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A B S T R A C T

When in a flow, an object deviates it and from this deviation are generated vortices and
flow reaction forces, such as drag and lift. If the object is free to move, its movement can
couple with the surrounding flow, falling into the domain of fluid-structure interactions.
In this PhD thesis, the coupling between a pendular system and an air flow is studied
both experimentally and theoretically. Placed in a wind tunnel, a disk pendulum
presents bistability for a range of flow velocity, while a rectangular one does not. By
varying the aspect ratio of such a rectangle and visualizing the wake behind a fixed disk,
we propose an explanation on whether or not the bistability emerges, linking it to the
phenomenon of stall. The influence of ambient turbulence on this phenomenon is then
investigated together with the link between angular fluctuations and flow variations,
both upstream and downstream. Going back to the bistability itself, spontaneous
transitions between stable states are observed and a model inspired from the transition
to turbulence suggests certain mechanisms in the wake that trigger such transitions,
in particular rare aerodynamic events. Modifying the geometrical parameters of the
pendulum enables the adjustment of the range of velocity for which bistability occurs,
and with it, we could observe jumps between both stable states at the same flow rate.
Finally, when the pendulum is balanced, its movement is only driven by the flow and
while quasi-static model is not sufficient to describe the real dynamics of the pendulum,
we introduce two ways of accounting for the dynamical retroaction of the flow in the
equation of motion, one empirical and the other based on vortex-induced vibration
theory.
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R É S U M É

Lorsqu’un objet est placé dans un écoulement, celui-ci est dévié et de cette déviation
résultent l’apparition de tourbillons et la génération de forces de réaction du fluide,
telles que la traînée et la portance. Si maintenant, l’objet en question est libre de se
mouvoir, un couplage s’installe entre les mouvements de l’objet et de l’écoulement
environnant, du domaine des interactions fluide-structure.
Dans cette thèse, le couplage entre un système pendulaire et un écoulement d’air est
étudié expérimentalement et théoriquement. Placé dans une soufflerie, un pendule
circulaire présente notamment une bistabilité sur une gamme de vitesse de vent, tandis
qu’un rectangle n’en présente aucune. En variant le rapport d’aspect du pendule
rectangulaire et en visualisant le sillage d’un disque fixe, nous proposons une origine à
l’existence ou non de la bistabilité, en lien avec le phénomène de décrochage. L’influence
de la turbulence incidente sur ce phénomène est ensuite approfondie ainsi que le lien
entre les fluctuations d’angle du pendule et celles de l’écoulement, amont comme aval.
En revenant à la bistabilité elle-même, des transitions spontanées d’un état stable à
l’autre sont observées, dont le cadre de la transition vers la turbulence permet une
modélisation et suggère certains mécanismes à l’œuvre dans le sillage, notamment
des évènements aérodynamiques rares. La modification des paramètres géométriques
du pendule permet de varier la plage de vitesses pour laquelle la bistabilité existe, et
ainsi observer des sauts entre les deux positions, à même vitesse d’écoulement. Enfin,
lorsque le pendule est équilibré, son mouvement est dicté par l’écoulement uniquement
et alors qu’un modèle quasi-statique est insuffisant à la description de la dynamique
réelle du pendule, nous établissons deux manières de prendre en compte la rétroaction
dynamique de l’écoulement, l’une empirique et l’autre basée sur les vibrations induites
par vortex.
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I N T R O D U C T I O N

“Flying might not be all plain sailing but the fun of it is worth the price.”
Amelia Earhart

This quote, from one of the few women to have made a name for herself in the history
of Aeronautics, could easily be extended to the understanding of flying itself, as this
thesis will attempt to convey.

Before even trying to understand flight, one must know first-hand of its many shapes.
From gliding like squirrels to hovering like hummingbirds, at least 6 different flying
methods can be identified in the animal world, about 3 in the plant kingdom, and 6 in
human technology.

In the Wiktionary1, the first definition of flying in English and German is “traveling in
the air, another gas or vacuum without being in contact of a grounded surface”. So, in a
sense, while running, humans do fly for a brief instant at each step. In French however,
it is to stay in the air while flapping wings, which would mean that planes do not fly.
In Japanese, flying (飛ぶ) is defined by the action of moving in mid-air, which though
closer to the English and German definition does not require the absence of contact
with a grounded surface. This linguistic excursion shows the ambiguity of defining
what it means to fly, without even beginning to discuss how one flies.

From a physical point of view however, a possible definition of flight would be a
combination of all three definitions. A requirement is the production of lift L, an upward
force opposing gravity. If this lift is not sufficient to balance or dominate the weight mg,
then flight is assumed if the time in the air, without touching ground, is significantly
higher than the equivalent time in free fall. Displacement mid-air is achieved by produc-
ing thrust T in the direction of motion. Yet, air resists in response to motion, inducing
drag D opposing thrust. For a perfectly stable hovering kestrel, these 4 forces exactly
balance each other (see Fig. 1).

In this thesis, our main model of a flying object is a simple plate pendulum placed in a wind
tunnel. As such, only weight, drag and lift will be of interest and no active thrust is produced.
Some of the various concepts presented hereafter through the example of flight will be useful for
studying the pendulum and will be detailed one by one in section 0.1.

With this scientific definition of flight, it becomes easier to investigate how to fly by
looking into all the possibilities of generating lift.

1 https://en.wiktionary.org/
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4 introduction

Figure 1: Forces acting on a hovering kestrel. Lift (L) compensates weight (mg) while thrust (T)
balances drag (D). (Photo: Falco tinnunculus, France, 2021)

Animal flight
In the animal world, a little-known fact is that a majority of animals flies [1]. Among

warm-blooded vertebrates (birds and mammals), with about 10000 flying bird species
and 1200 bats, the ratio of flying species to total species comes close to 80%. To this
already consequent number of flying species, there are also about a million flying
insects and a few tens of flying reptilians, amphibians and fishes. Yet only bats, birds
and insects have independently acquired powered flight (and pterosaurs though now
extinct), the others mostly relying on the wind and initial impulsion to soar through
the air. Hence, within the here-presented of 6 flying methods of animals, 3 are powered
while the other 3 are not (see Table 1).

Powered flight Wind-induced flight

a) Flapping b) Gliding
d) Hovering c) Dynamic soaring

e) Clap and fling f) Ballooning

Table 1: Different types of flight in the animal kingdom.

Birds use the 4 (a,b,c,d) first types of flight (see Fig. 2). All flying mammals glide,
even bats [2], only they also flap and hover (a,b,d). Insects rely mostly on powered
flight (a,d,e), with the exception of large butterflies that may use gliding on certain
occasions [3]. Ballooning is very different from the 5 other flying techniques as we will
see and is almost uniquely used by arachnids, with a few examples of lepidoptera
larvae: caterpillars (31 confirmed species among more than 170000) [4].

“Flapping” and “gliding” flights are the most common flying methods. Bats and
small birds favor flapping, while flying squirrels, flying lizards and large birds like
raptors, have a propensity to gliding. The aerodynamics of both flying methods have
been extensively investigated [5–7] but the diversity of flying species and the complexity
of morphological variations of the animal in flight leave many stones to turn. Flapping
insect flight will be further detailed by the end in this thesis as a parallel project to the pendulum.
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Figure 2: a) Flapping flight: black kite (Milvus migrans), Japan, 2018.
b) Gliding: white stork (Ciconia ciconia), France, 2021.
c) Dynamic soaring: northern fulmar (Fulmarus glacialis), Iceland, 2019.
d)Hovering: green-throated carib (Eulampis holosericeus), France, 2021.

For simplicity, let us assume the flying animal to be a bird for a while.
For flapping flight, the lift is produced by pushing the air downwards in downstroke

and then slightly backwards for thrust in upstroke (see Fig. 4.a). Through the repetition
of wing motion, the asymmetry creates an time-averaged positive vertical force. How-
ever, structural torques on wings during flapping flight are important so that long and
large wings are not suitable for such flight. Instead, wings of smaller size like that of
starlings are flexible and resistant enough [8]. An important point in flapping flight,
as in the later-described hovering flight, is the wing-wake interactions. While flapping
wings at low speed, the vortices induced by the motion are not entirely advected by
the time the stroke completes and as such strong coupling occurs between the vortex
dynamics and the wing [9]. This wing-wake coupling lies at the core of the pendulum system
investigated in this thesis as we will see later in Chapter 5.

The wake of an object is understood here as any flow structure behind the object that would
not exist without the object itself. Behind an airfoil, it can separated into three different kinds of
vortices as we will see later and is represented in Fig. 3.a.

In gliding flight, lift is morphological. Like for airplanes, which will be discussed
later, the geometry of the wing generates lift by inducing a pressure difference between
the upper side of the wing, the extrados, and the lower side, the intrados (see Fig. 3.b).
To glide efficiently, a large surface area is needed and a perfect example of a gliding
bird with extreme wing surface is the albatross. Raptors like condors and bearded
vultures also present among the largest wing surface to body size ratios. Gliding is also
enhanced by lifting wingtip vortices [10]. Wingtip vortices develop due to finite span effects
(Fig. 3.b) and the plate pendulums used in this thesis have been found to present such vortices
close to the horizontal, as will be presented in Chapter 1.
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leading-edge vortex

trailing-edge vortex

wingtip vortex wake

intrados

extrados

a) b)

Figure 3: a) Schematic representation of the wake of a semi-infinite-span wing with leading-
edge, trailing-edge and wingtip vortices. b) Flow around an airfoil. Lift is generated
by the difference of flow velocity on both sides.

While flapping flight produces thrust together with lift, gliding only generates
lift. Thrust is provided mostly through wind currents, like thermals or by adding a
horizontal component to lift by tilting the wing, so that the pressure resultant no longer
only supports weight. The extreme of wind-current gliding is “dynamic soaring”. Sea
birds are experts for this kind of flight, in particular albatrosses and fulmars. They
achieve horizontal acceleration by switching back and forth across a wind horizontal
shear layer, taking advantage of the flow velocity difference and gravity [11].

However, birds sometimes wish to stay in one position but without losing altitude,
like stationary flight. To achieve this feat, only a few bird families have evolved this
flying technique, among which the best-known is the hummingbirds. Also referred
to as “hovering” flight, stationary flight is practiced by kestrels for a certain range of
wind speed [12] and occasionally by small passerines or sea gulls – calling stationary
flight for kestrels hovering flight is a small leap, as the flapping pattern does not corre-
spond to true hovering of hummingbirds or insects. While kestrels perform stationary
flight mostly for hunting, hummingbirds hover almost constantly, for feeding, battling,
courting, etc. They are also the only bird capable of hovering in still open air. This is
possible thanks to a unique musculoskeletal adaptation: the humerus is shortened and
almost perpendicular to the leading-edge thus enabling a greater laterality of the wing
compared to other birds [13]. As such, their flapping motion can describe an ∞ in the
air and thus produces lift by the asymmetrical vertical motion, while negating drag and
thrust through the horizontal symmetry [14]. Hovering is a more common feature for
insects such as hover flies or hawkmoths, whose flapping pattern is strikingly similar to
that of a hummingbird [9].

In these 4 flying techniques, flight sustainability has for long been supposed to be
achieved dynamically and morphologically, through morphological tuning and evolu-
tion. Though morphological tuning is observed to benefit the aerodynamics of flight,
like feather spacing for gliding raptors [19], insect flight brought to light a particular
trait in vertebrate flight, the leading-edge vortex (Fig. 3.a) [7, 20, 21]. This vortex develops
at the leading edge of the wing and is stabilized through finite span effect and enhanced
by the flapping motion [22]. Its main role in insect flight is lift production and its
discovery refuted the apocryphal saying that bumblebees were flying defying Physics’
law, saying that can be retraced to Antoine Magnan, professor at the Collège de France
in 1934 [Magnan1934].
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Figure 4: a) Flapping flight production of lift for a rock pigeon (Columbia livia) [15]. b) Gliding
mechanism [16] and wingtip vortex generation behind a tawny owl (Strix aluco) [10]. c)
Dynamic soaring schematic representation for an albatross [11]. d) Hovering flapping
pattern of a humming bird in a wind at 10 m · s−1 [14]. e) Clap and fling schematic
flapping pattern [17]. f) Ballooning representation, and the role of turbulence and
electric field on the take-off [18].
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Due to their smaller size, insects are much more sensitive to vortex and viscous effects.
Large insects have yet developed flying strategies close to birds as dragonflies flap their
wings [23], butterflies glide like birds [3], and hover flies, as their name implies, hover
like hummingbirds. For smaller insects however, like millimetric parasitic wasps (e. g.
Encarsia genus), such options are not available as the flow offers more resistance and
can be reversible if laminar. The equivalent to us would be to be moving in honey. They
thus evolved the flapping pattern to “clap and fling”, which bypasses the reversibility
of the flow through an asymmetric motion (see Fig.4.e) [17]. As our interest lies more in
the centimetric scale, we will not dwell further on clap and fling.

A last flying possibility observed in the animal kingdom is “ballooning”. As we
said before, it is mostly done by arachnids and this is due to the simple reason that it
requires silk thread. Ballooning consists in extending one or multiple long silk threads
and then once the vortex-induced lift on the thread is large enough, the arachnid takes
off to be carried by the wind [18] (see Fig. 4.f). Like gliding, it is a form of airborne
displacement but without any directional possibilities. It is thus only used for dispersal.
Dispersal is also the reason plants take to the air.

Plant flying in the air
Plants, despite their inability to move when rooted, can also travel in the air, mostly

as seeds. In particular, three types of flying apparatus have been observed in nature,
some more widely spread than others: parachuting, autorotation and gliding.

As a child in Europe, it is indeed common to blow dandelions and watch the seeds
taking off with their little feathery parachutes (Fig. 5.a) [24] or to throw maple samaras
in the air to look at its rapidly spinning yet slow descent to the ground (Fig. 5.b) [25].
Rarely is it possible to play however with gliding seeds (Fig. 5.c)[26]. Yet all three
mechanisms exist and are perfect examples of the complexity of flight.

Figure 5: a) Dandelion (Taraxacum officinale) pappus in vertical wind tunnel and flow visualiza-
tion, from [27]. b) Chronophotography of a falling maple samara (Acer palmatum) from
[28]. c) Gliding seed (Alsomitra macrocarpa) from [26].

In particular, like for insects which rely on vortices to generate lift, dandelion seeds
use enhanced vortices developing above their plumed top, the pappus. Such vortices
indeed generate lift efficiently for small objects [27]. On the other hand, samaras are
quite asymmetrical and always rotate in the same direction. Though rotation is enough
to induce lift to a certain extent, it has been shown that the stability of rotation and
thus of lift production could be linked here again with a strong stable leading-edge
vortex, like the one especially present in flapping flight for birds and bats [29]. Very
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little is known yet about plant flight as shows the example of the gliding seed of the
Java cucumber vine Alsomitra macropcarpa. Apart from its excellent gliding properties,
making it one of the most efficient gliders, the mechanisms behind such efficiency are
still to be understood.

Human take-off
By looking at Nature, humans have since long dreamed to take to the skies. Like Icarus

trying to fly with artificial wings or Leonardo da Vinci designing the first helicopter, one
can feel how nature inspired people to fly. The first planes were also designed inspired
by birds and bats, as shown in Fig. 6.a. However, flapping flight was not possible due
to physical constraints, as the largest flapping birds are swans whose maximal mass
is below 20 kg [6]. Above that mass, only gliding is possible for a short extent of time,
as soaring is also limited [30]. Flight is a delicate balance between wing surface, wing
structural resistance and weight.

a)

e)

b) c)

f)d)

Figure 6: a) Traian Vuia in his plane, one of the fathers of aviation in Montesson, France, 1906

(Municipal archives). b) 4 Alpha jets of the Patrouille de France, France, 2019. c) Airbus
A400M, France, 2019. d) Eurocopter AS332 Super Puma, Iceland, 2019. e) Paraglider,
France, 2022. f) Hot-air balloon, France, 2021.

Humans thus developed their own means of flight, propelled (or powered) flight –
this is not to be confused with the powered flight in animal flight which is any type
of flight for which the thrust is produced by the animal. The most common means of
propulsion for commercial airplanes are jet propulsion (Fig. 6.b) and propeller aircraft
(Fig. 6.c). This provides the airplane with thrust and the lift is then produced as for
animal gliders, by a pressure difference (Fig. 4.b) between the two sides of profiled
wings. A whole variety of wing shapes has been tested through out the 20th century,
among which is found the NACA 4-digits profiles, the profile NACA 0012 being one of
the most studied [31–33]. A type of human powered flight is also performed by rotor
craft, better known as helicopters (see Fig. 6.d). These work like maple samaras and
generate lift by driving the air below the rotor blades.

In addition to these 3 powered flight techniques, 2 types of non powered-flight are
also found in human technologies, gliders and balloons. Gliders, like paragliders (Fig.
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6.e), are similar to that found in nature in their flying method, while balloons take
advantage of buoyancy rather than lift to elevate in the air (Fig. 6.f).

A last flying technology developed by mankind is found in unmanned air vehicles
(UAV) which have taken flight in the recent years and with them the mechanical con-
straint on flapping flight, with mass below 20 kg. Bio-inspired UAV have been developed
based on the comprehension of bird and insect flapping flight, like the Pigeonbot [34] or
flapping micro-air-vehicles [35]. These recent developments expanded unsteady aerody-
namics research of pitching and heaving airfoils as well as animal flight understanding.
These two themes will be met again later in Chapter 6 and Chapter 8.

