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Summary

Feathers are fully-fledged aerodynamic sys-
tems. The purpose of this article is to present
some aerodynamic properties of the flight
feather. Therefore, lift and drag were mea-
sured at variable angle of incidence of flow
for two flight feathers of a common wood pi-
geon (Columba Palumbus) and a distinct ex-
periment was conducted to verify the depen-
dence of lift on velocity. For the model result-
ing from the experimental part, the approach
was the exclusion of the possible deformation
of the feather that resulted in an experimental
constant dependence of drag on velocity. The
Reynolds number Re used in the simulation
was Re = 40000 which corresponds to a likely
Reynolds number for bird flight. The main

model was based on the thin airfoil theory and
a Python program was compiled to calculate
flow maps. Some observations were made on
the pitching moment despite the lack of mea-
surements, but were verified theoretically and
with the simulation. These observations sug-
gest that the thin airfoil theory is applicable
on a feather despite the deformation process
during flight. The flow maps obtained theo-
retically were similar to those from the simu-
lation. It seems that the software used for the
simulation uses thin airfoil theory to model
the flow around the airfoil. That confirms the
choice of our theoretical model. Feather study
may contribute to improving biomimicry.

Introduction

Humans have always wanted to fly like birds.
Engineering achieved airships, helicopters, planes...
However the latter are barely imitations of bird’s
wings. The common approach is to study the wing
independently from the bird and how the morphol-
ogy of the wing influences the quality of the flight.
Even if the wing contributes the most to the aero-
dynamics of flight, the bird also flies thanks to its
feathers. The feather constitutes indeed a great as-
set in the improvement of lift and in the reduction
of drag therefore efforts for the bird. Moreover the
feather itself may be extremely solid and simultane-
ously flexible which allows it to curve depending on
the flow around.

During previous studies of bird’s flight like Van
Den Berg and Rayner’s (1995) and Usherwood’s
(2008), experiments were conducted on complete
wings and the aerodynamic forces were studied at
the wing scale, not at the feather scale. In his the-
sis (2006), H. Beaufrère points out the influence of

some feather configurations for both lift and drag in
the flight of gliders, swift (Apus apus) and great skua
(Stercorarius skua). However the feather had never
really been studied as an independent aerodynamic
system. Only air transmissivity was measured for
several feathers of a kestrel (Falco tinnunculus) in a
publication by Muller and Pattone (1998).

The purpose of this study was to determine the
aerodynamic properties of flight feathers and to es-
tablish a mathematical model of the flow around the
feather. This model may help in the development of
future plane wings and should unable further com-
prehension of bird flight. The experiments conducted
may also help with identifying precisely the position
of a feather on the wing without knowing the origin
of the feather, only considering the helix described
by the feather when it falls.
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A short introduction to thin airfoil theory

In this paper, the main idea of the theoretical part
is based on the thin airfoil theory. It corresponds to
the analog in fluid mechanics of the method of image
charges in electrostatics.

The airfoil is indeed replaced by a distribution of
vorticity γ along the chord of the airfoil.

γ(θ) = A0
1 + cos(θ)

sin(θ)
+

+∞∑
i=1

Ansin(2nπθ)
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With this expression of γ, the velocity field can be
calculated using the following formulae based on the
Kutta-Joukowski conditions:
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with vx is the flow velocity on the x axis and vz is
the one on the z axis.

Materials and Methods

For the determination of the aerodynamic char-
acteristics of the feather, two primaries (remiges pri-
mariae RP) of a common wood pigeon (Columba

Palumbus) were used, the third and the ninth pri-
maries (RP3 and RP9 in the nomenclature of feath-
ers). Both of them come from my personal collec-
tion and were desinfected before use. All experiments
were conducted at room temperature (about 25o) so
that the viscosity of air could be approximated with
ν = 1.568 10−5 m2s−1 (see Python script for use of
the approximation).

To measure lift and drag, air was blown at the
feather perpendicular to the rachis in order to recre-
ate the flight conditions, at least for the feather RP3.
The prop of the feathers was made to enable both
variation and measurement of the angle of incidence
of the flow.

Lift was measured using a weighing scale and the
equation used for the conversion weight/lift is the
following: L = −∆mmeasured g with L the lift and
g the constant of gravitation (g = 9.81 ms−2). On
the other hand, to obtain drag values, I used a dy-
namometer placed above the system and linked with
the feather via a pulley (Fig 1).

