from the eddy field we employ the Okubo-Weiss parameand the partition of eddy kinetic energy into first barodiand

terW =4 ((dxu)2+ dyudxv). This procedure has been used in barotropic modes is given in Fig. 3. Evidently, the EKE of the

previous diagnostics of altimetry measurements (Isemtdreet first baroclinic mode ar_ld of the bar(_)tropic mode accgunts for
et al. 2003, 2006; Chelton et al. 2007). Coherent structuregearly al!the tota! EKE in MESQ' typically well over 80%. Th?
are found by looking for simply-connected regions in which arotropl_c m.ode IS clegrly dommgr_n along the ACC path’.Wh"
W < —2. 1012 52 We define the length scala,, of a given the contrlbutlon of the first parochmp mode bepqmes edaiva
structure as an equivalent diameter corresponding to atliitk to the barotropic mode at higher latitudes. This is gengaih-

would have the area of the coherent structieg:— 2 (Area/ ) 12 sistent with previous dlggnostlcs by Wunsch (1997) on the-ve
Both a snapshot and a one year average of this quantity &re Igal structure of eddies in the ocean, from (sparse) obsensat
P y g q Y PO Vertical profiles of EKE at six different locations are pkadt

ted in Fig. 2. Similar to observations of eddies in the Matdite R . " . . .
: . as in Fig. 4, and table 1 gives additional information. While
ranean sea by Isern-Fontanet et al. (2006), regions higigy p I . o o
. o KE is in some places (for instance at 30° E 34° S, in the Aghu-
ulated by large scale coherent eddies are found in high EK . ' . .
as current) mostly barotropic and first baroclinic, the ygdd

regions. field is in a number of places surface intensified in a way that
cannot be explained by its barotropic and first baroclinideno
only (see the dashed blue lines of Fig. 4). That is to say, even
To understand the broad characteristics of the verticatstr though most of the energy does reside in the barotropic astd fir
ture of the eddy field, we compute the vertical normal modes abaroclinic modes, there is in some places a non-negligésiel
each location. The baroclinic modégn},,., are solutions of ual near the surface, possibly due to some form of surface in-

b. Modal projection of the eddy energy

the Sturm-Liouville eigenvalue problem stability or surface quasi-geostrophic dynamics. A natfirst
) question is then to determine if this vertical structure lbbamun-
d (fo d‘”ﬂ) _ W (1 derstood by linear instability computations of baroclimsta-
dz\N? dz Rn?’ bility around an imposed mean flow.

Whe,reN(lon’ lat, z) and fo(lon, lat) are respegtiv_ely the vertical c. Linear instability in the primitive equation simulations

profile of buoyancy frequency and the Coriolis parameter at a

given location defined by its latitude and longitude. Therzbu Following Smith (2007b), linear instability computatiamasve
ary conditions for this problem atkg,/dz(z=0) = d@n/dzz=  been performed at each horizontal point of the MESO simula-
—H) = 0, whereH(lon, lat) is the ocean depth at the location tions (details are described in the Appendix). The meae stat

in question. To each baroclinic mode is associated an eigefomputed by taking a one-year time-average over the erdire fl
value R;2(lon, lat) defining themth Rossby radius of defor- We chose the time period of one year after performing some
mation. For convenience, we also define the first deformatioRreliminary analysis that showed that most unstable regioe
wavelengthL; = 2rR;.1 Note that the vertical modes provide characterized by fairly short instability time scales nfraveeks

a complete orthonormal basis for the vertical structureryf a to months. The mean flow is also varying on a similar time
field satisfying the same boundary conditions. Howeverait h scale, and if we were to average over a much longer period the
been recently argued that one should rather consider athasis mean flow would be unrepresentative of the flow that the eddies
takes into account both the interior baroclinic modes ared thactually see, while taking a smaller time average woulddeav
surface intensified modes that reflect the contribution fewm @ too-strong signature of the eddies in the mean fields. @akin
face density gradients (Lapeyre 2009). Unfortunatelyhsac @ one-year averaged seemed the best choice, and these fields
basis would not be orthonormal and would require more com@re used in both the linear stability analysis and the noeali
plicated analysis and interpretations, and therefore smringg ~ quasi-geostrophic simulations described later.

point we consider conventional baroclinic modes only; wéth The maximum instability growth rat@ins; = 1/Tinst is plot-
sufficiently high vertical resolution these would also eaptthe  ted on the upper panel of Fig. 5. Regions of fast growth in Fig.

surface-intensified modes, although the exploration dfithae- 5 are localized in space and are associated with large ifistab
yond the scope of the present paper. wavelengthd s in Fig. 6. These regions of fast growth mostly
reflect the fine-grained structures of the mean flow, and a0
INote that the above method of calculating the Rossby raditersiby a ized regions of instability This I’OUgh field is in some castr
constant factor from the scaling estimadéi/f even in the case of uniform . e A .
stratification. In this case it is readily shown tRit— NH/(rf) and soL, —  With the rather smooth distribution of EKE in Fig. 1, whichyna