Pendulum flight?
By observing the diversity of flight, both in nature and technology, the importance of flow-

wing and vortex-wing interactions stands out. As physicists, the spontaneous reaction to try to
understand a problem is by simplifying the system. Reducing the whole flight problem into a
single simple system to investigate a particular point is key to grasp the phenomenology behind it
and then develop entire models that take into consideration its complexity. The core of this thesis
is the coupling between a moving object and its wake. The simplest object for such study is then a
rigid pendulum. Placed in a wind tunnel facing the flow, its equilibrium position depends on the
flow velocity and its leading-edge vortex exists in the plane of motion, so that it directly interacts
with the dynamics of the pendulum. Yet before going further into this thesis, with experiments
and results, a few concepts are properly defined in order for the journey to be smoother.

0.1 a wind-swept pendulum

= + +

+ + =

Figure 7: Analogy and decomposition from animal flight to pendulum study. Left: Atlantic
puffin (Fratercula arctica), Iceland, 2019. Right: Pendulum in the wind tunnel, Lyon.
From left to right: Natural wind is simplified into a controlled air flow in a wind tunnel.
The wing (redrawn from an Egyptian vulture, Neophron percnopterus) is replaced by a
thin plate. The pivot point of the wing to the bird body (represented on a long-tailed
duck, Clangula hyemalis) is set as a pendulum in the experiment.

In this thesis, the pendulum is used as a model to investigate various aspects of flight.
By replacing the natural turbulent and unsteady wind by a controlled air flow in a
wind tunnel, and the complex shape of a bird or insect wing by a plate and a perfect
pivot connection, the main flight mechanisms that we try to understand are wing-wake
interactions and unsteady coupling (see Fig. 7). This phenomenon is also important in
the context of fluid-structure interactions, such as wind-induced oscillations of bridges or
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cables.

Though both animal flight and wind-induced oscillations are interactions between an air flow
and a structure, fluid-structure interaction will be, in the following, meant as the study between
man-made structures and wind, as in civil engineering.

0.1.1 Definitions and aerodynamic considerations

The pendulum equation, known to all scientists, is one of the basic equations taught in
undergraduate classes to learn how to solve differential equations. This particularity
makes the pendulum very interesting to study complex couplings from electromag-
netism to aerodynamics.

As a standard application of the conservation of the angu-
lar momentum, its most general form, projected onto the
direction normal to the plane of motion, is the following:

Jθ̈ = −mgl sin(θ) + ∑ r × Fext · ey (0.1)

with J the moment of inertia, m the mass of the pendu-
lum, l the distance between the swivel and the center of
mass, g the local acceleration of free fall, and r × Fext the
various external torques, such as aerodynamic torque
coming from drag and lift.

In the following, the flow is considered along the ex and the
object motion in the (ex, ez)-plane.

This thesis focuses on the torque resulting from fluid interactions and the pendulum
dynamics is used as a mean towards their understanding. However, external torques
can take many forms, from electric forcing to torsion spring or magnetic torque.

Fluid interactions are commonly separated between drag D, in the direction of the
fluid motion, and lift L, perpendicular to it, as we defined earlier for flight. These two
forces result from the pressure p and the shear stress τ at the surface of the object,
defined as in Eq. 0.2. Drag can also be divided into two main components, pressure
drag DP from the pressure forces, encompassing geometric drag and lift-induced drag
and viscous drag Dµ from viscous friction on the object.

Ffluid = −
∫∫

S
pn dS︸ ︷︷ ︸

L+DP

+
∫∫

S
τ · n dS︸ ︷︷ ︸
Dµ

(0.2)

To have a better grasp of these two forces, dimensional analysis can be useful. Let
us perform such an analysis on a sphere of surface S (and diameter d) in a flow of
velocity U, density ρ and viscosity µ. Due to symmetry, only the drag D acts on a sphere
placed in a flow. In total, there are 5 independent values for 3 different units. Using
the Buckingham Π theorem, two dimensionless parameters are sufficient to describe
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Figure 8: Drag coefficient of a sphere as a function of the Reynolds number. Extracted from [36]

the system. One is the well-known Reynolds number Re = ρUd
µ and the other is the drag

coefficient CD, such that:

D =
1
2

ρU2SCD(Re) (0.3)

The lift coefficient CL can be defined the same way, so that in a general fashion for an
incoming horizontal flow, drag and lift can be rewritten as follows::

D =
1
2

ρU2SCDex, L =
1
2

ρU2SCLez (0.4)

In Eq. 0.3, it can be noticed that the drag coefficient CD is function of the Reynolds
number Re. Indeed dimensional analysis allows for dimensionless parameters to be
interdependent. An example of this dependence is the drag coefficient of our aforemen-
tioned sphere of diameter d [36]. At low Reynolds number (Re< 102), i. e. for slow and
viscous fluids, the drag coefficient CD is proportional to 1/Re, and the expression for
the drag is taken as D = −3πµdU, which is no longer proportional to the square of
the flow velocity. In contrast, for intermediate Reynolds number Re∼ 103 − 105, CD is
almost constant, fitting the description of the drag in Eq. 0.4. After this range, there is
the drag crisis, a sudden drop in the drag coefficient as the Reynolds number increases.
This region is however not explored in this thesis as the considered Reynolds numbers
are around 104, as we will discuss in the experimental setup description.

Based on these considerations, our pendulum equation Eq. 0.1 can be rewritten using
Eq. 0.4, taking L as the distance between the aerodynamic center and the swivel of the
pendulum, with U the flow velocity relative to the pendulum:

Jθ̈ = −mgl sin(θ) +
1
2

ρU2SL (CD cos(θ) + CL sin(θ))︸ ︷︷ ︸
CN

(0.5)

This equation 0.5 lays the groundwork of this thesis and was introduced in a similar disk
configuration by Obligado et al. in 2013 [37].
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For a sphere, due to its symmetries, no lift is produced (CL = 0) while the drag
coefficient CD is known from experiments as in Fig. 8. The normal force is then expressed
using the normal aerodynamic coefficient CN = CD cos(θ). It results that rigidly (and
horizontally) towed spheres are inclined from the vertical to an angle θeq simply given

by θeq = atan
(

ρS
2mg CDU2

)
, if the rod mass is negligible compared to that of the sphere

and for Reynolds numbers between 103 and 105.

0.1.1.1 Wind-swept plate and bistability

When replacing the sphere by a 2D-plate, a new variable comes into play, the angle
of attack α, also known as AoA in Aerodynamics. The angle of attack quantifies the
orientation of the plate with respect to the flow, and as such can be defined by α = π

2 − θ

for the pendulum. It is especially important for a plate because of its lack of rotational
symmetry along the ey direction. As drag and lift result mostly from the pressure
distribution on the object, they depend strongly on the angle of attack as the flow
around the plate varies drastically from the vertical to the horizontal as shown for a
disk in Fig. 9.

In such configuration, replacing the sphere by a disk in the previous towing motion,
the equilibrium position is much more complex than the arc-tangent previously obtained.

θeq is defined by mgl sin
(
θeq
)
=

ρSL
2

CN(θeq)U2. Depending on the shape of CN , this
equation may not accept a unique solution, which could lead to a multistability, a
central point to this thesis.

To illustrate this, the disk pendulum is particularly suited [37]. In Fig. 9, the disk
aerodynamic coefficients CD, CL and CN are represented. The measures used for this
figure are the ones obtained by Flachsbart in 1932 [38]. The disk CN coefficient, shown
in Fig. 9, presents a sharp discontinuity, which separates a drag-predominance at low
θ angles and a lift one at high θ. Because of this particularity, at intermediate flow
velocity, three positions of equilibrium exist, two stable and one unstable in-between
– this will be referred to as a bistability, as the unstable position is difficult to gauge
based on the CN coefficient measurements [38]. At low velocity, only one position in the
drag-dominated domain is stable and at high velocity, only one in the lift-dominated
region. This is particularly visible on the intersection of the weight torque Γweight and
the aerodynamic torque Γaero in Figure 10.

In this particular case, at low velocity (5 m · s−1), there is only one stable fixed point
(θ = 25◦). At large velocity (8 m · s−1) ,there is also only one stable fixed point (θ = 66◦).
At intermediate velocities (6.2 m · s−1), there are however two stable fixed points (θ = 43◦

and θ = 58◦) and one unstable fixed point θ = 50◦.
A energy-based model of double-well potential is sufficient to reconstruct the equilib-

rium positions observed experimentally presented in Obligado et al. 2013 [37]. A point
discussed in the article but which we will not detail now is the dependence of the CN

coefficient on the turbulence rate in the incoming flow. In particular, it smooths the
discontinuity to the point that the bistability disappears at high turbulence rate.
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Figure 9: Angular dependence of the drag and lift coefficients CD and CL for an disk (redrawn
from [38]. The normal contribution of both coefficients gives the normal coefficient
CN which will be used throughout this thesis. A particular feature of these curves
is the sharp discontinuity around θ = 52◦, identified as the stall angle. Inset: polar
curve of the disk. The maximal efficiency is attained at the dotted orange line. The
corresponding angle is θmax ≃ 80◦.

Figure 10: a) Equilibrium position θeq as a function of the flow velocity U. b) Weight and
aerodynamic torques as a function of θ for different flow velocities U. c) Potential
energy approach to investigate the stability of each position of equilibrium identified
by the intersection of torques (circles for stable and square for unstable positions).
Figures from [37].

0.1.1.2 Quasi-steady wake description

In this disk configuration, the angle of attack plays a central part in the aerodynamic
coefficients. In Aeronautics also, the angle of attack is of particular importance, due to
the presence of stall, a sudden drop of lift for a slight angular difference. As neither
wings nor aircraft are spherical or cylindrical, their drag and lift coefficients depend
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strongly on the angle of attack, like a plate, but stall is especially dangerous and subject
to caution. Yet another parameter is closely watched, the lift to drag ratio CL/CD, which
represents the efficiency of an aircraft: the higher the ratio, the more efficient the aircraft.
To determine the maximum efficiency of a particular plane, it is common to look at
the drag polar, that corresponds to the (CD,CL) curve (inset of Fig. 9), parametrized by
the angle of attack. The maximal efficiency is then defined by the point for which the
tangent to the polar curve goes through the origin – and of minimal drag if multiple
points verify this condition – represented by the orange dotted-line in Fig. 9 (inset).

As we know that aerodynamic coefficients result from the pressure and shear distri-
bution on the surface of the object (Eq. 0.2), we can expect great changes in the wake
between the lift and drag branches of the CN coefficient in Fig. 9. For simplicity, we will
first assume a infinite-span thin plate for consideration in the plane of motion. The flow
is deviated differently depending on the angle of attack as we would expect as shown
in Fig. 11.

Figure 11: Schematic representation of how the flow deviates when encountering a thin plate
at various angles. For α = 90◦ and α = 0◦, the downstream flow is symmetric and
so only drag is produced. For intermediate configurations, the flow is no longer
symmetric and the resulting pressure map on the surface favors both drag and lift
through its asymmetrical distribution.

As the angle of attack increases (from right to left in Fig. 11), the flow detaches at the
top of the plate leading to the formation of a recirculation bubble (in brown). Once the
bubble grows enough, it induces the sudden drop of lift known as stall – the stall angle
for a disk is represented in Fig. 9 by the dotted gray line. The growth of the recirculation
bubble is highly dependent on the shape of the plate, in particular on its edge. While
sharp edges are easy to manufacture, they induce a detachment at the leading edge at
even the smallest angle of attack. This detachment increases the drag compared to a
smoother edge that initiates detachment at a higher angle of attack due to flow reversal
at the surface. The condition for stall is reached when the recirculation bubbles covers
the entire plate. Though a recirculation bubble is a depression and induces lift, when it
covers the whole plate, it can no longer enhance lift and stall occurs. This condition is
true for thin airfoils, like the plates we use in this thesis, but other criteria for stall exist
for intermediate to thick airfoils [39].
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0.1.1.3 Non-stationary wake evolution

The description in Fig. 11 corresponds to a quasi-time-averaged flow. When the temporal
dimension is also considered, periodic shedding occurs for the vortices growing in the
recirculation bubbles.

First observed as an experimental fact, the mechanism behind this shedding is still
under investigation. A possible interpretation though hand-waving comes from a naive
approach of the system, and is presented here. When first encountering an inclined
plate, the flow rolls up at the edge and creates the recirculation bubble. As it induces
a depression, more fluid gets rolled up by the pressure difference in the recirculation
bubble that grows up to a certain size. At that size, the recirculation no longer deviates
enough the flow to grow but instead the more fluid is added, the more the bubble
detaches from the surface, as the flow velocity increases by rotation. The bubble is
at the same time advected by the incoming flow above it and a new bubble forms
below. A schematic representation of the phenomenon is shown in Figure 12. As the
recirculation bubbles take almost always the same time to form, this process produces
a periodic oscillation in both aerodynamic forces and vorticity at the surface. This is
known as vortex shedding, and is well-known by the trace it leaves downstream, called
the von-Kármán street. For an inclined plate, it can be separated, as asymmetry arises,
into the leading-edge vortex (LEV) and the trailing-edge vortex (TEV) (defined as in Fig.
3.a, and identified in Fig. 12).

LEV

TEV

Figure 12: Representation of vortex shedding development on an inclined plate.

From the periodic vortex shedding, another dimensionless quantity is defined that
will be of interest to us, the Strouhal number St = fvsD

U , with U and D defined as in the
Reynolds number and fvs the frequency of the vortex shedding. This number will be
important throughout the following and depends mostly on the shape of the object.
Once the Strouhal number is calibrated, the vortex shedding frequency can be used for
flow velocity estimation. Flow anemometers work on this design, for instance a typical
order of magnitude for the Strouhal number is 0.2 for a sphere.

0.1.1.4 Finite-size effects

All the aforementioned considerations were described for wings (plates/airfoils) of
infinite span. When the span is finite, the aspect ratio comes into play and the wake
becomes three-dimensional. In particular, the flow rolls not only in a von-Kármán street,
but also transversely to its plane of motion, from the wingtips. These wingtip vortices,
also known as trailing vortices, first develop from a vortex sheet to a counter-rotating
vortex pair, rolling-up under its self-induced velocity field [40]. A well-known simplified
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model of the wingtip vortices is the horseshoe vortex, which assumes the distribution of
vorticity to be uniform along the wing span. Despite its simplicity, it captures the flow
dynamics far from the aircraft, given an effective wing span b′ = π/4 b. A model closer
to reality as it takes into consideration the vortex sheet, is Prandtl lifting-line theory. As
the vorticity in the lifting-line theory is a function of the lift coefficient, models have
been developed for the characteristic distance to the roll-up of the vortex sheet using
this dependency [40]. The coupling between the von Kármán street and the trailing
vortices can generate vortex rings and complex behaviors in the near wake.

The aspect ratio in Aeronautics is defined as the ratio between the squared span b over the
surface area S, ARaero = b2

S . For simplicity, here the aspect ratio will be defined as the ratio
between the span b and the chord length c, AR = b

c . For rectangular plates, both ratios are equal
but not for disks, for which they differ by a factor 1/π.

For instance, depending on the interactions between leading-edge (LEV), trailing-
edge (TEV) and wingtip vortices, the wake can present various configurations. A good
example for this is the disk, whose aspect ratio of 1 gives close-to-equal importance
to the 4 vortices. Large Eddy Simulations (LES) at low Reynolds number provide a
qualitative description of the wake structure at different angles [41, 42].

• At the vertical, the disk presents an annular stable
wake, due to its symmetry, detaching only through
the destabilization of the ring close to the plate.

• When tilted, the LEV becomes more important than
the TEV, which gradually shrinks as it is advected
more easily due to its position. The wingtip vortices
still connect both LEV and TEV forming a ring
vortex and the shedding occurs from the upper
center of the ring vortex, the rest of the ring being
entirely detached ahead of the shedding.

• As the angle of attack is reduced, the LEV becomes
more constrained by the flow. Yet the wingtip vor-
tices are free to roll up, especially with this reduc-
tion of the LEV. Hence, the wake is similar to that
of an airplane, with two long trailing vortices and
the LEV and TEV are almost non existent.

• At the horizontal, due to the symmetry between
the upper and lower parts, the wingtip vortices do
not have a preferred rolling direction, so the wake
will be mostly determined by defects on the plate.

60°

45°

40°

0-isovorticity [Tian et al. 2017]

+/-  isovorticity [Gao et al. 2018]

 = 90°

This overview of the wake shape will be further detailed in Chapter 1 with the
visualization performed on the disk pendulum.

Returning to the disk as a pendulum, the functional form of the CN coefficient
presented in Fig. 9 might be linked with the description of the wake and a first sim-
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plification would be that for angles of attack α < αstall, the wake can be considered
that of an aircraft and below, a ring vortex. Linking it with the predominance of drag
and lift would change the previous perception of stall. Indeed in 2D, stall occurs due
to expansion of the recirculation bubble, while in 3D, it might come from a wake
reconfiguration, as we will see in Chapters 1 and 2.

This should cover most of the aerodynamic considerations that will arise throughout this thesis
and any lack will be filled when needed.

0.1.2 Winding up pendulum-in-flow history

As the idea of simplifying a flying object into a plate pendulum might seem old-
fashioned (for engineers and even physicists) or too simplistic (for biologists and
engineers), a good knowledge of the previous pendulum-in-flow situations as well as
fluid-structure-interaction history is necessary not to fall into the traps of previously-
studied phenomena.

Pendulums in flows have, indeed, a long-standing history and while this thesis
explores particular configurations (of disks, fly-swatters and rectangles), records of
more standard configurations, such as spheres or cylinders, are found way before the
21st century and the following is here to pay tribute to the forgotten work of scientists
from another era, viewed in the light of current knowledge. Our literature review traces
back to the 18th century for spherical pendulums and to the 17th century for inclined
plates. Even as early as the 15th century, pendulums have been used as anemometers
(see Fig. 13), by Leon Battista Alberti, Leonardo da Vinci2 and later Robert Hooke in the
17th century [43].

a) b)

Figure 13: a) Da Vinci pendulum anemometer. b) Hooke anemometer [43].