These experiments were made for 2 different flow
velocities (measured with an anemometer) when the
lift and drag were both measured. A previous verifi-
cation of the lift dependency in velocity L ∝ v2 was
carried out with RP9.

After the experimental section, a computing sim-
ulation was conducted using the software JavaFoilr
to visualize the flow cartography around the feather.
It also permitted confirmation of some experimental
results, like the form of the lift/drag curve.

Finally, based on thin airfoil theory, I computed a
Pythonr program that calculates a flow map given
an airfoil. The airfoil used to model RP9 is a third-
degree polynomial function (Fig 2).

Air velocity (ms−1) Lift (N)
3.0 3.92 10−3

3.4 7.85 10−3

4.0 1.18 10−2

4.5 1.77 10−2

4.8 2.26 10−2

5.25 2.84 10−2

5.5 3.24 10−2

5.85 3.70 10−2

6.0 4.12 10−2

6.5 4.91 10−2

Table 1: Lift: function of velocity
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Figure 1: Experimental set-up

Figure 2: Upper: airfoil used for the theoretical calculation / Lower: airfoil used in the simulation on
JavaFoilr

Figure 3: On the left: lift function of drag / On the right: at the top: Lift function of drag, at the bottom
left: lift function of angle of incidence and at the bottom right: pitching moment function of angle of
incidence
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Figure 4: Flow maps for angle of incidence (0o top left, 4o top right, −6o bottom left, −10o bottom right

Figure 5: Density of vorticity and calculation of pitching moment and lift associated with the modelled
airfoil of RP9
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Results

Lift at set angle of incidence

The results of lift measurements for RP9 for dif-
ferent air velocities are shown in Tab 1. The data
permit the verification of the evolution law: L =
1
2ρSv

2CL with ρ the air density, S the surface of
contact, v the air velocity and CL the lift coefficient.
Indeed a linear regression on the data brought up a
coefficient of determination R2 = 0.997. That law
was also verified while changing the angle of inci-
dence of the flow. The same experiment of the influ-
ence of the angle of incidence was indeed conducted
for 4 different air velocities.

However if the lift seems to evolve according to the
theory, the drag doesn’t show the same properties.

Drag and Lift at set air velocity

The results for the lift, function of drag (and an-
gle of incidence), of RP3 are shown in Fig 2. The
simulation shows the same evolution (Fig 2).

The angle of null lift has also been measured and
calculated but since the feather changed position
during the experiment, the result was not conclusive.
Moreover, because of the deformation, the chord of
the feather cannot be defined precisely during the
experiment.

Furthermore, what could not be measured during
the laboratory experiments but could be seen, is the
pitching moment of the feather when the flow has
an angle of incidence that is not zero. The simula-
tion however calculates the pitching moment at the
quart-chord point, that corresponds to the rachis.

Flow maps

The software JavaFoilr was used to simulate flow
around the feather, which should have been possible
in laboratory using optical methods or particle tracer
methods. On the Fig4, four flow maps were calcu-
lated for different angles of incidence.

Theoretical results

The Python script is available at the end of the
paper. The curve representing the feather calcu-
lated on the basis of a feather photograph is z(x) =
1.7434x3 + 2.6625x2 + 0.9158x+ 0.0051. The display
of the flow maps is to be done again because the
computer couldn’t achieve the calculation. However,
the distribution of vorticity was calculated and the
graph is shown in Fig 5.

Discussion

Aerodynamics of the feather

The feather showed no sign of stall during the ex-
periment, be it RP3 or RP9. This may be explained
by the deformation of the vane of the feather. In-
deed, the feather is extremely flexible on its inner
vane [1]. That brings a additional lift contribution
as it creates a vortex flow at the feather surface.

As previously mentioned, the non null pitching
moment was observed during the experiment despite
the solid friction at the joint of the support. It was
confirmed by theory but it could also be explained
by the structure of the feather. With its double-
curvature, pressure is not homogeneous on the upper
(lower) surface of the feather. Therefore, it creates a
difference of lift between the outer and inner vanes,
which leads to a pitching moment.

The results also tend to show that the orientation
of the feather which maximizes the lift and minimizes
the drag corresponds to the orientation of the feather
on the wing.