2NH/f. reflect the smoothing-out of localized instabilities by active




effects. stability analysis than the Rhines wavelength, but we ghoat

The ratioLjnst/L1 is plotted in Fig. 5, and the first baroclinic conclude that the eddy field is a consequence of linear dynam-
Rossby radiu®; is shown in Fig. 7. This ratitingt/L1 is typ-  ics. The rings themselves are certainly nonlinear strest(see
ically about two in the ACC, and drops to abouB@t higher e.g. Venaille and Bouchet (2010) for an interpretation efth
latitudes, except in regions of high growth rate, as foranse  structures as a result of potential vorticity homogenaatuvith
in western boundary currents. Note that in the classicaly Eadadditional dynamical constraints), and their length scsleot
problem (constant stratification and velocity shear andtédfile ~ necessarily given by local properties of the mean flow.
tom) Linst/L1 ~ 2 (Vallis 2006). The ACC is the region where All these results are consistent with previous analysis of
the stratification is the closest to a linear profile, so it @ n eddy length scale in term of linear baroclinic instabilitiul-
surprising that predictions based on the Eady problem alle weloch et al. 2010). We note in addition that maps of eddy length
approached. By contrast, small values of the ratig;/L1 are  scale, Rhines scale and instability wavelength exhitoirgtispa-
mostly associated to surface intensified modes in regiomsavh tial inhomogeneities, with high values along western baupd
the mean flow is surface intensified, and easterly sheardd (Twurrents. Caution is then warranted when interpreting zana
loch et al. 2010). erage of such quantities.

A major issue in the dynamics of mesoscale eddies in gen- As noted previously, the vertical structure of the eddies is
eral, and here in particular, is understanding what seisttbe-  primarily barotropic and first baroclinic, but there is in mya
zontal scale. Comparing the eddy properties in the fullyettgped places an additional intensification near the surface. Hg.
primitive equation simulations with the linear stabilityoper- shows, among other things, a comparison between the struc-
ties (shown in Fig. 6), one finds that the simulated eddied tenture of vertical EKE profiles in the MESO simulation and the
to be a few times larger than the scale of the linear instabilvertical profile of the energy of the fastest-growing linearde
ity, but the interpretation is difficult because of the prese  EKEj,(2) = | Jinst?/ fBH dz | inst?, with arbitrary amplitude, at
of structures in the field. The rings visible in Fig. 2 do seemsix particular locations. The surface-intensificationathquan-
to have diameters close to the instability wavelength inoregy  tities suggests that at least part of this structure is atlzen-
of fast growth — for example, table 1 shows that the instasequence of the linear instability properties of the colurAn
bility wavelength in the Aghulas current (point 30;3°S) is  the location 80° E, 45° S, there are eddies in the MESO field, de
Linst = 2L1 = 500 km, which is the about the size of oceanic spite that linear analysis yields nearly stable modes (tbevtip
rings in this region. Note that the way the coherent strectue  rate~ 100 days, and the scale of fastest grolyh~ L1 /50 are
extracted tends to underestimate the eddy length scabe simr  both very small). Moreover, no eddy activity forms in the non
criterion on the Okubo-Weiss parameter selects the corgeof t linear quasi-geostrophic model run with the mean flow at this
rings. Note also that other metric for the eddy length scade (  location (discussed later), even after one year of integratt
e.g. Tulloch et al. (2010) for a discussion) would lead toilsim seems likely that in this region eddies in MESO have thegiori
conclusions. elsewhere and are advected in, rather than growirsitu.

The B-effect is one possible and oft-cited mechanism that  Overall, the vertical structure of the EKE in the primitive
may play a part in setting eddy scales. In the presence of sufgquation simulations does have some resemblance to ligear d
ficiently large 3, the flow will become anisotropic in the hor- namics, with surface intensification but otherwise a fairhji-
izontal, possibly self-organizing into zonal jets (Rhir&¥/5;  form structure in the vertical. In the next section we explibre
Vallis and Maltrud 1993) with widths of order the Rhines ggal extent to which the structure can be understood on the béasis o
(V/,B)l/z, whereV is some measure of the barotropic eddy ve-quasi-geostrophic turbulence.
locity. Here we define a Rhines wavelengti.as= 27(Vims/8)Y/?,
wherevins is the root-mean-square meridional barotropic veloc3. Eddies in forced-dissipated quasi-geostrophic simulains,
ity; other choices do not change the results significantlge T with an imposed mean flow
lower panel of Fig. 6 shows the Rhines w_avelength computed We found that the eddy field in the primitive equation sim-
from the one-year average of the MESO simulation, and ShoWLSJIation bears some rough correspondance in vertical sirict
that this scale is generally larger than both the instgbiliave- 9 P

length and the ring size, taking on values of about 500km ir;[o that of the locally-computed linear instabilities, bhe thor-

regions of high eddy activity. This is not surprising, sifbe- Izontal eddy scales are larger, and the spatial structdrédseo
. . » . ' eddies are quite complex, including coherent vortices, geid

comes quite small at high latitudes — using an estimatedcevalu . . . ;

of Vims ~ .1 ms1 (appropriate to regions of high eddy activ- turbulent undulations of streamlines. On the practica sahe

ooms e . . would like a theory for the horizontal property flux the edddi

ity, judging from Fig. 1) and3 at 50 yields Lry ~ 500 km y broperty &

’ . Rh ™~ . . . ; )
Moreover, the jets recently observed in the ocean (Maximenkggneraules’ n Qrder 0 effectwtlaly par?metenze the ea‘felt:wb
et al. 2005; Richards et al. 2006) are typically at low-lat#s — gnd-'sca € ed_d|es on a coarsely-resolved ocean mc_)de -dde e
small jets in the ACC appear to be driven by topographic Variflux is a function of the eddy scale, energy and vertical $tmeg

ations rather tha8 (Thompson 2010). Locally, oceanic eddy and so a theory for t_he latter will yield the former.
. . . However, there is no complete theory for the steady state
length scales tend to be closer to the scales given by limear i



eddy statistics driven by an imposed mean state, even withiperturbation P\ given the imposed mean state1Q is
the highly-idealized assumptions of quasi-geostrophaisg

and horizontal homogenity (effectively equivalent to tlse wf 99 +(u+U)-0g+u-0Q=0 0>z>—H