In 1752, ∂’Alembert measured the resistance of air using the oscillations of a pendulum
[44]. His work discussed the resistance of the fluid, which is now referred to as drag,
and showed the proportionality of this resistance to the square flow velocity through
the decrease in amplitude of the pendulum oscillations. In conclusion of his work, he
mentioned the presence of a constant term in the resistance at low flow velocity. This

2 Codex Atlanticus, p. 675, 1486, original drawing by Leonardo da Vinci, http://www.codex-atlanticus.it/

http://www.codex-atlanticus.it/
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could relate to the predominance of viscous drag Dµ on lift-induced drag DL at low
Reynolds number, which was not yet understood. ∂’Alembert also reported similar
experiments conducted in the first half of the century by Newton, Bernoulli and Hutton.

The 19th century has been particularly active on the characterization of fluid resis-
tance and pendulums have become standard for this investigation. Measures in various
pressure environments, in particular in void chambers, were done by Baily in 1832 [45]
and Stokes presented a review of these measurements together with other contemporary
works, such as Bessel’s, in an article in 1850 [46]. In particular, mathematicians, like
Poisson in 1831 and Plana in 1835, have computed theoretically, based on the later-called
potential flow theory, the necessary added mass for a sphere moving in a flow [47, 48].
These 19th-century works have mostly documented the viscosity of gas and set the base
to the investigation of fluid-particle interactions, as the pendulum was only moving in
the fluid at rest. After this thorough investigation, the pendulum has been more or less
forgotten in the study of fluid-structure interactions, giving way to airfoils and bluff
bodies with the development of aviation.

As most pendulum bobs for the study of air resistance were spheres, angle-of-attack
and aspect-ratio issues were not tackled in that community and were however developed
in a whole different context. Indeed, the study of flow resistance to moving plates goes
back to an even earlier time than that of pendulums in flows, since such configurations
are found in watermill systems. In the late 18th century, Abbé Bossut did experiments
on the pressure on plates in canals and documented the movement of wheels driven by
water [49]. Later, the angle between the plate and the flow was varied by Vince in 1798

and Colonel Duchemin in 1842 [50, 51]. They both observed a great change in pressure
response between plates struck at low angle of incidence and at high angle of incidence.
Despite the lack of theoretical development after these observations, they propose that
the relative aspect ratio of the plate seen by the flow would be of importance to the
pressure response, which we will see in the following is an interesting conjecture.

With the development of aviation, many wind tunnels and water tunnels were built
in the early 20th century, leading to both the extension to the study of inclined plates
and visualization techniques. In 1910 and 1911, Eiffel and Otto Föppl (son of August
Föppl, of the Föppl-von Kármán equations) investigated the effect of shape, in particular
aspect-ratio on the normal aerodynamic coefficient CN [52, 53]. These aspects will be
investigated for the pendulum in Chapter 2. From this, emanated a series of experimental
measurements of any shape in flows, spanning from the ellipsoid to the half-sphere,
empty or filled [54]. Through the installation of sewers and running water, studies on
pipe flows and pressure drops added to the understanding on drag coefficients for
grids and confined objects [55]. Until 1965, drag and lift coefficients were an important
subject of research and Hoerner brought almost all existing research into a single book,
which served as the standard for Mechanical and Aeronautical Engineering up to now
[36].

Parallel to this development of Aeronautics, fluid-structure interactions have gained
a lot of interest through the study of structural instabilities. A trigger to that was the
incident of the Takoma Narrows Bridge in 1940 (Fig. 14.a). The fluttering instability
developing on the deck led to the complete destruction of the bridge and it became
the standard example of coupling between mechanical and aerodynamic responses.
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b)a)

Figure 14: a) Tacoma Narrows Bridge under flutter instability [64]. b) Crow instability developing
on a pair of trailing vortices [61].

First observed in 1841 by Russell [56], bridge deck flutter was only theorized in the
20th century, with Fung in 1955 [57] and then Blevins in 1975 among the precursors
[58]. Flutter does not only occur on bridge decks but also on transmission lines. Ice-
rigged transmission cables are indeed subject to strong wind-induced vibrations and
the development of telegraphs and telephone boosted the study on such vibrations,
initiated by den Hartog in 1932 [59], and more broadly on any built structure with
Scruton and Rogers in 1971 [60].

This led to the expansion of the field of aeroelasticity, that relates to the mutual inter-
action between inertial, elastic, and aerodynamic forces acting on structures in airflow.
In particular, other instabilities like galloping, divergence or buffeting arise in this field.
Fluid-structure considerations based on the pendulum are presented in Chapter 6.

Instabilities are yet not limited to fluid-structure interactions. In the wake of airplanes
in particular, composed mostly of two wingtips vortices, the Crow instability develops
and destabilizes the trailing vortices into vortex rings (see Fig. 14.b). This instability
was thoroughly investigated as trailing vortices can be stable for a long time in the
sky depending on the atmospheric conditions. In the two World Wars, planes could
be detected and their trajectory known due to these vortices. The Crow instability
is fundamental to initiate the decay of the trail and once as a vortex ring, another
instability adds to the decay, the Widnall instability. The theoretical formulation of
both instabilities took place in the 1970s [61, 62], while the development of the trailing
vortices was investigated from the first half of the century [40, 63]. The wake instability
and development of the trailing vortices are discussed in Chapter 1.

The study of flow instabilities and the aim at improving the lifting properties of
airfoils and understanding the wake naturally incited aerodynamicists to pursue flow
visualization parallel to the theoretical investigation3. Flow visualization thus came
to with a variety of techniques, some of which can be found early in the 20th cen-
tury. A collection of flow visualization examples is the Album of Fluid Motion by van
Dyke in 1982[65].Among this diversity of techniques, are dye, aluminum dust in oil,
smoke, optical techniques such as shadowgraph, Schlieren or interferogram, etc. In the

3 Aerodynamics has the particularity of stimulating many senses (hearing, touch and smell), only lacking in
eyesight, which is not the case for hydrodynamics with surface eddies for instance
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case of a disk, that interests us here, a first study of the vortex rings in the wake is
found in 1931 by Marshall and Stanton [66]. This first visualization for a disk normal
to the flow was expanded by Calvert in 1967 [67] for an inclined disk. Both studies
were done in water tunnel using dye, while smoke was later introduced in wind tunnels.

The development of cameras and computers in the second half of the 20th century
gave rise to two quantitative estimations of flow properties, Particle Image Velocimetry
(PIV) and Computational Fluid Dynamics (CFD). As computational fluid dynamics
relies not on experiments but on numerical simulations, in order to reproduce truthfully
experimental dynamics, some well-understood experiments were brought back to fash-
ion. Among those are for instance the flow past a sphere in 2000 [68], flow separation
behind a NACA 0012 airfoil in 1993 [69] or more recently the wake of a disk normal to
the flow in 2008 [70].

Together with the new understanding of fluid dynamics brought by numerical simu-
lations, pendular systems regain interest from the research community experimentally
in the last decade, as freely-moving objects in flows are still difficult to investigate
numerically. The coupling between fluid forces and pendulum motion can take many
forms from vortex-ring emissions [71], bob-wake galloping instability [72], bob-wake
stabilization [73] or even bistability [37]. This diversity makes the pendulum still a
fruitful and mysterious subject for research, as despite its simplicity, it has yet to reveal
all its physics.

This overview of the pendulum-in-flow and fluid-structure-interaction history is here to pay
tribute to the many researchers that have worked for centuries on the kind of problems we explore
in this thesis. It is of course not exhaustive as it is impossible in one life to read all the literature
on the subject nor is this thesis a thesis in the field of history of science.

0.2 thesis outline

Throughout this thesis, various aspects and phenomena of aerodynamic coupling and
dynamical systems are explored, with a wind-swept pendulum to investigate them as
their common feature.

Among the diversity of questions we propose to answer in the following thesis, some
tackle fundamental issues in Aerodynamics, on the correspondence between the aero-
dynamic coefficients and the wake. Others belong to the domain of stochastic processes
and multistability analysis.

To present these interrogations and their development, we have chosen to divide this
work into 6 chapters, grouped in 3 parts.

The first part (Part i: Waking up) focuses on the characterization of the static aerody-
namic coefficient CN from different angles. This part includes the following 3 chapters.

Chapter 1 presents the visualization of the wake behind an inclined disk and aims at
understanding how the wake structure influences the drag or lift dominance in the CN

coefficient.



22 introduction

Chapter 2 investigates the influence of the aspect ratio on the aerodynamic coefficient.
In particular, one of its objectives is to understand and predict stall for finite-span
rectangular plates.

Chapter 3 studies the influence of yet another geometrical parameter of the plate on
the CN coefficient: the porosity. To this end, the object of interest in the chapter is a
fly-swatter.

The second part (Part ii: An eventful day) concentrates on the dynamics of the pendu-
lum in its bistable zone. This part gathers the following 2 chapters.

Chapter 4 provides an overview of the various possibilities of behavioral response of
the pendulum to bistability. Among these, spontaneous transitions and excursions are
of particular interest.

Chapter 5 digs into the phenomenology of spontaneous transitions. It proposes a
model inspired by the transition to turbulence to explain the temporal statistics of these
events.

The third part (Part iii: Back to sleep) centers on the unsteady aspects of the coupling
between the pendulum and the wind. This part is composed of a single chapter.

Chapter 6 examines the stabilization dynamics of a weathercock (a balanced pen-
dulum). One aspiration is to define a dynamic CN coefficient in the particular case of
wind-induced self-oscillations.

In addition to the organization detailed above, each part possesses a common thread
between the chapters with regards to the literature and unique to the part. In Part i, the
various addressed questions are connected to bird flight and natural considerations. In
Part ii, a common ground to many of the detailed dynamics is less alive, with a main
comparison with dynamical systems presenting hydrodynamic bifurcations. Lastly in
Part iii, the chapter is placed in the context of fluid-structure interactions and thus
aeronautical and civil engineering.

0.3 how to use this thesis

To complement the aforementioned outline, here are some comments on how to read
and use this thesis.

▷ All parts are independent and standalone and can thus be read in any order.

▷ All chapters are also independent but some connections can be made between
them.

▷ All photographs presente, identified by the location and date in their caption,
were taken by the author.

▷ Wake structure schemes, as presented in Chapters 2 and 3, are simplified visual
suggestions and do not represent verified reality in particular on the reattachment
of the wake.

▷ Each chapter starts with a question identified as follows:
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Question: What is a pendulum?

Pendulum
In this chapter, we define what is meant in the following by a pendulum. It is a
rod attached by a single point, to the end of which a plate is attached.

▷ In a chapter, some interludes will be found. These present methods, theoretical
developments or anecdotes that are in connection with the chapter but not relevant
results, strictly speaking. They are recognizable as follows:

Interlude
The equation system governing a double-
pendulum motion without the point mass
assumption is presented hereafter, given the
conventions on the right. The only hypoth-
esis is the alignment of the center of mass
G1 from the first pendulum to the swivels of
the two pendulums (O and I).

J2α̈ = −m2gl2 sin(α) + α̇β̇m2l2a sin(α − β)

(J1 + J2 + m2a2 + 2m2l2a cos(α))β̈ = −g((m1l1 + m2a) sin(β) + m2l2 sin(α))

As all parts and chapters are independent, one can decide on the order in which to
read them. The order chosen in the thesis is a personal arrangement and the reader is
free to decide on his/her own.

For instance, the unfolding detailed in Section 0.2 has been designed around the idea
of a passing day. The morning of our journey is the starting point of the thesis, the
static understanding of the bistability. Afterwards, the active part of the day covers
the dynamics in the bistable zone, while the evening investigates how the pendulum
returns to its rest position when balanced like a weathercock. After the conclusion,
the night is also embraced with the description of project PHOeBUS expanding the
present study in a new direction of more intrinsic aerodynamic coupling between living
butterflies, vortex and lift.

Some other suggestions are detailed hereafter. They are centered around similarities
in the chapters either in the method, subject or experimental setup.

As examples, the following pools of chapters are possible:

• PIV measurements are presented in Chapters 1, 5 and to a lesser extent in Chapter
3.

• Aerodynamic unsteadiness is central in Part ii and iii, in particular in Chapters 5

and 6.

• Stall existence is discussed in Chapters 2 and 3 as function of the pendulum
geometry.

• Models have been developed based on neighboring Fluid Dynamics fields in
Chapters 5 and 6.
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• CN coefficients are computed from the experimental data in Chapters 2, 3 and 6.

• Chapters 1, 5 and 6 focus only on the disk pendulum.

• A fly-swatter is used as the pendulum in Chapters 3 and 4.

• Pendulum shape has been modified in Chapters 2 (aspect-ratio), 3 (porosity) and
6 (diameter).

The above list is not exhaustive and the reader is invited to find other commonalities
between chapters and design one’s route to go through them.

0.4 experimental setup and methodology

In this thesis, the main experimental subject is a disk pendulum placed in a wind tunnel
(see Fig 15). Across the chapters however, some changes to this particular setup will
be made. Such changes will be discussed only in the relevant chapters and here is
presented the basis of the experiment, which is assumed in any chapter unless otherwise
mentioned. In addition to this description, the governing equation of the system is
presented as part of the common methods used throughout the thesis and Particle
Image Velocimetry (PIV) is introduced both in its setup and its methodology.

0.4.1 Experimental setup

The experimental setup can be divided into 4 main elements:

i. the wind tunnel,

ii. the pendulum,

iii. the swivel system of the pendulum,

iv. the PIV-measurement structure.

0.4.1.1 Wind tunnel description

Overview
The wind tunnel used for the experiments in this thesis is located at the Laboratoire de

Physique in the ENS de Lyon. It is a hand-crafted closed-loop wind tunnel constructed
in the late 1980s, with a few upgrades since then.

It is a “blowing” wind tunnel, meaning that the flow is generated by a wind turbine
ahead of the test section. “Sucking” wind tunnels are usually open-looped like the
Eiffel wind tunnel. The turbine is driven by a motor, for which we control the rotation
frequency. This imposes the turbine angular velocity and with it the flow velocity. The
conversion rate between the motor frequency and the flow velocity depends on the
pressure drop in the wind tunnel. Thus, a calibration is required to set a given flow
velocity after each modification of the test section.

The maximal flow velocity U in the wind tunnel is around 20 m · s−1, while only
velocities up to 10 m · s−1 have been explored in this thesis. The maximal (over-estimated
here) Reynolds number in the wind tunnel is about 3 × 105, and the maximal Reynolds
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Figure 15: Schematic view of the test section of the wind tunnel. Details on the pendulum and
how the aerodynamic forces are defined.

number in the experiments only comes to 7 × 104, the minimal Reynolds number is
about 2 × 103. Over this range, as introduced in Section 0.1, the drag and lift coefficients
can be considered constant and depending only on the geometry.

The wind tunnel is automated by controlling the motor frequency and synchronized
with the acquisition of the various measured variables, through a National Instrument
(NI) PXI-chassis, using PXI modules NI-4472 and NI-6229. This feature enables for a
variety of experimental protocols that will be detailed in the relevant chapters.

Structural details
The test section is square over 3 m stream-wise and has a section of 51 × 51 cm2. The

total volume of air in the wind tunnel is estimated to about 8 m3. With a Norcan®

structure and plexiglas panels, the test section can be modulated from close to open
section and rails enable the displacement of measuring instruments such as the Pitot
tube or the hot-wire, detailed later.

Before entering the test section, the air is conditioned through a honeycomb of 6 mm-
width. The honeycomb has been changed during this thesis due to the heterogeneity
of the flow downstream. The first honeycomb was 50 cm-thick, composed of multiple
5 cm-thick panels, and conditioned the flow to about 1.5% of turbulence intensity with
however great spatial heterogeneity in the mean flow velocity. The turbulence rate (or
intensity) is defined by the ratio urms

Umean
, urms the standard deviation of the flow velocity

and Umean its mean value. As it was changed early, only the results presented in Chapter
5 were made using this first honeycomb. The second honeycomb, a Polycarbonate CEL
Components® honeycomb, is only 30 cm-thick, but in one block, removing any flow
heterogeneity due to panel mismatches as the previous honeycomb showed. This how-
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ever elevates slightly the turbulence rate to about 2.5% in the flow. The only remaining
inhomogeneity in the wind tunnel is a light horizontal and vertical gradient that arises
from the lack of guide vanes in the bend ahead of the honeycomb.

Flow measurements
The flow characteristics are measured using a Pitot tube and hot-wire anemometry.

The Pitot tube is connected to a manometer Furness Control FCO318, from which
is measured the dynamic pressure ∆P. This dynamic pressure is proportional to the
square of the flow velocity U, ∆P = 1/2ρU2 (ρ the air density). This measurement thus
provides the flow velocity U and the calibration of the wind tunnel, which is controlled
by the frequency of the motor, as the motor drives the turbine which set the flow velocity.
As mentionned before, the wind tunnel is not controlled by the Pitot measurement,
leaving the dynamic pressure subject to drift in case the air density varies, as it will
be detailed later in Chapter 4. To refine the velocity measurement, in particular on the
fluctuations, a hot-wire is placed closed to the Pitot tube. This hot-wire, operated in
constant anemometry mode, provides the fluctuations of velocity which enables the
estimation of the turbulence rate inside the wind tunnel. For more information on
hot-wire anemometry, a complete review is found in [74]. In the wind tunnel in Lyon,
two hot-wire anemometers are used, both Constant Temperature Anemometers, TSI
IFA100 and TSI CTA module 1750.

In addition to these flow measurement systems, a barometer FCO342 measures the
atmospheric pressure P in the room and a thermocouple, the temperature T inside the
wind tunnel. These complementary measurements have been installed for refining the
flow velocity estimation from the Pitot tube, as the air density ρ is given by ρ = PM

RT ,
with M the molar mass of dry air and R the universal gas constant.