Limits to the model

The model seems to reflect reality to a certain
extent. However, due to repeated approximations,
the model has been considerably simplified, so that
parameters like Reynolds number, surface of contact
feather/air, etc. do not appear in our model. How-
ever, these parameters should be key to better un-
derstand the boundary layer around the feather.

Furthermore, because of its biological nature, a
feather is really difficult to model. Its structure and
precise composition are unique to each feather and
unless by doing complete study of its organisation,
some experiment parameters will remain unknown.

Moreover, the present program takes too much
time to execute, which could be reduced using par-
allel computing to accelerate the calculations.

Future work

In the future, the videos taken during the experi-
ment of the fall of different feathers, will be analyzed,
in order to verify the last hypothesis concerning the
best orientation of the feather.

Further investigation will also be done to gener-
alize this work to other feathers from the common
wood pigeon and other species.
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Annex

from numpy import *
import scipy.integrate as si
import matplotlib.pyplot as mp

def profil1(x):
return 1.7434*x**3+2.6625*x**2+0.9158*x+0.0051

def der_profil1(x):
return 5.2302*x**2 -5.3250*x+0.9158

def cos_part(x,n):
return cos(2*pi*n*x)

def sin_part(x,n):
return sin(2*pi*n*x)

def coeff_fourier(f,n,a):
def cosf(x):

return cos_part(x,n)*f((1-cos(x))/2)
if n==0:

return a-1/pi*(si.quad(cosf ,0,pi ))[0]
return 2/pi*(si.quad(cosf ,0,pi))[0]

def approximation_of_fourier(f,n,a):
return [coeff_fourier(f,k,a) for k in range(n+1)]

def fourier(f,n,x,a):
s=0
l=approximation_of_fourier(f,n,a)
for i in range(n+1):

s+= cos_part(x,i)*l[i]
return s

def vortices(f,n,x,a):
l=approximation_of_fourier(f,n,a)
s=l[0]*(1+ cos(x))/( sin(x))
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for i in range(1,n+1):
s+= sin_part(x,i)*l[i]

return s

def lift(f,a):
return pi*( coeff_fourier(f,0,a)*2+ coeff_fourier(f,1,a))

def moment_0(f,a):
return -pi*( coeff_fourier(f,0,a)+ coeff_fourier(f,1,a)-coeff_fourier(f,2,a)/2)/2

def moment_quarter(f,a):
return -pi/4*( coeff_fourier(f,1,a)-coeff_fourier(f,2,a))

def gamma1(x,a):
return vortices(der_profil1 ,5,x,a)

def velocity_z(f,x,z,a):
def gamma(t):

return vortices(f,20,t,a)*(x-(1-cos(t))/2)/(1+(x-(1-cos(t))/2)**2+z**2)* sin(t)
return -1/(2*pi)*si.quad(gamma ,0,pi)[0]

def velocity_x(f,x,z,a):
def gamma(t):

return vortices(f,20,t,a)*sin(t)*z/(1+(x-(1-cos(t))/2)**2+z**2)
return 1/(2*pi)*si.quad(gamma ,0,pi)[0]

def psi_gamma(x,z,a):
def aux(t):

return gamma1(t,a)*log(z**2+(x-(1-cos(t))/2)**2)* sin(t)
return -1/(2*pi)*si.quad(aux ,0,pi)[0]

def angle_null_lift(f):
def var(x):

return f(cos(x)-1)*sin(x)
return -si.quad(var ,0 ,1)[0]

def velocity_gamma(x,z,a):
u=velocity_x(der_profil1 ,x,z,a)
w=velocity_z(der_profil1 ,x,z,a)
return (w,-u*der_profil1(x))

def flow_maps(v,n,a):
z=[ -0.01+i*0.005 for i in range (20)]
x=[i*1/n for i in range(n+2)]
for i in range(n+2):

for j in range (20):
p,q=x[i],z[j]
u,w=velocity_gamma(p,q,a)
mp.plot([x[i],x[i]+v*u],[z[j],z[j]+v*w])

mp.show()

def lift_evolution(f):
A=[( -90+i*5)/360*2* pi for i in range (49)]
p=[lift(f,a) for a in A]
mp.plot(A,p)
mp.show()
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