a horizontally periodic domain). Attempts to form a theooy f ot

the steady-state, horizontally homogeneous eddy statistthe (43)
case of two equal-depth layers and zonal mean flow began witld Y oy ou Y B
Haidvogel and Held (1980), and yet even these restrictions a gt gz +(u+U)- DE U5z k=-Nw  z=0,-H

insufficient to allow straightforward closure. Thompsordan (4b)
Young (2006) were able to construct a useful closure With 0 . _ _
and a linear vorticity drag on the bottom layer, althoughrthe with - w(0) =0 and W(—H) = —Zhotom,  (4C)
theory for the eddy diffusivity still required some empaidit-  whereZyouomrepresents bottom friction (topography is omitted,
ting. When non-zer@ is included with zonal mean flow, some see below), an#l is the unit vector in the vertical direction. The
progress was made by Held and Larichev (1996) and Lapeyrgoundary conditions (4b) can be replaced by the conditiaroof
and Held (2003), although Thompson and Young (2007) demomuoyancy variation at the top and the bottom lay®(= 0 at
strate that the former results are problematic, in part b®Ea z=0,—H), provided that surface buoyancy anomalies are inter-
they do not explicitly take into account the role of drag is-di preted as a thin sheet of potential vorticity just above tloeigd
sipating the energy. Non-zonal mean flows further compicat and below the lid (Bretherton 1966). Note that the térmlQis
the picture (Spall 2000; Arbic and Flierl 2004b), and in someomitted on equation (4a). This may be justified if there idesca
cases the flow cannot achieve a steady-state (Smith 200@g). N separation between large scale flow and perturbationsdgted|
trivial vertical structure and other drag mechanisms odiyad-  1984) or if the mean flow is a steady state of the unforced undis
ditional problems. sipated quasi-geostrophic equations. Although neithetriistly

Our approach is therefore to use the steady-state statisti¢rue in our case, following Arbic and Flierl (2004b) we do not
of a local model for the eddies as our “theory,” and this, in aexpect quantitative changes to result from the presenckeof t
nutshell, is the motivation for this section. Here we coasid term.
non-linear quasi-geostrophic simulations of perturtvegiabout The quasi-geostrophic simulations were performed in a dou-
imposed, baroclinically unstable mean states taken franosi  bly periodic domain of extensidn= 64R;, (whereRy is the first
cations in the MESO run. The six locations are referenced-in t deformation radius) using a spectral code in the horizcantdl
bles 1 and 2, and represented as black circles on Fig. 1. We firinite-difference in the vertical (see Smith and Vallis (2p€or
review the quasi-geostrophic model and describe its nwaleri details). All the runs presented in this paper have an éfect
implementation, then discuss the issues that arise in géngr  resolution of 256 in the horizontal, and vertical resolution that

steady states with this model. varies from place to place, depending on the average nunfiber o
layers present at that location in the MESO simulation ¢y
a. Quasi-geostrophic dynamics around imposed mean flows from 7 to 16). Integrations were performed until a statatic
The perturbation quasi-geostrophic potential vorticRyJ steady state was achleve_q. The gqumbratlon times wemjft_:m
is be extremely large, requiring typically more than 15 yedrss
) 0 fg 0 difficult equilibration was already reported in the samenfea
q=0"+ 9z (NZ (9ZW> ) (@) work, but for even more idealized settings, by Arbic and Flie

(2004b). When equilibration was not possible over this pkrio
of time, additional dissipation mechanisms were includedee-
the next section for more discussion of this choice.

wherey is the perturbation streamfunction amek (— oy, oxy)
the corresponding velocity perturbation. Neglecting dbnt
tions from the relative vorticity, the mean quasigeostiofo-

tential vorticity (PV) gradients are b. Effect of the mean state parameters and structure on the steady-state
2 5 perturbation flow
0Q o0 [f5oVv Q 0 ( fgou
9x  0z\N2az)’ ay P dy\N2 9z )’ (3) Steady-state is achieved when eddy energy generation by the

unstable mean flow is balanced by dissipation. Multiplmati

wheref3 is the planetary vorticity gradient anig the Coriolis  of (4a) by —¢ and integration over the domain yields the eddy

parameter. The corresponding mean density profiles are usedergy budget

in the the six quasi-geostrophic simulations presented aer dE

plotted in Fig. 8 and the imposed mean velocity and PV gradien i /dz (Vug—Uvag) — Dissipation (5)

profiles are shown in Fig. 9. '

The quasi-geostrophic equation advection equation for th&eneration of eddy energy thus occurs through the eddy flux of

PV, and the dissipation term depends on the bottom @kagom:.
Because eddy energy tends to accumulate in low-mode, large-
scale flows, the most energy effective dissipation mechanis



are either scale-independent or concentrated at largessaal In some of the locations investigated here, the enhanced pro
the present simulations, we primarily use linear (scatkpendent)duction of eddy energy due to non-zonal mean flow prevented
bottom drag. The numerical simulations also include a smallequilibration in the quasi-geostrophic simulation. Hoesvhis
scale enstrophy dissipation filter, but this has negligiffieces  effect only could not be sufficient to explain the difficulty t

on the energy budget. equilibrate in locations wher@ does not dominate the dynam-
ics, as for instance in the case of the formation of surfatanin
1) THE BETA EFFECT sified rings at high latitude (see below).