0.4.1.2 Standard pendulum

The second fundamental element in the experimental setup is naturally the pendulum.
While different pendulums have been used for the various experiments presented in
this thesis, one particular configuration has been most thoroughly investigated and is
assumed unless otherwise mentioned.

A common trait in all studied pendulums is the rod, which consists of a sanded
saw-blade of thickness 1 cm and width of 1 mm. Its length is 31 cm. Only when Particle
Image Velocimetry is done to investigate the pendulum wake dynamics, a shorter rod
is used, of about 20 cm, but the total length of the rod is not relevant unless for the
moment of inertia calculation.

At the end of the rod, a thin aluminum disk is glued. The main disk is 0.3 mm-thick
and of diameter d = 4 cm. It is attached asymmetrically on one end of the rod, so
that 3 cm are covered by the rod, leaving 1 cm of free surface behind (see Figure 16).
The disk is then placed facing the flow, with the rod behind it. This asymmetry of the
disk-rod swivel is deliberate as symmetry in Aerodynamics is very sensible. Even the
slightest flaw can bring asymmetry to the wake structure, making it difficult to separate
experimental bias to real asymmetrical behavior.

Some important parameters on the pendulum in addition to the disk diameter are
its mass m, the distances l and L between the swivel O and the center of mass G and
aerodynamic center D, and its moment of inertia J.
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Figure 16: Multiple views of the 4 cm-wide disk pendulum. The red line indicates the position
of the swivel in the standard configuration.

• The total mass is m = 17.0 g, divided into 1.26 g for the disk and 15.75 g for the
rod.

• The distance to the center of mass OG = l is l = 5.7 cm, calculated from the
balance of masses and double-checked using the plumb line method.

• The distance to the aerodynamic center OD = L is taken as the distance to the
center of the disk. Since we cannot access the exact position of the center of
pressure on the disk, it is a reasonable approximation, all the more as L ≫ d. This
brings to L = 19.5 cm.

• The moment of inertia J is calculated using Huygens formula for a compound
pendulum, J = 1.48 10−4 kg/m2. Another estimation can be provided by leaving

the pendulum oscillate without wind, for which the pulsation is
√

mgl
J .

0.4.1.3 swivel of the pendulum

Now that the wind tunnel is presented and the main object of interest is described, a
last fundamental point that still needs to be discussed is how the pendulum is attached
in the wind tunnel. Like for the wind tunnel honeycomb, this swivel system has been
changed during this thesis.

The first swivel system, used in Chapters 1 (for the dynamical visualization) and 5,
is a potentiometer. Through a voltage divider, it measures the angle by the variation
of resistance with analog acquisition. A schematic view of the setup is presented in
Fig. 17.a. The potentiometer has the advantage of being simple both in its use and
installation. It yet needs calibration to retrieve what angle corresponds to which voltage.
Moreover, due to inner bearings, solid friction arises, especially when the other forces on
the pendulum are not particularly important. The solid friction coefficient was estimated
at 0.72 s−2, for a natural pulsation of the pendulum of about 6.7 s−1 (black line in Fig.
18. Another drawback of the potentiometer is its sensitivity to electromagnetic noise,
which requires the data to be filtered to some extent.

To compensate the aforementioned flaws, we changed the swivel into a frictionless
system. Instead of the potentiometer, the support is an OAV air-bushing, OAV 16× 4 mm
thrust air bushing. The pendulum is mounted on a shaft going through the bushing
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Figure 17: a)Potentiometer setup. The potentiometer is in green and the resistance of the voltage
divider in red.
b)Frictionless swivel. The air bearing in yellow is provided with compressed air in
blue. The electric encoder is in green, the shaft in pink and the counterweight in
magenta.
For both figures, the pendulum is represented in brown with only its rod continuing
in the x-direction.

and suspensed frictionless on compressed air, maintained at a pressure of about 80 psi,
described in Fig. 17.b. To measure the angular position, a Netzer® DS-25 17-bit digital
encoder is appended to the end of the air bushing. This encoder provides with absolute
angular measurement, however through digital acquisition, which had to be considered
in the acquisition system controlled in LabView®. In particular, synchronicity between
the analog and digital acquisition was achieved by imposing a master clock 40 times
higher than the acquisition frequency to communicate to the encoder and get the 17

bits of data on the ticks of the master clock , set off by a slave clock at the frequency of
acquisition. The delicate alignment of the encoder and the bushing may cause a bit of
solid friction at some positions, though way lower than the one of the potentiometer.

The pendulum dynamics without the flow though only present fluid damping (about
0.05 s−1 at its maximum) as shown in Fig. 18. It is however difficult to conclude on
the origin of the fluid damping as it can either emanate from the air bushing or from
the movement of the pendulum itself. A slight change of slope is observed on the
exponential decrease thus leading us to consider that both damping terms play a role on
the dynamics though not in the same amplitude range. A possible explanation would
be that at high amplitude, the movement of the pendulum induces more drag that
at low amplitude. The air bushing damping however kicks in as the motion become
steadier and of smaller amplitude.

Due to the swivel system becoming larger, thus making more fluctuations down-
stream, the pendulum is deported slightly and a counterweight is added to the shaft to
minimize its bending and support the alignment.

0.4.1.4 Noise reduction on signal acquisition

Discussing the swivel of the pendulum, we mentioned that electronic noise was ob-
served on the potentiometer and removed by changing to the digital encoder. However,
a few other steps have been taken to reduce the potentiometer sensitivity to noise,
prior to changing the whole swivel of the pendulum. A time series example of the
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Figure 18: Pendulum dynamics without wind for both configurations, with potentiometer and
with air bushing. With the potentiometer, the solid friction is highlighted by the linear
decrease of the oscillation amplitude. On the contrary, the air bushing induces a light
exponential damping.

electronic noise faced by the potentiometer is presented in Fig. 19.a. The signal shows
great amplitude of fluctuations with periodic intensity and beat as superposition of
multiple noise frequencies. It is difficult from this signal to differentiate the electronic
fluctuations from real oscillations of the system. It was thus important to reduce the
noise to a point where the true signal would be evident and only minimal filtering
would be necessary to get angular velocity and acceleration.

As electronic noise can be radiating from a device or directly polluting the electrical
ground, multiple approaches can be followed to reduce it. A first reduction can be
achieved by using armored cables from the potentiometer to the acquisition device,
with the armor connected to the ground as a protection against radiative noise. This was
not conclusive and, as we identified the motor controller to be the main source of noise,
we went a step further by dissociating the potentiometer acquisition from the motor
control, which was aiming from the same NI PXI-chassis. This is particularly important
when the electronic noise is suspected on the ground and cannot be countered through
a floating ground and ground loops are unavoidable.

To dissociate the electrical circuits, various options are available, like opto-isolators or
inductive isolation amplifiers. In both cases, the incoming signal is modulated into a
LED or current signal then transmitted to a separated circuit for demodulation. The
separation is physical, with a dielectric barrier. For opto-isolators, the signal is received
by a phototransistor which then reconstruct the initial signal on the new circuit. In the
case of inductive isolation, the signal is transmitted by induction as in transformers. In
both cases, the noise is reduced by galvanic isolation between the acquisition and control
circuit. In Fig. 19.b), we implemented a Texas Instruments ISO124P isolation amplifier
between the potentiometer and the acquisition system, which drastically reduced the
noise on the signal.
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a)

b)

c)

Figure 19: Angular time series examples at fixed flow velocity, for θ ≃ 26.5◦ acquired in
different experimental conditions with the potentiometer. a) Potentiometer with
initial motor controller and without any protection. b) Potentiometer with initial
motor controller and protection through isolation amplifier. c) Potentiometer with
final motor controller and without any protection.

This method, though quite efficient if we compare Fig. 19.a) and b), has the disad-
vantage of requiring constant voltage sources for the amplifiers and separated from the
motor controller. The voltage sources we decided on were thus electric batteries but as
they get consumed, the signal would no longer get transmitted entirely and it was not
a sustainable solution against the noise – the batteries needed change approximately
every 3 weeks of constant use, as could happen when investigating the pendulum
transitions in part ii.

Hence, among the various changes brought to the wind tunnel during this thesis,
the motor controller was also replaced for a better isolated one and in particular less-
radiating. As can be observed in Fig. 19.c, the level of electrical noise after the change of
controller and without any protection is the same as when protected by the isolation
amplifier (Fig. 19.b). The difference in the amplitude of fluctuation is due to the time
series corresponding to a different (larger) pendulum than the 2 first signals. This last
signal reinforced the principal origin of the noise faced at the start of this thesis (Fig.
19.a) to be the motor controller.

With the potentiometer, the signal is still electrically noisy as in Fig. 19, no signal is
really smooth. This is however not the case with the digital encoder as presented in Fig.
20. Here, not only is the signal smoother, it also shows greater low frequency dynamics.
This results from the removal of the solid friction on the swivel through the air bushing
which was illustrated in Fig. 18. Fig. 20.c) also present higher low frequency fluctuations
as the disk used for this signal is larger, thus providing a greater aerodynamic torque
and thus less affected by solid friction.

0.4.1.5 PIV setup

In addition to the angular recording and the time-averaged flow measurements, Particle
Image Velocimetry (PIV) has been implemented in the wind tunnel to enable flow
visualization in the wake of the pendulum. This flow visualization is done in the
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a) b) c) d)

Figure 20: Angular time series examples at fixed flow velocity, for θ ≃ 26.5◦ acquired in
different experimental conditions with the potentiometer. a) Potentiometer with
initial motor controller and without any protection. b) Potentiometer with initial
motor controller and protection through isolation amplifier. c) Potentiometer with
final motor controller and without any protection. d) Netzer DS-25 17-bit digital
acquisition.

transverse (y, z) plane. This choice was in particular motivated by the tri-dimensionality
of the wake for pendulums of aspect ratio close to 1 [42].

This methodology largely used in research and industry consists in visualizing the
flow by seeding it with particles and calculating their displacement between two (or
more) consecutive images. Here is only discussed the PIV setup (see Figure 21) and
further details on the method and how to proceed with PIV measurements will be
presented later in this introduction.

To do PIV in air flows, one of the difficulties is the choice of the seeding particle.
As we want to trace down flow structures, the ideal seeding particles are small and
iso-dense. A dimensionless parameter, the Stokes number gives a criterion on the choice

of tracer particles: St =
d2ρp

18νρ f
≪ 1, with d the diameter of the particle, ρp its density,

ν the kinematic viscosity of the fluid and ρ f its density. Usually in the air, two types
of particles are chosen from, smoke droplets, which size a few microns, and helium
bubbles, of about 100 µm, which both verify the aforementioned condition on St. In
this thesis, only smoke has been used, as the flow velocity is high enough to sustain
them long enough to get homogeneously spread, despite their density higher than air.
Helium bubbles can be achieved to be iso-dense, so very useful in still air, but require a
more complex experimental setup. The smoke is produced by a smoke machine, like
that of a discotheque.

To see the particles in a plane, we illuminate them with a laser sheet. This sheet is
produced by aligning a high-power (5 W) blue laser LED and a Powell lens with a 30◦

fan angle. To enhance the light intensity, such setup is placed and aligned on both sides
of the wind tunnel, totaling a light power of 10 W.

For the visualization, a high-speed camera (Phantom v26.40) films the particles
flowing in the laser-sheet plane, which can film at up to 24 000 fps in full frame. As
we chose to visualize the transverse flow (in the y, z-plane), the particles only last a
brief instant in the sheet and as such the frame rate is however constrained by the flow
velocity, the thickness of the plan and the light intensity.
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Figure 21: Schematic view of the PIV setup. The laser sheet (in violet-blue) is joined together
with the camera and mounted on a translating platform. This enables a longitudinal
scan of the wake without changing the optical settings nor calibration. The smoke
(light violet) is produced behind the pendulum and directly advected by the flow. It
comes around as the wind tunnel is closed and goes through the honey comb and
diffuses enough to be considered homogeneous after experiencing such conditioning
about 3 to 4 times.

When looking at the transverse structure in a forward flow, especially seeded with
particles, it is usually unwise to place the camera perpendicular to the plane of sight,
for two reasons. One is that the camera will then most likely be inside the wind tunnel
(or water tunnel) which can be quite hazardous for the camera guarantee. The other is
that due to forward scattering by the particle, the maximal light intensity is not found
facing the laser sheet. Hence, the camera is placed outside of the wind tunnel, with
an angle to the plane of view, as presented in Fig. 21. This however induces an optical
difficulty, the plane of focus is not parallel to the laser sheet anymore.

This problem can be solved in two manners. The first one is to close the diaphragm to
enlarge the depth of field to the projected thickness of the sheet orthogonal to the plane
of focus. Yet such option is only desirable when there is an excess of light as well. Since
we already commented on the constraint in light intensity, this solution is not satisfying.
The second option uses an optical principle, the Scheimpflug principle, named after
Austrian army captain T. Scheimpflug who spread it for aerial photography, though not
the initial discoverer. By tilting the lens, and thus making an angle not only between the
camera sensor and the laser sheet but also between the camera sensor and the lens, the
plane of focus is no longer parallel to the sensor. Hence by adjusting the angle between
the lens and the camera sensor, it is possible for the plane of focus to collapse on the
laser sheet with maximal aperture on the lens. The condition for such adjustment is that
the planes of the laser sheet, the sensor and the lens coincide on one line.
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As such, the optical setup for the PIV consists in a 100 mm lens appended through a
Scheimpflug structure to the Phantom v26.40 high-speed camera. Mainly two acquisition
frequencies have been selected for the study, 2000 fps at low flow velocity and 4000 fps
at higher flow velocity.

0.4.2 PIV Methodology

To reconstruct the flow field from the video, a few steps are required. The principle be-
hind Particle Image Velocimetry is the estimation of the local displacement through the
correlation of two consecutive images. By subdividing the image into small interrogation
windows, the average particle displacement (∆x, ∆y) is determined by cross-correlation
with the localization of the correlation peak (see Fig. 22). The velocity components (u, v)
are retrieved by a calibration which we detail hereafter.

Correlation peak

Local velocity

Cross correlation

Figure 22: Schematic representation of the algorithm used for Particle Image Velocimetry. (Cour-
tesy: Samuel Bera)

Before even starting the PIV algorithm, a pre-treatment of the video is necessary.
Indeed, as shown in Fig. 23.a), the original image has a low ratio signal over noise due
to the presence of the background. To enhance this ratio, the mean image (over the
whole duration of recording) is subtracted to all images, which gives Fig. 23.b. After
this subtraction, a two-dimensional gaussian filter is applied to further smooth the
background and bring out the particles. On this image, the particles are quite visible
individually, thus enabling a better correlation for the PIV than with the initial images.

Once the pre-treatment is done on the whole video, the PIV is then conducted on the
Matlab toolbox uvmat developed at the LEGI in Grenoble. This toolbox provides with a
two-steps PIV, with a refining of the grid between both correlations. For instance, the
used parameters in the different PIV results we will present in the following chapters
are for the first PIV: grid boxes of 25 × 25 px2 with a correlation zone of 55 × 55 px2.
The second PIV refines the grid to boxes of 21 × 21 px2, with a correlation zone of
only 27 × 27 px2 however located in the direction of the displacement estimation from
the first PIV. In between the two PIV computations, false vectors are also removed to
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help the second PIV and the flow is interpolated in such regions of false vectors. The
obtained raw flow field is shown in Fig. 23.c.

b)a) c)

Figure 23: a) Original image from the camera. b) Pre-treated image, subtracting the mean value
over the whole video. c) Correlated image resulting from Matlab toolbox uvmat.

Without any calibration, the flow field provided by the PIV algorithm presents veloci-
ties of pixels per time step (which are by no mean units of the International System).
While the correspondence in time step is simple once the frequency of acquisition is
known, the spatial calibration needs a bit more work. To achieve it, we use a calibration
plate on which is patterned with an array of regularly spaced dots. This calibration
plate is placed in the visualization plane for a calibration image done before the first
experiment. In case a possible modification on the visualization setup during the ex-
periments is suspected, a second calibration can be done afterwards to ensure the best
possible conversion from pixels to coordinates in the real world.

Once the flow is calibrated, it might still need some filtering in particular to compute
vorticity or acceleration. A gaussian filtering has been proceeded with for instance in
Chapter 1 to estimate the intensity of the wingtip vortices behind the disk. Another
post-treatment on the calibrated flow is the removal of mean background flow field.
In particular, because of the thickness of the laser sheet and the plane of focus not
parallel to it, the horizontal displacement presents a drift vpar of about 1 m · s−1 for a
flow velocity of about 2 m · s−1. This drift is due to parallax. To remove this drift, an
acquisition without the pendulum has been done. This estimation of the drift is however
not perfect due to the velocity drop behind the disk. As such, the acquisition without
the pendulum overestimates the drift as it is proportional to the local streamwise flow
velocity. This drift is mostly inconvenient when calculating vorticity due to a slight
horizontal gradient over the span of visualization. Figure 24 presents an example of the
drift and the filtering of the horizontal velocity v ahead of the calculation of vorticity
presented in Chapter 1.

The various methods of exploiting the PIV measurements will be discussed in the
relevant chapters, in particular 1 and 5.

As we mentioned before, the description of the experimental setup presented here only covers
the commonalities throughout the chapters and each modification to it will be notified at the
beginning of the concerned chapter.
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v v v  vv  v

v

Figure 24: Different stages of the pre-treatment for the horizontal velocity v field before the
computation of vorticity, with the subtraction of the parallax contribution vpar and
gaussian filtering. (Courtesy: Samuel Bera)

0.4.3 Synthesis of the experimental setup

As we will present various experiments throughout this thesis, a summary of the
configurations that were used in each chapter is presented hereafter in Tab. 2 and we
invite the reader to refer to it whenever he has a doubt on the exact experimental setup
for a particular chapter.

Chapter 1 2 3 4 5 6

4 cm-pendulum (standard) ⋆ ⋆ ⋆

6 cm-pendulum on short rod (PIV) ⋆ ⋆

Other pendulums ⋆ ⋆ ⋆ ⋆

Potentiometer ⋆ ⋆ ⋆

Air bushing ⋆ ⋆ ⋆ ⋆

Particle Image Velocimetry ⋆ ⋆ ⋆

Table 2: Configurations of pendulum, support and PIV setups used in the different chapters.
The configurations used in one chapter are indicated by a ⋆ symbol.
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Part I

WA K I N G U P





1
D E S C R I B I N G T H E WA K E B E H I N D A N
I N C L I N E D D I S K

Knowing the structure of the wake, what information on the aerodynamic coeffi-
cients can we extract?

1.1 introduction

“Tell me what your wake is and I will tell you who you are."

This aphorism is the aspiration of many aerodynamicists, hydrodynamicists and
engineers. It still remains a pipe dream as our understanding of the wake is still far
from sufficient. The closest living thing to being able to say this is in fact the true seal.
True seals (from the Phocidae family) are indeed capable of identifying and following
preys from their sole wake signature, as they often live and hunt in turbid waters [1,
2]. This characteristic comes from a specific evolution of their whiskers. In particular,
the shape of a seal whisker presents a wavy structure that has been observed to cut
down self-generated vortex-induced vibration [3]. This enables the seal to keep a high
signal-to-noise ratio on sensory clues even when moving around in the water. Though
the sensory mechanism to distinguish different preys or predators is still under investi-
gation, bio-inspired flow control devices have been emerging over the last decade for
reducing vortex-induced vibration [4].

Far from these marine considerations, the wake is an important feature to characterize
any object moving in a flow, from a fish to a vehicle or a bird. While it is undeniable that
wake and aerodynamic efforts are strongly coupled together, the understanding of their
coupling is still in its early stages, in particular the influence of coherent structures on
lift and drag coefficients [5]. Part of the difficulty to understand the wake development
and structure comes from its intrinsic simplicity and yet fundamental complexity. A
wake is mostly constituted by three types of vortices, as already introduced in Fig. 3:

• the leading-edge vortex,

• the trailing-edge vortex,

• the wingtip vortices, also known as trailing vortices.

Due to the semantic similarity between “trailing vortices” and “trailing-edge vortex”, in the
following, the term wingtip vortices will be preferred to avoid any confusion on that regard.

The simplicity comes from the fact that with this elementary decomposition, all wakes
are quite similar in their overall shape. The complexity of the wake arises from the
plurality of its shedding frequencies, the complex self-evolution or interactions between
the vortices, such as recombination, breakup, etc.

43



44 describing the wake behind an inclined disk

In animal flight, we already mentioned the importance of the leading-edge vortex
for insects and flight stability for birds and mammals [6, 7]. The leading-edge vortex
is particularly prominent for wide-spanned object, which can be considered almost
2D like glider wings. Lift estimates from the leading-edge vortex have been proposed
both empirically and following the Kutta-Joukowski theorem for flow circulation [8, 9].
However, when the tri-dimensionality of the wing or object comes into play, the wake
structure incorporates the wingtip vortices and the leading-edge vortex loses intensity
to them.

Especially evident at low angles of attack with two intense vortices in the transverse
plane, the importance of the wingtip vortices is fully considered in Prandtl lifting-line
theory for finite-span wings. This theory extends the Kutta-Joukowski theorem to the
circulation in the wingtip vortices linked with the leading-edge vortex into a large
horseshoe vortex [10]. The estimation of the lift coefficient is then possible depending
on the wing spanwise shape, the wing loading.

In bird flight, knowing the wake of a bird can help understand its behavior and the
evolutionary adaptations that have conducted to the selection of a certain type of flight
among those presented in Chapter 0. To probe it, mostly two techniques are available,
Particle Tracking Velocimetry (as in Fig. 1.1.a) and Particle Image Velocimetry (PIV),
the technique we also use in this chapter. While, in gliding flight, the wake is almost
reduced to the wingtip vortices (see Fig. 1.1.a) [11], this is not true in flapping flight. The
wake then depends on the flapping motion (upstroke in red or downstroke in blue) but
also on the flow velocity, as shown in Fig. 1.1.b) for a thrush nightingale [12]. Because of
these dependencies, standard lift calculations based on wake models may differ greatly
from experimental measurements [13].

a) b)

U

c)

x

y
z

Figure 1.1: a) Wake behind a gliding goshawk (Accipiter gentilis), wingtip vortices are highlighted
by orange circles [11]. a) Wake structure, represented by isovorticity contours, behind
a flapping thrush nightingale (Luscinia luscinia) with increasing flow velocity from
top to bottom [12]. Red represents the upstroke wake, blue is the downstroke wake.
c) Pacific parrotlet (Forpus coelestis) with laser safety goggles [13].

As for other bluff bodies like vehicles [14], choosing the plane of visualization, when
2D PIV is performed, is fundamental to reconstruct the wake to its best accuracy. While
it is rather simple to change planes with fixed objects, working with living animals
makes it much more complicated. In particular, to have the animal fly through a laser
sheet for PIV, not only does it require a lot of training but also ethical considerations on
possible blinding and harm come into play. As such, most studies on bird wake prefer
longitudinal and out of the center planes or have developed special adaptations for
transverse wake visualization [15]. For instance, only the far wake is investigated with a
second light sheet ahead of the laser, to act as a security – if the bird crosses it, the laser
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turns off [16]. Laser goggles have also recently been designed for birds to safely cross
laser sheets (see Fig. 1.1.c) [13].

In the context of the PhD work reported in this thesis, the situation is hopefully
much easier, since pendulums are inert objects. They only require small adjustments
due to their mobility to change the plane of visualization. For instance, if we were to
visualize longitudinal flow structures, the motion of the pendulum creates a fluctuating
shadow which might reduce the liability of some measurements. Adjustments like
mirrors to ensure a total lighting coverage of the system even during motion would
thus be required. Within the time frame of this PhD, such adaptations have not been
conducted, and only transverse flow considerations will be discussed as introduced in
Chapter 0. To get insights on the longitudinal component of the wake, the distance Dpl
between the pendulum and the laser sheet has been varied (see Chapter 0, Fig. 21) and
spatio-temporal diagrams can be exploited in particular for the trailing-edge vortex, as
we will present in Chapter 5. Unless Dpl is mentioned otherwise, the default distance
between the pendulum and the PIV plane is 10 cm.

To study the wake of our disk pendulum, two main directions are presented. First,
the mean flow field provides information on the location of the interesting structure.
Secondly, the vorticity can be extracted from the flow field to reconstruct wake coherent
structures through iso-surfaces, as obtained from numerical simulations [17, 18] and
similar to what is observed in water experiments using dye [19–21].

In this chapter, we used a 6 cm-wide disk appended to a 20 cm-long rod. The distance
L between the center of the disk and the center of attach has been varied throughout
the experiments to change the mean angle of the pendulum while keeping the flow
velocity constant for the PIV measurements (typically 2 m · s−1). The mean field results
presented in the following section were obtained with the mobile disk attached with
the potentiometer. This mobile disk configuration was first developed to investigate the
correlation between the pendulum dynamics and the flow response but this part is still
under investigation and will not be discussed here. Only preliminary results of this
kind will be presented in section 5.5. For the rest of the chapter, and thus the vorticity
considerations, we will consider the case when the pendulum is blocked; the disk is
attached at a distance L = 20 cm from the support at a fixed angle which can be varied.
This allows to investigate the wake of an inclined disk with limited influence of the
support. This was necessary to study the whole range of angles from θ = 0◦ to θ = 90◦,
as the latter angle, corresponding to the horizontal, is inaccessible for the pendulum

due to the limit U → ∞ as CN
θ→90◦−−−→ 0.

1.2 mean flow field in the wake

In the case of a wake with two main wingtip vortices, the mean transverse flow field
is clearly recognizable as the two vortices are in the transverse plane, as is identified
in Fig. 1.1.a. As such, a first overview of the wake structure is naturally to observe the
mean flow field for different angles of the pendulum, as shown on the left column in
Fig. 1.2. As the angle increases from θ = 20◦ to θ = 60◦, a slight evolution of the mean
flow field is visible, with the intensification of a downward motion, the downwash, for
coordinates y ≃ 0 and z ∈ [−30, 0]. More information on the wake can be extracted in
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Fig. 1.2 from the velocity fluctuations vrms along the y-axis (middle column) and wrms

(right column) along the z-axis.
In particular, as the wingtip vortices pulse due to the shedding and the trailing-edge

and leading-edge vortices induce large fluctuations when crossing the transverse plane,
it is possible to identify large structure by the sole velocity fluctuations.

Figure 1.2: Evolution of the wake mean field and fluctuations with the angle of the pendulum
θ. From top to bottom: θ = 20◦, θ = 40◦ and θ = 60◦. From left to right: mean field
(vmean,wmean), transverse velocity fluctuations vrms,vertical velocity fluctuations wrms.

For instance, for θ = 20◦ (Fig. 1.2 top row), we observe a large almost axisymmetric
zone of intense fluctuations (in red) for both transverse and vertical velocities. This
observation supports the assumption of a ring vortex structure which sheds from the
center of the disk as observed at low Reynolds number in numerical simulations [18].

When θ = 40◦ (Fig. 1.2 middle row), the fluctuations are more restrained to two large
lobes for the transverse velocity, almost vertically symmetric. On the vertical velocity,
the high fluctuations cover a horseshoe region, intersecting with the two lobes of the
transverse velocity fluctuations. These two lobes are signatures of the shedding of the



1.3 global vorticity considerations 47

wingtip vortices, as it will be confirmed from the time-evolution of the vorticity. On
the other hand, the bottom region of the horseshoe for the vertical velocity marks the
existence of a strong trailing-edge vortex. These two considerations suggest an oblique
ring vortex which is shed either by its sides or bottom part.

At even higher angles, θ = 60◦ for instance (Fig. 1.2 bottom row), the fluctuations for
both velocities are concentrated in two small spots at equal distance from the vertical
symmetry axis. This seems to point towards a plane-like wake with only the two wingtip
vortices.

As the angle θ increases, the fluctuation intensity decreases, especially between 40◦

and 60◦. We will come back on this later, when discussing vorticity evolution with θ.
Overall, the shape seems to almost change continuous through the smoothing of its
middle vertical line from top to bottom.

Two details were not commented here, on the transverse velocity fluctuations vrms.
The first one is for θ = 60◦, a diagonal line of fluctuation is observed from (y, z) =

(−40,−30) to (y, z) = (20,−50). This was identified to be experimental artifacts, as
during this measurement, a light protection from the laser fell down and a small
reflection was later observed on the video.

The second point is the left-right asymmetry of the horizontal fluctuations for θ = 20◦

and θ = 40◦. Various factors might explain this asymmetry, one physical and three more
experimental. As θ = 20◦ is close to the vertical, the disk can resemble a bluff body
from the flow perspective. It is well-documented that bluff bodies present spontaneous
symmetry breaking of the wake with one side predominant over the other [22, 23] and
possible switches between each side [24], which will be encountered again in Chapter 4.
To verify this possibility, more acquisitions in this configuration would be necessary as
we only have 3 s to 6 s of flow dynamics per acquisition.

It might otherwise come from the experimental setup itself. In particular, a possibility
is the link between the rod and the disk that could be slightly off the center, enough
for the flow to settle in one asymmetrical configuration. Another possible explanation
might come from the inhomogeneity of the laser sheet as the flow field is less well-
defined on the left part of the image. Due to this, it may underestimate the velocity
fluctuations.Finally, it is possible that the left field fluctuations are less intense as the
mean value is also lower, due to the non-parallelism of the plane of visualization and
the camera sensor, which induces a small gradient of transverse flow velocity as we
commented in Chapter 0.

From the mean flow field, other information may be extracted, especially from spatio-
temporal diagrams. Yet, the most common way of studying the wake of an object is still
to compute the vorticity and discuss its evolution, which is the topic of the following.

1.3 global vorticity considerations

The vorticity field Ω is computed from the velocity field (v, w). Ω is the off-plane
vorticity component (along the x-axis), as the vorticity vector ω is the curl of the velocity
(ω = ∇× u = ∇× (u, v, w))and we have only access to v and w with our PIV setup,
thus rendering the other components of the vorticity field not measurable.
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In Fig. 1.3, we illustrate the analysis of the vorticity for one particular angle θ = 40◦

at an arbitrary time, to define some characteristic variables, that we will further study
in the following.

An instantaneous flow field is thus represented in Fig. 1.3.a) and 1.3.b) with the
corresponding vorticity field in Fig. 1.3.c. To compute the vorticity, as we mentioned in
Chapter 0, a gaussian filter (of standard devation of 10 px, corresponding to 1 mm in
real units) is applied to ensure a smooth spatial derivation of the velocity fields.

From the vorticity field, we observe two intense vortices and extract the extremal
values Ωmax and Ωmin and the iso-contours corresponding to Ωmin√

2
and Ωmax√

2
, presented

in Fig. 1.3.d. Ωmin and Ωmax are the time-averaged values for Ωmin and Ωmax over one
realization. Note that Ωmin ≃ −Ωmax, as expected from a counter-rotating vortex pair.
In addition to estimating the maximum vorticity and its location, we can define the
distance d between the vortices and thanks to the aforementioned iso-contours, the
average vortex radius R of both vortex tubes, as shown in Fig. 1.3.e.

a) b) c)

d) e)

Figure 1.3: a) Instantaneous horizontal velocity v field after gaussian filtering. b) Instantaneous
vertical velocity w field after gaussian filtering. c) Vorticity Ω field. d) Identification
of the maximum of vorticity Ωmax and detection of the vortices with the condition
|Ω| > Ωmax√

2
in green. e) Definition of the mean vortex radius R and the distance

between the vortices d.

By doing the same analysis over the whole PIV recording, we can obtain the temporal
evolution of all the variables (Ωmax, d and R) and recreate iso-surfaces of vorticity in the
3D spatio-temporal space (t,y,z), as we will discuss right after.
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1.3.1 Angular dependence of the wake vorticity structure

Figure 1.4 presents the wake evolution over time and space for angles from θ = 0◦ to
θ = 90◦. The wake is represented by the iso-surfaces defined in the previous section,
Ω = Ωmax√

2
and Ω = Ωmin√

2
. The top row represents the spatial projection of the wake over

1 s, while below is the temporal evolution of the wake projected on the y-axis.
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Figure 1.4: Evolution of the wake from the vertical θ = 0◦ to the horizontal θ = 90◦. Each
column corresponds to the wake at the angle specified at the top of it. For each
angle, the projection of the spatio-temporal diagram of the vorticity iso-contours is
shown below, in the (y,z)-plane (top) and in the (y,t)-plane (bottom). Positive vorticity
corresponds to the red surfaces and negative to the blue surfaces.

In Fig. 1.4, we observe a continuous stabilization of the wake from θ = 0◦ to θ = 70◦.
In particular, disorganized puffs of vorticity settle down into almost straight cylinders.
To achieve this stabilization, the vorticity first gets quasi-periodic oscillations and
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its region of fluctuations condenses by θ = 40◦. Then for angles between θ = 40◦

and θ = 55◦, the spatial expansion keeps almost constant, while the frequency of the
oscillations increases and their amplitude decreases with increasing angle. From θ > 60◦,
the wake spatial expansion reduces again and is stable with very little fluctuations.

For the higher angles θ ≥ 80◦, the vorticity measurements of the wake is polluted
by the wake of the support as the pendulum is almost aligned to the horizontal and
directly in the wake of the support for y > 0. Hopefully, this direct observation of the
interference by the support is only visible for these high angles and confirms that it
does not exist for lower angles, which are central to our study.

For the lower angles θ ≤ 20◦, the wake is not well defined by the chosen vorticity
contour, due to the vorticity being mostly contained in the visualization plane (y,z) and
thus Ω ∼ 0.

While this overview of the wake structure is mostly qualitative, the observed behaviors
are in agreement with previous findings in the literature for the wake of the disk in low
Reynolds number numerical simulations [18].

1.3.2 Connecting to the CN coefficient?

One of the aims of this thesis is to understand the difference between the lift and drag
states of the disk pendulum. Due to the intrinsic coupling between the wake and the
aerodynamic coefficients, we attempt here to draw a parallel between the vorticity
structure and the CN coefficient of the disk (see Section 0.1.1.1) at least qualitative and
maybe quantitative as well.

From the qualitative observations (see Fig. 1.4) of spatio-temporal diagrams in the
previous section, the wake seems to radically change between θ = 45◦ and θ = 50◦ and
its spatial structure between θ = 55◦ and θ = 60◦. Coming back to the CN coefficient,
the change of regime, from drag to lift predominance, occurs at θ = 50◦. From the
wake point of view, as we already proposed in Chapter 0, the drag-dominant regime
(θ ≲ 45◦) would be related to a ring vortex structure with a well-defined shedding. The
lift-dominant state (θ ≳ 55◦) on the contrary is constituted with two stable wingtip
vortices. In-between (θ = 50◦ and θ = 55◦), we observe, in Fig. 1.4, an hybrid state,
where the shedding1 is almost non existent with however strong fluctuations of position
of the wingtip vortex centers. It is possible that this particular angular region possesses
two possible wake structures, leading to two CN coefficients, as was reported for a few
angles in this range by Flachsbart in 1932 [25].