The Coriolis gradienf yields a constant term in the merid-
ional mean PV gradiengyQ = 3 —9d, ((f/N)ZdZU>. Profiles
of mean PV gradients at six different locations are givenign F
9. Typically, variations of the mean PV gradient due to thic
ness (or stretching) variations are much stronger {ham the
locations considered (as in Smith 2007b), and linear iiistab

ity computations depend only a little ¢ghat these points. The " ot . o
v b P y @ b layers, bottom friction may not be sufficient to achieve &qui

effect of 8 would have been much more important if we had . X .
considered the linear instability due to just the barotagid brauop (Arb|c and Flierl 20(.)4b)' In the r.eal ocean, energym
first baroclinic modes (i.e. if we had projected the mean sheg?'S0 dissipate either by eddies propagating away from gieme

onto just the first two modes) — the equivalent of a two—layerOf generation and by small scale dissipation by non-gepiico
processes in the ocean interior. In some cases we sought to

model. For instance, defining the two-layer criticality rhgnas ; A . L
Cr— U1/BR§, whereU is the projection of the mean zonal ve- achieve equilibration by the addition of another dissigafiro-

2
locity on the first baroclinic mode gives values of order osee( ~ cess, namely a small thermal drag of the formg, (%a%w)
table 1), but this definition does not take into account thengf  on the right hand side of the PV transport equation (4a). This
vertical variations of mean PV gradients, which overwh@m  terms damps vertical variations of buoyancy and so availabl
The relative unimportance @8 from the point of view of  potential energy. It allows equilibrate simulations forietthe
linear stability contrasts with the strong qualitativefeliences  kinetic energy is quasi-equilibrated, but not the potéetigergy.
between simulations performed with and withitat almost  This is the case when eddies are organized into surfacesinten
every location (see table 2). Energy levels are generadigtgr  fied zonal jets separating regions of quasi-homogenizeenpot
(sometimes by more than an order of magnitude) @itthan tial vorticity: the total energy is dominated by the APE o tho-
without it. A similar result was found for non-zero mean mleri mogenized regions, which is the the difficult part to equéie,
ional flows by Spall (2000), and the result stands in stark corwhile the kinetic energy, dominated by the jets at the iaige§,
trast to the effect of8 on cases with purely zonal flow. In the was quasi-equilibrated.
zonal-mean flow case (with predominantly zonal flow directed A non-dimensional parameter one can associate with bot-
eastward in upper layers relatively to the lower layersjréas-  tom friction is the throughput); /Ryry, wherery, is the bottom
ing B has a stabilizing effect for linear modes, and consistentlyfriction coefficient. In the limit of small bottom velocitse the
the scaling of Held and Larichev (1996) predicts a decreése dyottom drag is an approximation to the Ekman drag, gne
energy production witlB in forced-dissipated simulations. de f/2H, wheredg is the Ekman layer depth. Control exper-
The reasons for the contrasting rolegin zonal and non- iments assumed a typical Ekman layer depth of order 10 m,
zonal mean flow can be understood through its tendency to prahich leads to throughput values fronbQo 30 in the six lo-
duce zonally elongated flows (rather than its effect on Btghi  cations considered (see table 1). The fact that some siionsgat
which then affects the eddy generation terms in (5) in difér were difficult to equilibrate, and that many uncertaintiesrev
ways. Wheng is large enough to produce eddy-driven zonalattached to the estimation of the depth of bottom Ekman Jayer
jets (e.g. when drag is small enough to allow zonal anisagp motivated us to carry out a number of other simulations ircihi
to form), the northward (cross-jet) PV flox)is suppressed, be- the Ekman layer depth is fixed at 1 m, 100 m (not shown in this
cause cross-jet fluxes tend to be increasingly suppressib@ as paper) and 1000 m. These values (some of them being unrealis-
jet strengthens (Smith 2005; Haynes et al. 2007). By caontrastic for the ocean), span the limits of very weak and very sjron
as the jets increase in strength correlations arise betp@iem-  bottom friction.
tial vorticity g and zonal velocities, resulting in an enhanced As expected from previous numerical computations of gepsic
eastward (along-jet) PV fluxg. When bothU andV are non- turbulence in two-layer models, bottom friction plays ampan
zero, increasing3 will lead to stronger jets, and eddy energy tant role in setting the horizontal and vertical structufrthe tur-
injection due to the along-jet flux/@zVvug) will far dominate  bulence (Arbic and Flierl 2004a; Thompson and Young 2007).
the increasingly negligible across-jet flux due to the zdlwaé  This is illustrated in table 2 by the changes in the contidwut
(— J dzUvg) — thus when the flow is more non-zonal, eddy en-of barotropic and first baroclinic modes with different veduof
ergy will increase with3 (Smith 2007a). bottom friction. The ratio of the baroclinic to barotropim&tic

2) THE ROLE OF BOTTOM FRICTION

In addition to the complexities encountered with the com-
I(bination of B and non-zonal mean flows, reliance on bottom
drag can also make equilibration difficult to achieve. Inesais
which the dynamics is confined to the upper ocean, and with no
efficient energy transfers from these upper layers to thedow



energy tends to zero in the limit of vanishing bottom frictio
while it tends to a constant value in the limit of high bottamg-f
tion, consistent with previous forced-dissipated simata of
two layer quasi-geostrophic models (Arbic and Flierl 2004a
The complete barotropization in the low-friction limit can

be understood as a tendency for the system to reach the grav

modes, consistently with the Rhines-Salmon phenomenaibgy
two-layers turbulent flow. In the high-friction limit, batin drag

strongly damps the dynamics in the lower layers. If one com-

bines the condition of vanishing velocity at the bottom amel t
tendency for the system to reach the gravest vertical mbda, t

the energy will project mostly on the barotropic and the first
baroclinic mode in such a way that the baroclinic mode compe

sates the barotropic mode at the bottom. The ratio of baiatro

to baroclinic energy in MESO (see table 1) and in the quas

geostrophic simulations (see table 2) show that the oceen is
an intermediate regime between these two limits.