To further link the wake and the CN coefficient, it would be interesting to compute
the lift coefficient using the Kutta-Joukowski theorem, linking the normal lift coefficient
and thus CN to the circulation Γ0 and the span b for an elliptic wing loading: CN = πbΓ0

SU
[26]. The difficulty here is the estimation of the circulation Γ0 as Γ0 =

∮
C u · dl, with

C a contour to be determined, usually taken as the edge of the vortex. Though the
Stokes theorem links the circulation to the vorticity, Γ0 =

∫∫
S ω · dS, the surface of

1 Here, we understand the shedding as a temporal discontinuity of the vorticity iso-surface, corresponding
to a diminution of |Ω| below Ωmax√

2
.
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integration S is also to be defined appropriately. Note that C is the closed contour of the
surface S , so once we know one, the other is also determined. As the results presented
here are preliminary, we will not discuss the circulation but only the mean maximal
vorticity Ωmax, which presents the advantage of not requiring the choice of any arbitrary
threshold as it is a direct output from the vorticity field.

Figure 1.5: Evolution of the time-averaged maximal vorticity mean(Ωmax) = Ωmax and its
standard deviation std(Ωmax/min) with the angle of the pendulum θ. For comparison,
the angular evolution of CN and CD coefficients is also represented on the right axis.

In Fig. 1.5, the time-averaged maximal vorticity is compared to the CN coefficient,
over the angle θ. The shape of both curves is quite similar with a plateau at low angles
and a linear decay towards 0 at θ = 90◦ for angles θ > 60◦. This similarity is hindered
by a slight shift for the maximum of the curves (θ = 60◦ for Ωmax and θ = 50◦ for CN).
A possibility for this shift is the uncertainty on the measured angles, we estimated it
at about ±3◦, as the angle was fixed for these data sets and the protractor was not
particularly precise. It is thus possible that the angle θ = 55◦ is in fact θ = 52◦ and thus
be one of the angle of two CN coefficients [25]. As an indication, the standard deviation
of Ωmax is also represented in Fig. 1.5, and slightly resemble the drag coefficient CD in
its evolution, though the difference is much greater than between CN and Ωmax.

This likeness between the CN coefficient and the vorticity Ωmax of the wingtip vortices
is still to be further investigated in order for us to understand the reason behind it, as
a direct proportionality would mean that the diameter of the wingtip vortices would
remain constant over the whole range of angles.

1.3.3 Other vorticity properties of the wake

In addition to the qualitative and time-averaged analysis conducted so far, we can
investigate the temporal dynamics of the wake, such as the time evolution of the vortex
intensity Ωmax, the distance between the vortices d and their radius R. From Fig. 1.4,
we expect quasi-periodic fluctuations of the distance between the vortices and of the
radius.

In the following, we present a temporal analysis for a single angle θ = 50◦ and
distance Dpl = 5 cm, and only comment by the end of this section the influence of the
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angle θ on the vortex dynamics.

Figure 1.6: Top: time series of the vortex intensity Ωmax, the vortex radius R and the distance
between the vortices d. Bottom: cross-correlations between each couple (Ωmax, R),
(R, d), (Ωmax,d) as a function of the phase difference δt.

Figure 1.6 depicts the temporal evolution of the three variables Ωmax, R and d. Each
variable presents well defined oscillations, which appear to be synchronous. This
confirmed by the lack of phase shift for the maximal cross correlation in Fig. 1.6. The
maximal values of the cross-correlation, ζ

j
i , are significant and almost all equal to 0.6

in this particular configuration of (θ, Dpl) = (50◦, 5 cm). This means that as the vortex
intensity increases so does the expansion of the vortex, which suggests that the process
at play is not simply due to vortex stretching. However, we only observe the longitudinal
component Ω of the vorticity and this expansion might result from a shift in the vorticity
orientation. The correlation between the distance and the radius is understood by the
fact that larger vortices also need a larger space and as such the flow region in the
middle may be seen as incompressible, as the region of maximum downwash from the
vortices.

As the distance Dpl is varied, the vortex intensity Ωmax decreases monotonously,
and almost linearly over 20 cm, as shown in Fig. 1.7.a. On the contrary, the distance d
between the two vortices is almost constant, as is the vortex radius R. The constancy
of the radius R may reflect a lack of spatial expansion of the vortex as it propagates
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and diffuses. If we suppose a gaussian distribution of vorticity around the center of the
vortex, which is close to the experimental measurements, R is proportional (by a factor
1/

√
2) to the full width at half maximum. If it remains constant with Dpl , this means

that the vortex intensity decreases in a uniform manner in the transverse plane. This
diminution of vorticity might be directly linked with the viscous dissipation ϵ through
the relation ϵ = du2

dt ∝ −Ω3R2, with du2

dt the variation of kinetic energy. To do a robust
estimation of the dissipation in the wake, the Taylor hypothesis of frozen turbulence
is needed, yet the wingtip vortices have been observed to reconnect sporadically at
various distances Dpl , mostly through their destabilization by the Crow instability [27].
This could explain the slowdown of dissipation by Dpl = 25 cm in Fig. 1.7.a.

a)

b)

Figure 1.7: a) Evolution of the vortex intensity Ωmax, the vortex radius R and the distance
between the vortices d as a function of the distance Dpl between the pendulum and

the wake plane. b) Evolution of the cross correlation maxima ζ
j
i as a function of the

distance Dpl between the pendulum and the wake plane: ζR
Ω, ζd

R, ζd
Ω. Dashed and

dotted lines serve as eye guides.

In addition to the mean values of Ωmax, R and d, we can also look at the evolution of
their correlation with the distance Dpl . In Fig. 1.7.b, the evolution of the maximum of

correlation ζ
j
i for the three pairs of variables is presented as a function of the distance

Dpl . The correlations with the vorticity Ωmax tend to decrease with the distance, with
however a peak around Dpl = 10 cm. While the decrease might be related to the overall
decrease of vorticity, thus increasing the sensitivity to ambient turbulent noise in the
fluctuations, the first increase between Dpl = 5 cm and Dpl = 10 cm may come from the
roll-up of the wingtip vortices. If the vortices are not entirely rolled up, it is possible
that the size of the vortex is also growing from incoming flow deviated from the plate
and not only from vorticity transfer from the transverse to the longitudinal component
as we mentioned earlier as a possible explanation of the high correlation between
the vorticity and vortex radius. On the contrary, the correlation between the distance
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between the vortices and their radius ζd
R is gradually increasing with the distance to the

pendulum Dpl . Though we may not have an explanation to this phenomenon for the
moment, it seemed like an interesting observation to be made, which would require
more investigation as to its implications.

A similar correlation behavior is observed for angles from θ = 35◦ to θ = 55◦, for
which a study on the effect of the distance has been conducted. For the other angles,
the distance was kept constant at Dpl = 10 cm. In Fig. 1.8.a), the correlation maxima are
presented for the different angles θ of the pendulum. The shape of the CN coefficient is
again somehow retrieved with the maximum value of the correlation reached at θ ≃ 40◦.
In Fig. 1.8.b), we can see that the correlation maximum is attained at synchronicity
(δtcorr = 0) for almost all angles, thus suggesting that this property is independent of
the shape of the wake itself.

For angles θ > 70◦, the correlation is increasing again, however the cross-correlation
signals present no clear peak of correlation possibly due to the turbulent noise emanat-
ing from the support. Similar difficulties are found for θ < 20◦, which there translates
into an artificial phase shift on the correlation.

a)

b)

Figure 1.8: a) Evolution of the cross correlation maxima ζ
j
i as a function of the angle θ: ζR

Ω, ζd
R,

ζd
Ω. b) Temporal shift between the two signals δtcorr, corresponding to the δt for

which the correlation is equal to ζ
j
i , for ζR

Ω, ζd
R.

Many more properties of the wake can be extracted from the present signals but are
beyond the scope of this Chapter. Some, like the evolution of the absolute position of
the vortices or the analysis of the power density spectrum of the time series for the
vorticity, are developed in the report from Samuel Bera, a Master 1 student intern that I
supervised during my PhD [28].

In particular, there is an increase with the angle θ of the Strouhal number St = fvsddisk
U

defined on the frequency of oscillation of the vortex radius.
Another interesting point is the downwash of the vortices observed by scanning

the longitudinal direction Dpl . The average descent angle is estimated to be about -6◦,
which might be further checked by integrating the vorticity over the central horizontal
axis but could not be done in the time frame of this PhD.
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1.4 perspectives

In this Chapter, we have presented an overview of the angular dependence of the
transverse wake behind a disk, which overall coincides with numerical simulations at
lower Reynolds numbers [18]. This is accompanied by a few properties we observed
when studying the details of the wake from different points of view, in particular the
cross-correlations between the different wake characteristics. This kind of investigation
has yet been seldom pursued in previous works and the cross-correlation is usually
conducted between one wake variable and a force measurement on the object under
study [29], leaving little grounds for comparison for our findings.

The isovorticity structure, as shown in Fig. 1.4, is more commonly spread to present
a qualitative general outlook of the wake. In particular, the temporal evolution of
the transverse wake vorticity structure has been investigated for different birds and
mammals [30–32]. For animals, flapping flight results in a ring vortex wake close
to what we observe in the drag branch of the disk (θ < 50◦), while gliding flight is
closer to the disk wake at high angles in the lift branch (θ > 50◦), as compared in Fig. 1.9.

Pendulum: drag branch (35°)

Pendulum : lift branch (60°)

Bird : gliding ight

Bird : apping ight

Figure 1.9: Comparison of the wake of the pendulum in the drag (top) and lift (bottom) branche
with the wake of birds in flapping and gliding flight. Flapping flight wake of a swift
(Apus apus) from [33] and gliding flight wake of a barn owl (Tyto alba) from [11].

Many more questions remain, that would require a whole set of new experiments and
analysis, in particular on the coupling between the wake and the angular fluctuations,
when the pendulum is released, that has only started during this thesis. Another point is
whether the wake changes observed around the stall angle θ = 50◦ are continuous and
could be modelled using a first-order or second-order phase transition. Investigations
closer to the disk would also be interesting in order to observe the roll-up of the wingtip
vortices and the role of it in the stability of the wake. A theoretical estimation of the
roll-up distance has been proposed by Spreiter and Sacks in 1951 from the aerodynamic
coefficients. It is possible that the mechanism of rolling-up is at the core of the coupling
between the wake structure and the stall, as the roll-up distance is inversely proportional
to the lift coefficient CL. Thus were CL be too high, the roll up would be close enough
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to the disk for the wingtip vortices to reconnect to the trailing-edge vortex and with
this form a ring vortex as observed in the drag-dominated regime.
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2
S H A P I N G T H E B I S TA B I L I T Y

Can the existence of the bistability and the presence of sharp stall be inferred from
the sole aspect ratio of a rectangular plate?

2.1 introduction

When looking at birds, a striking feature is the diversity of shape. Not only is the
body morphology different, when comparing for instance a European robin (Erithacus
rubecula) and a rose-ringed parakeet (Psittacula krameri) (see Fig. 2.1.a-b), but even the
wing form itself varies greatly from one bird to the other. Millions of years of evolution
have shaped the wings of each bird to its particular flight. From the triangular wing of
a starling to the crescent wing of a tern and the elongated wing of a northern gannet,
each shape is adapted to the body morphology and the flight strategies adopted.

A common starling (Sturnus vulgaris, Fig. 2.1.c)
migrates mostly on land, with many perch pos-
sibilities and its small profiled body (20 cm for a
total wingspan of 40 cm) makes it more efficient
to flap-bound flight, a technique that combines
flapping flight and flexed-wing leaps [1]. Arctic
terns (Sterna paradisaea, Fig. 2.1.d) on the con-
trary migrate over extreme distances, more than
14 000 km a year, going back and forth between
the polar circles by the sea, with a typical size
of 30 cm for a total wingspan of 80 cm. Cross-
ing the Equator, flapping flight is necessary due
to the intertropical convergence zone, known
to sailors as the doldrums because of the lack
of wind. Their crescent wing shape enables for
both gliding and flapping flight. Northern gan-
nets (Morus bassanus, Fig. 2.1.d), while also sea
birds, rely almost entirely on gliding and soar-
ing, and elongated wings provide them with
enhanced lift to drag ratio, with their large size
of 90 cm and a total wingspan of 180 cm.

a)

b)

e)

d)

c)

Figure 2.1: a) European robin, France,
2021.
b) Rose-ringed parakeet, France, 2021.
c) Common starling, France, 2019.
d) Arctic tern, Iceland, 2019.
e) Northern gannet, Atlantic ocean, 2019.
Wing shape is colored red for highlight.

Within a given family, such as the Accipitridae (one of the major raptor families),
smaller variations are observed. Their wing shape looks quite invariant almost rectan-
gular and with the tip (primary) feathers spread out, yet the Aspect Ratio (AR) of the
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wing is found to be quite changing depending on the species, spanning from 2 to about
3.51.

For instance, while both are gliders, bearded vultures, Gypaetus barbatus (Fig. 2.2.a),
and griffon vultures, Gyps fulvus (Fig 2.2.b), present quite different aspect ratios, respec-
tively about 3.1 and 2.3. Their respective aspect ratios are closer to all-rounder flyers
such as common buzzards, Buteo buteo (Fig. 2.2.c) of estimated aspect ratio 3.2, and
short-toed snake eagles, Circaetus gallicus (Fig. 2.2.d) of estimated aspect ratio 2.2.

c)a) b) d)

Figure 2.2: a) Bearded vulture, France, 2021. b) Griffon vulture, France, 2021. c) Common
buzzard, France, 2021. d) Short-toed snake eagle, France, 2021. Wing span (red) and
chord (green) are indicated by lines on each bird.

The study of the role of aspect ratio in bird flight is still only at its infancy [2], as
most studies have been morphological [3, 4] and not aerodynamically oriented.

Aspect ratio is also very important in Aeronautics and has been, in this context on
the contrary, extensively studied from the early 20th century [5–7]. In particular, aspect
ratios close to 1 present an important stall while aspect ratios either smaller or larger
than 1 tend to have smoother change between lift and drag predominance [5]. Lift
coefficient at angles of attack lower than the stall angle is also reported to increase with
aspect ratio [8], which could link to the propensity of gliding birds to have high aspect
ratio. The wake of rectangular plates of different aspect ratios has also been investigated
numerically and experimentally [9, 10] and the description of it will be detailed later in
this chapter when discussing the implications on it from the aerodynamic coefficients.

2.2 experimental details

As we are interested here in the aspect ratio AR, a disk is not necessarily the best
companion to investigate such a problem, an ellipsoid neither for practical reasons.
Hence, for simplicity, we will use in the following of this chapter rectangular plates
fixed at the end of the pendulum rod. A total of 4 PVC plates, of thickness e = 0.8 mm,
has been used, providing us with 8 different aspect ratios depending on the direction
of the maximal length, in the plane of motion or orthogonal to it. Just like for the disk
pendulum presented in Chapter 0, as we will considerably use the momentum equation
at equilibrium (given again by Eq. 2.1), a few geometrical parameters are required to go
back to the CN coefficient, that are the distance to the center of mass l, the distance to
the aerodynamic center L, the total mass of the pendulum m and its surface S = bc with
b the span and c the chord as defined in Fig. 2.3 – the aspect ratio (defined in Chapter

1 A standard measure of the aspect ratio for a bird in ornithology guides is based on the entire wingspan
from one wingtip to the other, rather than on the span of a single wing as we chose here.
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Figure 2.3: a) Different plate configurations used in the experiment, true scaling. b) Definition
of span b and chord c in the experimental coordinate system. c) Schematic view of
the rectangular pendulum in the wind tunnel.

0) is here AR = b/c. An overview of the various pendulums used hereafter is presented
in Table 2.1. The equilibrium equation is then:

mgl sin(θ) =
1
2

ρU2bcLCN(θ) (2.1)

Aspect ratio AR (cm) 4/15 4/10 4/7 4/5 5/4 7/4 10/4 15/4

Chord c (cm) 15 10 7 5 4 4 4 4
Span b (cm) 4 4 4 4 5 7 10 15
Mass mplate (g) 8.76 5.84 4.17 2.92 2.92 4.17 5.84 8.76

Total mass m (g) 22.0 19.1 17.4 16.2 16.2 17.4 19.1 22.0
Distance l (cm) 4.5 3.9 3.5 3.1 3.5 4.0 4.5 5.3
Distance L (cm) 10.3 10.3 10.3 10.3 12.3 12.3 12.3 12.3

Table 2.1: Physical characteristics of the different rectangular plates used in the experiment. 8
configurations were tested using 4 different plates with one of the dimension equal
4 cm, which is the diameter of the disk presented in Chapter 0.

The experimental setup is the one presented in Chapter 0. No hot-wire measure-
ments will be reported here as only the mean flow velocity U was relevant for this study.

The experimental protocol for investigating the influence of the aspect ratio on the
aerodynamic coefficient, and thus on the bistability, is a step by step sweep of the flow
velocity over a wide range. This method, used by [11], takes advantage of the weight
torque from Equation 2.1 to reconstruct the aerodynamic coefficient. Due to natural
oscillations of the system, the flow velocity is only increased and then decreased step by
step and the angular equilibrium position is time-averaged over 15 to 120 s depending
on the observed fluctuations. When the equilibrium position was not well-defined, as
for instance a jump was observed yet without bistability, a refined stepping was done.
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As such, in total for the 8 different configurations, 24 cycles were executed, which
amounted to more than 3200 flow velocity steps, with about 1600 while increasing the
flow velocity U, from 0 m · s−1 to about 10 m · s−1, and the same amount decreasing U,
from about 10 m · s−1 to 0 m · s−1.