4. Comparison between primitive equation and quasi-geostphic

simulations

a. Eddy kinetic energy levels and vertical structure

A comparison of eddy kinetic energy levels in the MESO

simulation (see table 1) and the equilibrated quasi-gepbic

simulations (see table 2) shows some of the strengths aiitd lim
of the locality hypothesis. Some regions of high energy lev
els in MESO are also regions of high energy levels in quasi-

geostrophic simulations, but in other regions (see e.g.ntpoi
30°E 34°S, in the Aghulas current), energy levels produce
in the quasi-geostrophic simulations are orders of madaitu

higher than MESO simulation (or it was necessary to conside

artificially high bottom drag to obtain similar values). Cret

other hand, regions of low energy levels in MESO are alway:
found to be regions of low energy levels in quasi-geostrophi
simulations; in fact, the energy levels produced in quasistrophic

simulations are smaller than in MESO simulations.

These results suggest than a few very energetic regions s
ply eddies to other, less baroclinically active regionthalgh
the existence of missing energy sources (such as mixedllrécoc
barotropic instabilities or direct generation by windsylamnks
(such as ageostrophic processes) in the QG models forced
baroclinic instability make such an assertion a little &tine.

The normalized profiles of EKE extracted from the QG sim-

ulations at the six different locations are presented in Fg

Also shown are the corresponding EKE profiles from the sam
locations in the MESO simulation, as well as EKE profiles due

to only to the barotropic and first baroclinic mode — see als
table 2. In some places there is a clear tendency for enerto
cumulate in low modes (at points 30;3° S and 80° E34° S),
while in others the vertical structure is similar to thattoé tmnost
unstable mode, sometimes enhanced near the surface.

n

Q

b. Eddy length scale and horizontal structure

To compare the horizontal organization of mesoscale turbu-
lence between the two models, snapshots of surface flows are
presented on Fig. 10 and 11. Snapshots of the MESO sim-
ulation (in which the time-mean flow is removed) are chosen

es

Such that the point at which the vertical profiles are exé@fbr
the quasi-geostrophic simulation is at the center of theadom
The domain length scale is the same as for the quasi-gebgtrop
simulations, namely. = 64R;, whereR; is the first baroclinic
Rossby radius of deformation at this point. In each case, ®MES
snapshots are compared with the quasi-geostrophic sionsat
that are equilibrated (see table 2), even if the equilibrath-
volves high bottom friction or the use of thermal dampinqc®i

ipoints 80° E34° S where found to be stable, and since none of

the 30°E60° S simulations were equilibrated, the dynamics at
these locations are not discussed in the following. Perttaps
most noticeable feature is the emergence of structures ef on
form or another in nearly all cases.

Point 30°E34° S is located in the western boundary current
along South Africa, perhaps the most energetic region of the
ocean. A typical feature of eddying activity in this regian i
the formation of mesoscale rings, visible on the left parfel o
Fig. 10. Strikingly, the (all anticyclonic) rings producéa

the quasi-geostrophic simulations are of similar sizeghsly
larger than the wavelength of the most baroclinically upista
mode. This quasi-geostrophic illustration is taken fronua r
with high bottom friction { = 100y, in table 2). Decreasing the

Jriction tor = 10ry leads to an increase of the number of rings,

and their length scale is then equal to the instability weveth.
IP this case the flow looks very similar to the ‘vortex crystal
observed previously in the two-layer quasi-geostrophitusa-

%ions of Arbic and Flierl (2004b). For lower bottom friction

rp, and Qlry on table 2), there remains only one vortex at the
scale of the instability wavelength, and the flow is domiddig
a single domain scale barotropic vortex. This implies that t

IJi)c_ale of the eddies is a non-monotonic function of bottom fri
t

on, consistent with the results of Thompson and Young 6200
Note that barotropic instability and topographic intei@ts are
not present in the quasi-geostrophic simulations; evigdduatro-

inic instability and non-linear evolution is sufficierd treate
the coherent rings, with comparable length scale to therobde
rings in MESO simulations.

At point 30° E 45° S (left panel of Fig. 11), both MESO and

éhe quasi-geostrophic simulation show rings embeddeddstw

coherent, relatively strong eastward jets. However, théke
structures are stronger in MESO, and the rings are larger tha
In the quasi-geostrophic simulations. A similar scenaeierss
also to hold at 80° B34° S, shown in the right panel of Fig. 10:
rings are smaller in the quasi-geostrophic simulatiorsy(ttave
a diameter comparable to the instability wavelength) tinathe
MESO simulations.

Finally, at points 80°E650°S and 80°E34°S, the quasi-
geostrophic simulations exhibit strong surface-inteeditioher-



ent rings whose length scales are roughly comparable tothe iposing the the mean flow is given, either from observations or
stability wavelengths. The surface intensification is présn  as in this paper, from a primitive equation model. Using tie p
the linear instability properties, but the evolution intwherent  files of shear and stratification at various locations we agep
structures is manifestly a nonlinear process. The formatfo the linear instability properties of the flow at all locat&mmand in-
the coherent structures evidently inhibits an inverseadsof tegrate a fully nonlinear quasi-geostrophic model drivgrhe

energy to larger scales, and we discuss this more below. mean state at six particular locations. The degree to wihieh t
latter produces an eddy field of similar energy, scale andtstr
c. Isthere an inverse cascade ? ture to that at the driving location in the MESO simulatiom ca

alple taken as a test of the ‘locality hypothesis, i.e. the ithed
eddy statistics are a function of the local mean state. Gteri
with this hypothesis, neither the linear nor nonlineargnétions
take into account the horizontal shear or time-dependefibe o
flow, nor do they allow eddies to advect in or out of the region.
In many, but not all regions, the nonlinear quasi-geostimph
simulations compare well with the primitive equation siaul
tions in both the structure, scale and magnitude of the sddie
We conjecture that in regions characterized by strong asid fa
instabilities (timescales from days do weeks), the lengties
and the regime of self-organization can be interpreted hoital,
non-linear quasi-geostrophic simulations. However, beedhe
simulations are local, the propagation of eddies away frioen t