2.3 results

2.3.1 Bistability existence and CN coefficient

Inspired by Obligado et al. 2013 [11], when confronted with a new pendulum shape,
the first thing we do is always to look at the angular response to a flow velocity cycle,
thus resulting in a θ(U) portrait. Once this portrait is drawn, it is then possible to get
the aerodynamic coefficient CN by inverting Eq. 2.1 knowing the flow velocity and
the equilibrium position. In the following, we have decided to first present the aspect
ratios greater than 1 and lower than 1 separately as the pendulum configuration slightly
changed between both cases, in particular on the distance L between the swivel and the
aerodynamic center. Only in the discussion will all configurations be compared as a
whole.

2.3.1.1 AR> 1

Looking back at Figures 2.1 and 2.2, the most common aspect ratios found in nature are
above 1, at least for birds – insects also present mostly aspect ratios above 1 but we will
not detail it further here. As such, the first case to investigate is naturally the aspect
ratios greater than 1.

a) b)

15/4
10/4
7/4
5/4

ARAR

Figure 2.4: a) Angular equilibrium position as a function of the flow velocity. b) Reconstructed
aerodynamic coefficient CN as a function of the angle θ. Color codes for the aspect
ratio: the darker the color, the higher the aspect ratio, here above 1.

In Figure 2.4.a), the evolution of the θ(U) portrait is presented for increasing aspect
ratio AR from 5/4 in yellow to 15/4 in maroon. A first observation is the quick uptake
in angle at low velocity for the larger AR. A second point is the appearance of the
bistability in the range θ ∈ [50◦, 60◦], known for the disk pendulum, only for the
smallest AR. The θ(U) bistability, slightly more visible on the CN coefficient with the
bump at θ ≃ 60◦, is however not as clearly defined as the one for the disk presented
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in Fig. 9, while a bistability of the CN coefficient itself seems to appear for this aspect
ratio, with two values of CN for the same angle. This will be further detailed in section
2.3.2, as it is not only observed for AR = 5/4. Apart from this, the shape of the θ(U)

portrait does not change much over the range of aspect ratio tested. Regarding the
CN coefficient, presented in Fig. 2.4.b), neither is there any drastic evolution for the 3
higher aspect ratios, especially between AR = 7/4 (orange) and AR = 10/4 (red). As
the aspect ratio is decreased, the normal coefficient around 60◦ first diminishes, forming
a plateau over more than 5◦, before increasing again for AR = 5/4 when the bistability
appears. On the contrary, the drag-dominated part of the CN coefficient at low angles,
θ < 30◦ is constantly increasing with the aspect ratio and so does the lift-dominated
part for high angles, θ > 70◦. Another particularity of the CN coefficient for these aspect
ratios is the absence of sharp stall apart from AR = 5/4, which will be discussed in
more details in Section 2.4.2.

2.3.1.2 AR< 1

Aspect ratios below 1 are also present in nature however much rarer than ones larger
than 1. Such aspect ratios are found in the tail of birds and in their feathers, in particular
secondary feathers2 and tail feathers.

In Figure 2.5, the aspect ratio is varied from 0.8 (green) to 0.27 (dark blue). A striking
feature on the θ(U) portrait (Fig. 2.5.a) is the presence of the bistability and a large band
of forbidden angles for AR = 4/7 (cyan). Bistability is also observed for AR = 4/10
(light blue) and AR = 4/5. For the latter however, the bistability is less marked, for the
same reason as for AR = 5/4, which will be detailed in section 2.3.2. The bistability
seems to emanate from the inflection point of the θ(U) curve, as we see from the change
between AR = 4/15 and AR = 4/10.

As the aspect ratio tends to 1, the value of CN increases with the aspect ratio when lift
dominates but its stall angle also increases (Fig. 2.5.b). The stall angle for the smallest
aspect ratio is not well defined, as not as sharp as for the other aspect ratios. It can be
however estimated around θ = 30◦, at the edge of the plateau observed for θ between
30◦ and 40◦. An interesting point on the CN coefficient is also the non uniform evolution
of its peak value, whose maximum is attained for AR = 4/7 in our study. This was
already observed in the literature as we will discuss later in section 2.4.1.

A more discreet observation that can be done from Figure 2.5.a), is that despite the
great discrepancy in surface and mass between the plates (Table 2.1), all pendulums
attain the same position of equilibrium for flow velocity higher than 6 m · s−1. It even
goes to the point that for large angles (above 60◦), all θ(U) portraits collapse on a single
curve. It results from it and Eq.2.1, as the span is constant at 4 cm, the following relation:

cL
ml

CN(θ) = Cst(θ) (2.2)

for θ > 60◦. This relation has only been observed for this particular case of constant
4 cm-span and no explanation is being proposed for now, as it would require more

2 Secondary feathers are flight feathers in the middle of the wing, a scheme of bird nomenclature in
presented in Annex A.1
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Figure 2.5: a) Angular equilibrium position as a function of the flow velocity. b) Reconstructed
aerodynamic coefficient CN as a function of the angle θ. Color codes for the aspect
ratio: the darker the color, the smaller the aspect ratio, here below 1.

investigation in particular with different spans to ensure it not be a coincidence.

At low flow velocity, on the contrary, the higher the aspect ratio, the lower is the
angle for the same velocity in Fig. 2.5.a. This comes from the fact that the surface S = bc
diminishes as the aspect ratio increases from 4/15 to 4/5. Indeed in Fig. 2.5.b), the CN

coefficient stays almost constant with the aspect ratio for angles θ ∈ [10◦, 30◦[, which
is quite different from the results for aspect ratios greater than 1, described in section
2.3.1.1.

2.3.2 Complications around AR≃ 1

As we mentioned previously, for aspect ratios close to 1, the bistability seems difficult to
observe on time-averaged θ(U) portraits as presented in Fig. 2.4.a) and 2.5.a). To get a
better idea of the bistability for such aspect ratios, a possibility is to look not only at the
time-averaged angle θ but also at its distribution. Some positions, that were considered
to be attained by the pendulum, are in fact only time-averaging artifacts and the result
of a pondered mean of two equilibrium positions, while the pendulum keeps switching
back and forth between both. The probability density function (pdf) is then bimodal
and well-approximated by the sum of two Gaussian distributions as shown in Fig. 2.6.

At first glance, the cycle described by the pendulum for these aspect ratios seems
to turn clockwise, which is theoretically not possible for a hysteretic cycle based on
subcritical bifurcations, as such cycles are normally traveled across counterclockwise.
This questions the stability of the equilibrium positions defined by Eq. 2.1. The hysteretic
cycle for the disk results from the CN coefficient, which is considered to be a function
of θ, i.e. for any angle θ, the CN coefficient is uniquely defined or does not exist.

If the CN coefficient is no longer a function, and can admit 2 values for a given angle,
then an angle can be attained for two different flow velocities and the bistable zone
may be explored in a more exotic way than a simple hysteresis. In the literature, such
behavior on the CN coefficient has been observed, in particular for the squareas shown
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Figure 2.6: Details of the hysteretic cycle θ(U) for aspect ratio AR = 5/4, with probability
density functions (pdf) of angular time series. From blue to green, the flow velocity
is increased. From green to red, the flow velocity is decreased.
a) Time-averaged equilibrium angles as function of flow velocity.
b) Details of the pdf for U = 6.5 m · s−1.

in Fig. 2.7.a [7]. Similarly NACA profiles may also present CN bistability [12], even
without even adding to the dynamic stall which is intrinsically hysteretic [13].

A possible explanation for the observed clockwise (red in Fig. 2.7.b) hysteretic cycle
is then that it is part of a larger hysteresis (green in Fig. 2.7.b) that can be divided
into 2 smaller hysteresis (blue in Fig. 2.7.b) at its edge. The existence of these smaller
hysteresis may arise from the bistability of the CN coefficient. The exotic cycle faced in
the experiment could then be the upward transition of the first cycle and the downward
one from the second, thus resembling a clockwise hysteresis.

This hypothesis could not be tested in the current experiment as we cannot measure
the CN coefficient directly and we are dependent on the stability of the equilibrium
position to measure its CN . To try our conjecture, the pendulum angle should be fixed
and the pendulum attached to an aerodynamic scale, in order to measure both lift and
drag. Such aerodynamic scale can be either a three-axis piezoelectric force sensor or a
more traditional setup with two scales, one for lift and the other for drag using a pulley
to redirect the force to the vertical.

The particular case of AR = 1 has not been tested with the same PVC plate and thus
will not be discussed here. Examples of the obtained hysteretic cycle for square plates are
presented in Annex A.2 for 2 configurations, the chord being the side of the square or the chord
being the diagonal. The plate was thinner (about 600 µm-thick) and larger (6 cm-wide).

In the literature, this case is covered by Eiffel, Föppl, Flachsbart and Winter [5–7, 14],
thus providing us with a reference framework for the comparison of our results. Note
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Figure 2.7: a) Detailed CN coefficient from Flachsbart 1932 [7]. For the square and the circle,
a hysteresis inherent to the CN is observed. b) Schematic representation of the
θ(U) bistability evolution (in red) in case of a bistable CN coefficient. The clockwise
hysteresis may result from the expression of two normal hysteresis (in blue) that are
less likely to be observed experimentally, inside a larger hysteresis (in green).

that, in Chapter 3, the fully taped fly-swatter presents an aspect ratio AR = 1, which
could also serve as reference.
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Interlude
A natural question emanating from the discussion on the existence of the θ(U)

bistability is whether there exists a mathematical criterion to the possibility of such
bistability.
The sole equation of equilibrium of the pendulum (Eq. 2.1) is not sufficient to predict
the existence of one or multiple solutions to it. In dynamical systems, a way of
checking such existence is to investigate the stability of the possible solutions through
their derivative – the curvature of the potential energy. If there exists a solution for
which the derivative is positive, it is unstable and with Poincare-Bendixon theorem as
there is at least one stable solution, there are another one for each unstable position.
For the bistability to be unattainable, all possible equilibrium positions need to be
stable and thus verify the following condition:

∀θ, U, mgl cos(θ) >
1
2

ρSLU2 dCN

dθ

This is only verified for all θ and U if dCN
dθ < 0. As long as there is one angle θ for

which dCN
dθ > 0, there exists a pendulum configuration and a flow velocity for which

this angle can be unstable. However, it is necessary but not sufficient as this angle may
never be attained as the equilibrium position is set by mgl sin

(
θeq
)
= 1

2 ρSLU2CN(θeq)

The limit case of existence of the bistability requires the metastability of at least one
equilibrium position which verifies the following equation:

dCN

dθ
|θmeta = CN(θmeta) cot(θmeta)

As cot(θ) and CN(θ) are both positive, a metastable position exists also only if an
angle presents a positive derivative of CN , dCN

dθ > 0. This provides with a second
condition coupling CN and its derivative for the existence of a bistability, as it can
exist only together with two metastable positions.

2.4 discussion

2.4.1 Global evolution of CN with aspect ratio

To present the results, we decided to separate aspect ratios between those greater and
lower than 1, for the reasons we detailed in section 2.3.1. Yet it is also possible to look at
the overall evolution of CN over the whole range of aspect ratios, as was done by Eiffel
in 1910, as shown in Fig. 2.8.a [5]. To do so though, the CN coefficients are rescaled
for better comparison with Eiffel’s work. While Eiffel chose θ = 0◦ for its rescaling,
we choose θ = 15◦ due to the difficulty of correct estimation of CN at low angles and
low velocity (see Fig. 2.8.b). This difficulty may be related to the higher sensitivity to
turbulent noise at low flow velocity when the mean aerodynamic torque is very low
as well. Another possibility could be the irregularity of the sharp edges of the plates
as edges play an important role in the estimation of aerodynamic coefficients close to
symmetrical configurations such as the horizontal or vertical.
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Figure 2.8: a)CN measurements on rectangular plates of variable aspect ratios in 1910 (redrawn
from [5]). b) Rescaled CN coefficients as function of θ and aspect ratio. Color codes
for the aspect ratio with green for AR = 1.

When comparing the evolution of CN from Eiffel, measured using an aerodynamic
scale, and ours, reconstructed from the pendulum, in Fig. 2.8, a qualitative agreement
is observed. The same tendency is visible as we vary the aspect ratio from large to
low. In particular, the variation of the CN slope around θ = 90◦ is the same and
the displacement of the CN inflection point shows a similar evolution. However, the
results differ quantitatively on two aspects. First, the shape agreement between 1910

measurements and ours is not found for the same aspect ratios, in particular for high
aspect ratios. Our AR = 7/4 = 1.75 presents a closer shape to AR = 6 for Eiffel than
AR = 2. The second aspect that differs greatly between our results and the ones from
Eiffel is the maximum value of CN . While in Fig. 2.8.a) the maximum value of CN is
found for AR = 1, it is only attained for AR = 4/7 in Fig. 2.8.b). This quantitative
variability can be attributed to the presence of the pendulum rod which may interact
with the wake of the plate and artificially modify its CN coefficient. Other factors, such
as the turbulence rate, the sharpness of the edges of the plates or confinement effects
from the closed test-section, might also play a role in the quantitative fluctuation.

Overall, this points to the high sensitivity of the CN coefficient on many external
factors.
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2.4.2 Evolution of the CN stall angle with the aspect ratio

A interesting feature from the CN evolution described above is the variation of the
stall angle position. As stall can be difficult to estimate for aspect ratio far from 1,
we consider the CN stall angle θstall to be the point of maximal curvature of the CN

coefficient (
d2CN

dθ2 ). For aspect ratios close to 1, this corresponds to the conventional stall
angle, as described in Chapter 0.

This angle θstall is found to increase monotonously with the aspect ratio, as shown in
Fig 2.9.a. Despite the previous lack of quantitative agreement between the measurements
made by Eiffel and ours, the position of the stall angle seems far more robust as both
data sets collapse on a single curve over their common range of aspect ratios. From this
first observation, the nature of the guiding curve is to be determined, in particular to
try understand what drives this CN stall.

b)a) c)

Figure 2.9: a) Angle of CN stall θstall as a function of the aspect ratio AR. b) tan(θstall) as a
function of the aspect ratio. Dashed lines represent proportionality tendency at low
AR and high AR. c) θstall as a function of atan AR. A linear function is fitted to the
experimental data.

Looking first at the tangent of the stall angle with respect to the aspect ratio, three
behaviors stand out (Fig 2.9.b). At low aspect ratios, up to 2, tan(θstall) increases rapidly
and linearly with the aspect ratio, tan(θstall) ≃ 5

4 AR. It then comes to a plateau for
aspect ratios from 2 to 4 at an angle of about 70◦ and finally increases linearly again
with a smoother slope, tan(θstall) ≃ 5

8 AR. The ratio 1/2 between the slopes might be a
coincidence. An interesting point is that most birds present wing aspect ratios between
2 and 4, for instance hummingbirds present aspect ratios comprised between 3.2 and 4.4
[2]. As such, it would mean that despite the variations, the stall angle remains relatively
constant. This could be important for flight stability especially during the molting of
the flight feathers, molting which has been observed to be a possible strong constraint
on the maximal size of flying birds [15].

Looking the other way round, not at the tangent of the stall angle but rather as
the arc-tangent of the aspect ratio, another tendency comes out, as presented in Fig.
2.9.c. The stall angle follows a linear function of atan(AR). With a non-zero origin, it
seems that rectangular plates always present a CN stall no matter how elongated in the
direction of the flow (AR → 0), at an angle θstall = 20◦, corresponding to an angle of
attack of 70◦. When AR → ∞, the stall angle does not attain 90◦ but only about 82◦. It
means that an infinite-span plate of finite chord stalls at an angle of attack of about 8◦.
This is not far from the obtained estimation of 9◦ for a 2D-plate (of infinite span) [16].
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With this consideration, the angle of stall could be approximated for any aspect ratio by
the following equation:

θstall ≃ 20◦ + 0.68 atan(AR) (2.3)

This simple relation does not catch the particularity of the plateau between AR = 2
to AR = 4 but provides a first estimate to the stall angle. It can also be noticed that
the plateau occurs around the particular point for which θstall and atan(AR) are equal,
at about 70◦. Though no explanation can be given at this stage, it resembles a lock-in,
similarly to the frequency lock-in observed in vortex-induced-vibrations or flutter [17].

2.4.3 Wake interpretation

The wake behind the plate is intrinsically linked with the CN coefficient, as we intro-
duced in Chapter 0 and further discussed in Chapter 1. In particular, for finite-span
wings, the drag and lift predominance is bound with the interactions between the
leading-edge vortex and the wingtip vortices. Numerical simulations have been done in
the recent years on plates of various aspect ratios to try understanding the influence of
the angle of attack on the wake structure [9, 10].

Despite the lack of flow visualization in our experiment, the evolution of the wake
with θ can be inferred from numerical simulations [9]. Figure 2.10 represents a schematic
evolution of the wake as the angle of attack increases, going from a lift predominant
regime (θ > 70◦) to the drag dominated regime (θ < 30◦). At intermediate angle around
θ = 50◦, the plate of aspect ratio greater than 1 is already past stall, while the one lower
than 1 is still lifting.

For low angles of attack (top panel of Fig. 2.10), the wake can be likened to the
sole wingtip vortices as a strong pumping of the surface flow from the leading-edge
reinforce these two vortices. For such angles of attack, the leading-edge vortex can only
expand on a small height before separating and getting advected by the flow and is
thus mostly unstable. As the angle of attack increases, the leading-edge vortex has more
vertical space to develop and with it the wingtip vortices can no longer monopolize the
leading-edge surface flow. The roll-up distance of these two vortices also diminishes
up to the point that their rolling occurs before the trailing-edge. If the diameter of
the wingtip vortices is much smaller than the distance between them, this enables the
formation of the trailing-edge vortex, which as it connects to the wingtip vortices creates
the ring vortex.