ally larger than the instability wavelength, but only by et of source I neglepted, aqd because the mean flow is imposed, pos
sibly important interactions between eddies and mean flowss a

a few. The equivalent barotropic nature of the flow is notitea . : o
d P neglected. In regions characterized by weak, slow instiisil

in these cases: the first baroclinic and barotropic kinetergy the d . b d by eddi ina f
spectra have roughly the same shape. It is also apparent thgfa ynamics seem to be governed by eddies coming from more

the total energy is dominated by the available potentiatgne unstable regions. In some regions a”'f'c'?”y high bott_(mgd :
which is always at scales larger than the instability wavgtle, or them.”a' damping Were necessary FO QQU|I|brate _quasstgzgmmc
consistent with a moderate inverse cascade for the avaitab| §|mul_at|ons, suggesting that t_he primitive equations ae-e
tential energy in the quasi-geostrophic simulations. librating by npn-local mechamsm;, for gxamplg the admeptl
In regions where8 is sufficiently large, strong eastward jets of the eddy field away from a region of instability, or posgibl

form and separate regions of homogenized potential vtyriiti through ageostrophic_ SOurces of d_issipation. .

the upper layers, as on the right panel of fig. 10. Thisis ofs®u . Perhaps mogt St”_kmg averall is th? degree Of. mhomog_er!e—
consistent with the familiar notion that the beta effece#o |t.y of the .eddy. field N both the qua5|—geostroph|c af‘d primi-
anisotropic flows (Rhines 1975; Vallis and Maltrud 1993)wHo tive equation simulations. In some regions the flow is clearl

: ; _ - trongly eddying, in some regions less so. In some nsgio
ever, the Rhines scale itselfg, = /Vims/8) does not manifest Very s . . ' . .
itself unambiguously in the simulations: one might expect t 1€ flow is dominated by coherent structures (jets and rings)

see a footprint of this length scale in the horizontal dyremi Some regions less so. The presence (.)f SUCh. cohere_n_t sesictur
if the flow were fully barotropic, but, perhaps because there in at least three of the Six cases mvgstlgated IS surphisingll

no clear separation between the instability scale and tie st reprgduped by the quaS|-geo§tr_oph|c simulations. The fipw d
the eddies, this is not always the case. Point 8G4ES is an nNamics 15 generally'more rem|n|scept of the'phenomenpld)gy °
exception, as illustrated in Fig. 11: here the peak in thetiin equivalent barotropic, _reduced gravity quaSI-ggostr@phnbu-
energy spectrum occurs at the Rhines scale, and corresmndéence’tt?_an 0;; bartotro_plc tL:jrlEuIencl_e _oyi;leplane. Inbm::ng;"?ﬁp-
the zonal jet width in physical space. This peak is not relate resentation, barotropic and baroclinic flows are bo n

to the injection mechanism, since the instability wavetbrig but in regimes of high bottom friction, their ratio is suclatlthe

at much shorter scale (and corresponds to the size of thecsurf ﬂ(f)\tAr/1 hras the ;tructurfg ogg t\;\;‘o vertlcall—layer system with mos
intensified coherent rings in physical space). In that cisze ofthe dynamics confined in the upper layer.

is effectively an clear inverse cascade for the barotropden ; _Rel?ar?hmg ':jhde honTorjtaI scale r?fttre eddt'ﬁ N V\;ﬁ f|_n":j tthg b
with a cascade arrest at about Rhines scale. ypically, the eddy scale IS somewhat farger than the insta

ity scale, suggesting a moderate inverse cascade ratheatha
extended one (although the production of zonal jets may be re
garded as an extended transfer of energy to grave horizontal
The aims of this paper have been to make progress in undegeales in the zonal direction). The final scale of the eddies i
standing the processes that set the length scale, vettigellge  determined by a combination of bottom drag, the formation of
and magnitudes of oceanic eddies. We have proceeded by suherent structures and Rossby wave scattering, with mesin

Do the energy containing eddies have a scale larger th
the instability wavelength? Here we regard the latter aseeor
sponding to the injection wavelength in forced-dissipatedsi-
geostrophic simulations. There are then two differentaaith
related scales we consider: the scale of the kinetic enégY (
and the scale of the available potential energy (APE). Eguiv
lently, we may also consider the energy in the barotropicenod
(entirely kinetic) and the energy in the first and higher loinic
modes (kinetic plus potential).

Spectra of barotropic and first baroclinic KE, and the APE
are plotted in the lower panels of Figs. 10 and 11. These spect
support the idea that there is a moderate inverse cascabetfor
barotropic and first baroclinic modes: the energy peak iggen

5. Summary and Conclusion



effect dominating anywhere. Regarding the vertical stmecof ~ Arbic, B. K. and G. R. Flierl, 2004a: Baroclinically Unstabl
the eddies, nearly all of the kinetic energy is in the bamitro Geostrophic Turbulence in the Limits of Strong and Weak
and first baroclinic modes. In some regions there is a rebidua Bottom Ekman Friction: Application to Midocean Eddies.
of surface-intensified flow, which seems to arise from thedmn Journal of Physical Oceanograph$4, 2257.

instability problem, for which the fastest growing mode @re Arbic, B. K. and G. R. Flierl. 2004b: Effects of Mean Flow

monly surface intensified. Evidently, the vertical struetwf Direct £ Isot d Coh B lini
the eddies are in something of an intermediate regime betwee |r|:acL|Jon torl;l nBer?y,Plso rogy, a? hq ?rrer;cel ?ﬂ;marof ni-
the profile set by the most unstable mode, and a tendency for cally Lnstable beta-Flane seostrophic turbule rma

of Physical Oceanograph4, 77.

barotropization and first baroclinization. The nonlinegegra-
tions generally show more agreement with the primitive equaBretherton, F., 1966: Critical layer instability in barimit flows.
tions, in terms of horizontal and vertical scales and stmagt Quart. J. Roy. Meteor. Sq@2, 325-334.

than do purely linear instability calculations. Nonetlsslein .

many cases the fully-equilibrated flows do show a residugl si @Pet, X., P. Klein, B. L. Hua, G. Lapeyre, and J. C.
nature of the linear instability, particularly in the nearface McWilliams, 2008: Surface kinetic energy transfer in SQG
enhancement of the eddy flow. flows. J. Fluid Mech, 604, 165-174.

The inhomogeneity of the flow and the lack of a single flow chelton. D. B.. M. G. Schlax. R. M. Samelson. and R. A. de

regime — whether linear or highly turbulent —suggests thatw  g;4eke, 2007: Global observations of large oceanic eddies.
should not seek a single, all-encompassing theory of me®osc g Res. Lett34, 15 606.

eddies. Nor would it be correct to base a parameterization of _

mesoscale eddy fluxes purely on the basis of linear theory drarrell, B. and P. loannou, 1999: Perturbation growth andst
purely on the presumption that the flow is in a fully-develdpe  ture in time-dependent flowdournal of the Atmospheric Sci-
state of geostrophic turbulence. The bulk of the Southees®c  ences56 (21) 3622-3639.

seems somewhere between these extremes. Ingredients fofzgrrari, R. S. M. Griffies, G. Nurser, and G. K. Vallis, 2010:

full ijr?derst?ndlng of tthe re]'ddty ftl)elld TUSt CO(Te fkrlom both llm' A boundary value problem for the parameterized mesoscale
ear theory, from geostropic turbuient cascade phenorogno eddy transportOcean Modelling32, 143-156.

and from theories explaining the emergence and the dynamics
of coherent structures. A greater degree of idealizatianthe  Flierl, G. R. and J. Pedlosky, 2007: The nonlinear dynam-
setting of this paper, but with more realism than previoudisis ics of time-dependent subcritical baroclinic curredtsurnal
with idealized profiles of shear and stratification, may bedweel of Physical Oceanographyd7 (4), 1001-1021, doi:DOI10.

to make progress in this area, and we are currently purshisgt  1175/JP0O3034.1.

with the hope of bridging the gap between idealized studies o

geostrophic turbulence and the real ocean. Fu, L. L. and Y. Menard, 1983: Recent progress in the appli-

cation of satellite altimetry to observing the mesoscalé va
ability and general circulation of the oceaR®v. of Geophys.
and Space Phys21, 1657-1666.

) ) ) ) ) Gent, P. R., J. Willebrand, T. J. McDougall, and J. C.
~ We linearize the quasi-geostrophic equation (4a) and look- \jcwilliams, 1995: Parameterizing eddy-induced transport
ing for normal modes of the form in ocean circulation modeld. Phys. Oceanogr25, 463-474.

Appendix

Linear instability computations

= %’e{@m (Z)e—iak|t+ik><+ily}_ 6) Gill A.E., J. S. A Green, and A. Simmons, 1974: Energy par-
tition in the large-scale ocean circulation and the proiduact

The growth rate# w, (where.# denotes the imaginary part) of mid-ocean eddieeep-Sea Researchl, 499-528.

and corresponding modef | (z) are computed for a range of Grianik, N., I. M. Held, K. S. Smith, and G. K. Vallis, 2004:

wavenumbers, | such that £(5Ry) > (k*+1%)%/2 < 5/Ry, fol- The effects of quadratic drag on the inverse cascade of two-
lowing Tulloch et al. (2010). The maximum growth rate is de-  dimensional turbulenc@hys. Fluids16, 1-16.

fined as
Winst = ng(f{&kl}) Haidvogel, D. B. and |. M. Held, 1980: Homogeneous quasi-

geostrophic turbulence driven by a uniform temperature gra

and the corresponding instability wavelengthijg; = 271 (Kinst + Iinst)’d/m.nt"]' Atmos. 5¢1.37, 2644-2660.

Hallberg, R. and A. Gnanadesikan, 2006: The Role of Eddies in
Determining the Structure and Response of the Wind-Driven
Southern Hemisphere Overturning: Results from the Model-
ing Eddies in the Southern Ocean (MESO) Projdournal
of Physical Oceanograph{36, 2232.
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TABLE 1. This table summarizes properties of the most unstablerabdifferent locations, as well as non-dimensional patarag
and some properties of eddy kinetic energy in MESO at theseé&;, . = 27kinst/L is the non dimensional instability wavenumber
(with L = 64Ry, it givesk, ~ kinst/ (10Ry1)). Tinst is the corresponding time scale (the inverse of the grow#) rin days Ag andA;
gives the relative contribution of the amplitude of the ab#t linear modes, as a percentage, to the barotropic ahddirsclinic
projections. "Thrpt” and "Crit” refers respectively to TdughputU /(r,Ry), with r, = de f /(2H), and Criticality,U;/(BR?). E is
the total eddy kinetic energy in MESO simulations at thisypdh més—2, andEg andE; give the relative contribution of the kinetic
energy to barotropic and first baroclinic kinetic energgpectively.

location Kihst Tinst Ao, A1 thrpt  Crit E Eo, E1
30°E,34°S 6 11 97;1 30 B 4107 61;38
30°E,45°S 165) 16(19) 16;63(79;19 20 5 1102 52;41
30°E,60°S 2B4) 54(90) 12;42(84;4) 6 5 1104 71,24

80°E,34°S 19 54 87,7 2 0 7104 49;29
80°E,45°S 5 60 88;10 1 & 510° 7226
80°E,60°S 14 11 32;48 & 16 410° 32,47

TABLE 2. Summary of quasi-geostrophic simulations. See text étaits on the parameters of the “Control” simulation. Here
is bottom friction, v, is thermal drag (always zero unless specified), Brid the average kinetic energy (inPe12). An asterisk
“*” means that the simulation is not equilibrateffyg andE; are the percentage of barotropic and first baroclinic enekgy Kei,
Kape1give the peak of barotropic and baroclinic kinetic energywell as available potential energy. The terms in braclefess to
secondary peaks.

location feature E Eo/E, E1/E (%)  Ke, Ke1, Kape1
30°E,34°S Control 10~ 86, 14 1,5,1
B=0 4% 92,8 6,6,6
r = 100" control 2101 35, 63 4,4,4
r = 0.1r control 2107 * 99,1 1,1,1
Vih=10“%days! 3.102* 63, 34 4,4,4
80°E,34°S  Control A0 4+ 32,55 55,5
B=0 510°° 42,47 6,6,6
r = 100r control 6.10 4 * 48, 42 4,4,4
r = 0.1r control 6.10 4 * 70, 20 8,4,4
Vih=10°days! 210 32,57 8,8,5
30°E,45°S  Control 404 48, 43 6,2,2
B=0 1102 67,29 2,6,4
r = 100 control 1.10°3 43,50 4,4,2
r = 0.1r control 9.10 2+ 97,2 1,6,1
vp =104 days?! 3.10* 46, 45 6,3,3
80°E,45°S Control stable
B=0 310° 31,59 4,4,3
30°E,60°S  Control A0 5+ 29, 27 9,92
B=0 2105 +* 36, 41 4,4,4
r = 100r control 4105+ 59, 29 5,5, 4
r = 0.1 control 1.10°5* 35, 28 8,8,5
vph=10*days! 4.10°5* 46, 30 9,9,9
80°E,60°S  Control 305+ 16, 42 2,9,2
B=0 21076 51;43 4,4,2
r = 100r control 6.10 6 * 53;38 2,2,2
r = 0.1 control 9.10 6+ 13, 36 13, 13,9
v =10*days! 5.10°° 21, 40 55,5
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Fic. 1. Upper panel: Snapshot of the surface kinetic energy,?sr t plotted with a log, scale. Lower panel: one year average
of surface eddy kinetic energy (EKE) from MESO simulatioi$ie black circles correspond to the six locations consitiéoe
quasigeostrophic simulations; see Fig. 4 for the vertitatsure of EKE at these particular points.
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L (km), gnapsho

FiGc. 2. Upper panel: Core of the coherent rings extracted on pséioh by using the Okubo-Weiss criterion; color represeat t
equivalent diametelt ¢, of the coherent structures (see text for details). Loweepamme year average af, represented as in the
upper panel. This allows to define a global map of eddy lencgiles
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FiGc. 3. Upper panel: ratio of barotropic EKE to total EKE. Ceranel: ratio of first baroclinic EKE to total EKE. Lower panel
sum of first baroclinic and barotropic contributions.
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FiG. 4. Vertical EKE profiles in MESO (blue), quasi-geostropsirnulations (red). Solid lines represent the EKE profilenmalized
by its average on the vertical; this allow to compare theie@rstructure on one side, and the amplitude on the othéue¥eaof the
vertically averaged EKE are given in the different boxesdomparison. Dashed lines represent a reconstruction cfaiime EKE
profile with the barotropic and the first baroclinic mode oidydetermine how well the full profile is represented by ¢desng only
these two modes. The green solid line represents the sgnaredof the amplitude of the most unstable linear mode, nbzeth
by its vertical average. It would be the vertical EKE profiletlge most unstable linear mode. At 8045° S, non-linear quasi-
geostrophic simulations were found to be stable, so there fuasi-geostrophic simulation associated with thistlona



Fic. 5. Upper panel: growth rate of the most unstable mode, cteddacally using one-year averaged mean profiles from MESO
simulations. Vertical structures of the corresponding ltomge are given for six points (represented by small blaoies) in Fig. 4.

Lower panel: ratio of the corresponding instability wavejth Linst = 271/ (k2. + 12) >/ with the deformation wavelengthi®; .
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FiG. 6. Upper panel: wavelength,s; of the most unstable mode. Lower panel: Rhines scajle= 2n(vrms/B)1/2.
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Fic. 8. Density profiles from one-year averaged MESO simulatiat the six locations considered for the quasi-geostoophi
simulations.
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FiG. 9. Mean vertical profiles of velocity and potential vortyogradients, at the six different locations used for thesirg@ostrophic
simulations. Velocities are in n.8, and potential vorticity gradients are in units@fNote that the horizontal and vertical axes are
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FiG. 10. The upper and center panels show snapshots of surfeee gps?') in MESO and in the corresponding quasi-geostrophic
simulations, respectively. At a given location, the domaigth is the same for the MESO and quasi-geostrophic sn&pstamely

L = 64R;. The lower panel shows energy spectra from the MESO sinanlafilso shown are relevant the wavenumbers correspond-
ing to relevant length scales, including the first baroclimavelength ZiR;, the linear instability wavelengths; (the prime denotes

a secondary peak in the growth rate), and the Rhines sca\é/B)%/2.
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FIG. 11. See Fig. 10 for legend.
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