For AR > 1, the wingtip vortices are thin compared to the span due to their spacing.
Because of this, leading-edge and trailing-edge vortices can develop easily and the
ring vortex can be achieved at low angles of attack. On the contrary, for AR < 1, the
wingtip vortices occupy almost the entire plate completely rolled-up and impair the
development of the trailing-edge vortex. As the chord is long, the pumping of vorticity
from the leading-edge is not the main provider of vorticity. Only at high angles of attack
is the leading-edge vortex strong enough to push around the wingtip vortices, which
leaves space for the trailing-edge vortex to expand and connect to the ring vortex.
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Figure 2.10: Left: AR > 1. Right: AR < 1. From top to bottom: θ > 70◦, θ ≃ 50◦, θ < 30◦.
The wake evolves in both cases from two wingtip vortices to a ring vortex. For AR
> 1, the transition occurs early in terms of angle of attack, and the ring vortex easily
detaches. On the contrary, for AR < 1, the wingtip vortices remain predominant for
a long range of angles and the then-formed ring vortex is quite stable as leading-
edge and trailing-edge vortices attach on a wide area stream-wise. Partially redrawn
from [9].

2.4.4 Polar curves

In addition to the CN coefficient, the main interest for aerodynamicists are lift and drag
coefficients. With only the normal CN coefficient, it is not possible to reconstruct the real
lift and drag coefficients, that also require the measurement of the tangential (radial)
force. However, by using the expression of the lift-induced drag as DL = L cot(θ),
the polar curve defined by CL = CN sin(θ) and CDL = CN cos(θ) = CL cot(θ) is at
least qualitatively correct, if not quantitatively. For instance, for the disk, using the
measurements from Flachsbart 1932 [7], the drag corresponds to the lift-induced drag
and the lift estimated by CL = CN sin(θ) collapses onto the original lift measurements.
In that case, no tangential contribution is observed and the quantitative agreement is
even reached, also supported by further experiments by Winter in 1936 [14]. In our case
however, as no experimental verification has been done on the tangential force, we will
not presume the quantitative character of the lift and drag coefficients.
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In Fig. 2.11, the polar curves for both AR < 1 and AR > 1 are presented. A first
observation is that drag or lift predominance is not entirely separated by stall. In
particular, for all tested aspect ratios above 1, lift predominance lasts to much higher
angle of attacks than the stall angle (Fig 2.11.b). In fact, when coming back to the
expression DL = L cot(θ), the lift or drag predominance changes at θ = 45◦ no matter
the configuration. Hence, it is not because stall occurs that lift is not higher than drag,
at least in the plate configuration. On the contrary, for aspect ratios below 1, stall occurs
after drag takes over lift in terms of angle of attack (Fig 2.11.a). It could also be noticed
that the extension of the definition of stall from section 2.4.2 can be interpreted as the angle
from which the lift coefficient stops increasing and either attends a plateau or drops suddenly for
aspect ratios greater than 1.

Another interesting trait is how the lift varies in the lifting part for a fixed drag
coefficient. For instance, for CD < 0.2, the lift coefficient increases with the aspect ratio,
like in animal flight [18, 19].

15/4
10/4
7/4
5/4

4/5
4/7
4/10
4/15

AR

AR

Figure 2.11: a) Polar curves for aspect ratios below 1. b) Polar curves for aspect ratios above 1.
Color codes for the aspect ratio, with dark blue the lower and maroon the higher.
Dashed line corresponds to the identity CL = CD.

2.5 perspectives

This chapter investigates the depths of the aspect ratio on the aerodynamic coefficient
through the use of the pendulum. As far as this chapter goes, a strong coupling intrinsic
to the wake seems to be at the core of the stall. By switching wake configurations
from two main wingtip vortices to a ring vortex, lift reaches a plateau or decreases
abruptly while drag increases almost continuously. As such, the study of the aspect
ratio influence on the CN coefficient opens many questions on the overall dynamics of
the wake and the relative importance of each vortex in the production of lift or drag.

The link between the angle of stall and the aspect ratio may be key to the under-
standing of the stall mechanism in 3D. In particular, the surface flow structure, like the
angle that delimits the leading-edge vortex and the wingtip vortex, is observed in the
literature to strongly depend on the angle of attack [20]. Visualizing the surface flow
on the various rectangles for different angles of attack would be ideal to further our
comprehension and understand how the angle of attack translates into a wake structure.
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Another remaining question, that we did not comment on yet, is how the CN coeffi-
cient at the stall angle varies with the aspect ratio. For both Eiffel and our measurements,
as the aspect ratio increases, the CN coefficient at θstall first increases and then decreases
with a maximum around AR = 1. This non monotonic evolution hints at complex
aerodynamic mechanisms in particular in the light of the change of the leading-edge-
and wingtip-vortex stability with the aspect ratio.

The lock-in of the stall angle for aspect ratios around 3 is also a first observation that
needs to be investigated, especially in the context of flight. For instance, two questions
that might arise from this are the following:

• To what extent is the stall angle important in the dynamics of flapping flight?

• Has evolution favored aspect ratio in the lock-in region for flight stability?
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3
S O LV I N G T H E H O L E P R O B L E M O F T H E
F LY- S WAT T E R

How do holes influence the 3D-structure of the wake of a square?

3.1 introduction

In addition to aspect ratio, shape and profile, another parameter can greatly affect the
aerodynamic properties of an object: porosity. In this chapter, through the example of a
fly-swatter, we aim at understanding how the presence of holes impacts on the wake of
a flat plate.

3.1.1 Natural porosity in Aerodynamics

Porosity is defined by the fraction of “void” in a material. In Aerodynamics, this
translates into the proportion of empty spaces in an airfoil/object into which the air can
rush. The common consideration is thus holes. Among porous media in Aerodynamics,
many are found in Nature and some have already been presented in Chapter 0.

A first example of natural “holes” is the molt of birds, mentioned in Chapter 2. Apart
from some sea birds which molt all their flight feathers simultaneously, most birds molt
step by step with only a few feathers growing at the same time [1]. Molting has been
repeatedly observed to have strong aerodynamic implications [2–5] and the complexity
of the molting pattern of some birds shows how gaps in wings may handicap flight [1,
6]. For instance, a marabout stork (Leptoptilos crumenifer) may molt two distant primary
feathers simultaneously (see Fig. 3.1.a) and then a secondary feather alone, centered
in the middle of the wing (see Fig. 3.1.b). As the secondary feathers constitute the
major part of the trailing-edge, it is possible that their molting impacts more on the
aerodynamic properties of the wing than the primary feathers.

a) b)

Figure 3.1: Marabou stork during molting. a) Primary feather molting (P6 and P10). b) Secondary
feather molting (S10) (See A.1 for the nomenclature of bird feathers).
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Another possibility for holes in bird wings is wing-feather damage, whose origin
may span from predatory attempts to accidental collisions. Feather damage is usually
compensated by a molt but some birds cannot afford to molt due to a bad nutritional
state for instance and have thus to fly with badly shaped wings. Despite the observation
of such increased damage in owl populations, a quantitative estimate on the impact on
their flight performance is yet to be done, in order for instance to understand whether
bad nutritional state may become a vicious cycle [7].

Not all holes in bird wings are of the same size as those resulting from the molt.
The structure itself of the wing is a porous medium, and in particular its feathers.
Feathers are constituted with arrays of barbs and barbules with small hooks (see Fig.
3.2 that act like unidirectional Velcro® [8]. This almost fractal structure of the feather
leaves a great deal of free space for the air to pass through and it has been observed
that air permeates better in secondary feathers than in primary feathers, with a great
discrepancy between the two sides of the feathers (inner vane vs outer vane) [9]. In
addition to this micro-structural porosity, some flight feathers also present slight holes
at the contact between the barbs and the rachis. These holes have been observed to
enhance the lift to drag ratio by reducing drag with a functionality possibly similar
to that of slats (leading-edge flaps) on airplane wings [10]. In contrast, small holes
elsewhere on the feathers lead to reduced aerodynamic performance like acceleration
and velocity, with no effects on maneuverability [11].

Figure 3.2: Anatomy of a flight feather. Drawing of a primary feather (P10) of a great cormorant
Phalacrocorax carbo (personal collection).

Micro-structural porosity is found in yet other contexts, apart from feathers, in nature.
One of the best examples is the dandelion seed which we presented in Chapter 0. The
pappus, the small parachute that tops the seed, is composed of thin feathery bristles.
The porous disk formed by these bristles drastically enhances drag when facing the
flow compared to standard parachutes by inducing a strong stable ring vortex [12].
Compared to a solid disk, the ring vortex behind the porous disk is steadier as it is
constrained by the flow going through the holed edges of the disk [13]. Some insects
also use the same principle to fly with bristled wings [14–16].

Depending on the size of its empty spaces, porosity shows quite different aerodynamic
effects. Small-scale pores tend to increase lift (equivalent to drag for parachutes) at
small Reynolds numbers. Large holes however are prone to weaken aerodynamic
performance.
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3.1.2 An everyday object as a pendulum

Holes thus appear to have contradictory effects in Aerodynamics. To investigate the
effect of porosity on the pendulum, we needed an object with holes, not too deformable
and for which it would be easy to modify the porosity by filling the holes, for instance,
or varying their diameter.

It would have certainly been possible to pierce holes in the disk plate, just as a hole
of various diameters as was used to study the effect of holes on tumbling in free fall
[17]. However, our daily life presents the ideal object for such study: the fly-swatter.

Patented in 1900 by Montgomery, the first modern fly-swatter, the “Fly-Killer”, was
composed of a rectangular wired net [18]. The use of wire-netting was introduced for
durability and elasticity but no reference on the aerodynamic advantage of such netting
is mentioned in the patent. In the later patents of Gatch in 1927 [19] and Brownson in
1938 [20], improvements on the fly-swatter mostly cover the handle, to facilitate the
killing motion. In 1939, Baker patented a different kind of fly-swatter, made of a rubber
surface with a few holes, which is supposed to act a pocket to trap the fly with the
elastic recoil from the surface killing the fly without crushing it [21]. This change was
motivated by avoiding property damage and traces when battling with and killing a fly.
Here again however, no aerodynamic considerations are presented in the patents and it
seems that holes were added empirically, to either reduce costs or increase elasticity.

a) b) c) d)

Figure 3.3: a) Fly-killer in 1900 from [18]. b) Fly-swatter in 1927 from [19]. c) Fly-swatter in 1938

from [20]. d) Fly-swatter in 1939 from [21].

The question is then if there is a particular aerodynamic advantage to having holes. A
naive approach gives a partial answer. By having holes, the fly-swatter allows the air in
front to go through it when it is swept. If it were solid, the air would be pushed away
and the fly as well. This only gives a partial answer to our question as it does not take
into account the size of the holes nor their aerodynamic properties.

The holes of a fly-swatter, about 2 mm-wide, are small enough to avoid the fly going
through and escaping in the unlikely event of it making contact right at the hole. At
this size, a hole is almost equivalent to a small vortex and small vortices are particularly
advantageous for destabilizing large 3D vortex structures. By adding this consideration
to the wake of a square plate and the link between the CN coefficient and the wake
structure from Chapters 1 and 2, it seems natural for the holes to greatly modify the lift
and drag production of a fly-swatter, through the modification of the wake compared
to that of a square plate. In particular the CN coefficient is observed for the fly-swatter
to present an absence of sharp stall, as observed in Fig. 3.4.
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Figure 3.4: Aerodynamic CN coefficient of the fly-swatter.

Preliminary observations of the transverse wake of a fly-swatter (Fig. 3.5) shows no
significant evolution of the mean field nor standard deviations on both the vertical
(w) and transverse (v) velocity with the angle of attack. As the fly-swatter is placed
like a pendulum, we consider the angle θ with respect to the vertical, rather than the
true angle of attack α = 90◦ − θ. The angle θ is also more relevant in the case of the
fly-swatter, as the fly-swatter is meant to face the flow it sweeps in. For comparison, the
reader is invited to refer to the evolution of the wake of a disk with the angle of attack
presented in Chapter 1, in Fig. 1.2.

The lack of evolution of the wake from θ = 20◦ to θ = 80◦ is most likely due to the
presence of the hole array in the fly-swatter. To understand how holes achieved such
an effect on a square plate, the rest of this chapter will focus on how filling the holes
modifies the CN coefficient of the fly-swatter. In particular, the CN coefficient of the
fly-swatter shows no sharp stall, with only a slight stagnation below 20◦ as shown in
Fig. 3.4 while for a solid square plate, Eiffel observed an especially sharp stall at about
θ = 51◦ (see Fig. 2.8.a) [22]. Holes therefore seem to restructure the wake in a way that
absorbs stall.

3.2 experimental setup

To investigate the effect of the holes on the fly-swatter, we placed a square silicon
fly-swatter1 of size a = 10 cm in the wind tunnel in place of the standard disk pen-
dulum (details of the pendulum are found in Chapter 0). The holes are squares of
size 2.4 mm equally spaced at a distance of 1.8 mm. Each row and column of holes
contains 22 holes, and in total 484 holes are present on the fly-swatter (see Fig. 3.6.a).

The resulting porosity is
surface of the holes

surface of the whole square
=

484 × 2.4 × 2.4 mm2

10 × 10 cm2 ≃ 30%.

The aforementioned preliminary observations on PIV measurements were conducted
on this fly-swatter.

1 The exact reference of this particular fly-swatter has unfortunately been lost when it was bought on
Amazon among other fly-swatters.
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Figure 3.5: Mean wake transverse field of a square fly-swatter for different angles θ. From left
to right: mean flow field (vmean,wmean), transverse velocity fluctuations vrms, vertical
velocity fluctuations wrms. From top to bottom: θ = 20◦, θ = 40◦, θ = 60◦, θ = 80◦
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a) b)

Figure 3.6: Fly-swatter used in the experiment from every angle, in original state (a) and partially
covered in tape (b). The taped configuration corresponds to the minimal tested cover
for the angular bistability to appear.

For the fly-swatter to move in a pendular fashion, it is placed facing the flow, at
the end of a rod as demonstrated in Fig. 3.6 and attached to the air bearing, acting as
the swivel. The distance between the pivot point and the center of the fly-swatter is
L = 17.3 cm.

To seal the holes of the fly-swatter, we use vinyl tape of width 1 cm. Vinyl tape
adheres well on silicon and no peeling was observed over the various experiments. The
vinyl tape was placed so that only rows or columns of 2-hole width were sealed by one
piece of tape. An example of a taped configuration is shown in Fig. 3.6.b.

A total of 18 different configurations of the hole-filling of the fly-swatter was tested.
For 11 of them, due to a slight curvature of the fly-swatter, two sets of measurements
were carried out, one with the curvature facing upstream and the other downstream, as
will be presented in section 3.3.2.

For each configuration, the experimental protocol is the same as in Chapter 2, the
flow velocity is first increased step by step and then decreased the same way. The mean
angle is measured over 15 s to 2 h for each flow velocity and then the CN coefficient is
computed from the following static equilibrium equation:

mgl sin(θ) =
1
2

ρU2a2LCN(θ) (3.1)

In Eq. 3.1, we made the choice of ignoring the filling fraction for the area a2 of
the fly-swatter, as we expect it to not be a simple proportionality factor due to the
aerodynamic coupling of holes in the array. This choice is also supported by the fact
that all data collapses at low angles (θ < 15◦) as we will see in the following section on
experimental results. In contrast, the mass m has been measured for each configuration,
due to the vinyl tape adding up to 2 g to the fly swatter in full fill.
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3.3 results

Of the 2484 possible configurations for the fly-swatter to be partially filled, we decided
to choose only 18 respecting some symmetry. A common trait of all the tested configu-
rations described hereafter is for instance left-right symmetry. For simplicity, we started
concentrically filling the fly-swatter.

3.3.1 Filling the holes concentrically

The fly-swatter can be filled concentrically in two different ways, either from the center
towards the edges or the reverse. Each filling step adds a two-hole wide square band to
the preceding step, as indicated in Fig. 3.7.

Figure 3.7: Influence of the concentric sealing of holes on the angular equilibrium positions and
the CN coefficient. Top (a,b): θ(U) portraits for different hole-sealing configurations.
Bottom (c,d): associated CN coefficient reconstructed using Eq. 3.1. Left (a,c): concen-
tric filling starting from the center towards the edges. Right (b,d): concentric filling
from the edges towards the center. Color codes for the configuration: the lighter the
color, the more holes sealed.



84 solving the hole problem of the fly-swatter

Starting from the center, in Fig. 3.7.a, the θ(U) portrait does not vary much until the
filling of the two last lines of holes at the edges. In particular, bistability is only present
for the fully taped configuration. In contrast, in Fig. 3.7.b, when starting from the edges
towards the center, an angular bistability appears from the 4th configuration, with a
6 × 6-hole square left unfilled. In both cases, the solid square (all holes filled) presents a
large bistability. The reconstructed CN coefficient (from Eq. 3.1) presents a sharp stall
at θ = θstall ≃ 53◦, quite close to that observed by Eiffel (θstall ≃ 51◦ in Fig. 2.8.a) and
Flachsbart (θstall ≃ 49◦ in Fig. 2.7.a) [22, 23].

No significant changes are observed on θ(U) in Fig. 3.7.a) nor the CN coefficient in
Fig. 3.7.c) as the filling fraction is increased from the center, until the last fill. A slight
increase of CN at high angles (θ > 75◦), close to the horizontal, is observed for the
second-to-last fill, for which only a band of 2 holes is left open at the edge. For the
centerwise filling, in Fig. 3.7.d), the CN coefficient evolves initially in the lift-dominated
regime at high angles (θ > 60◦). Once this part of the CN coefficient reaches its final
value of the fully filled (solid) configuration, the separation of the drag and lift branches
is initiated and grows to its maximal extent in the solid configuration. Almost no
difference is observed between the solid case and the case when a 2 × 2-hole square is
left open at the center.

From these results, it appears that for a sharp stall to exist, edges cannot be holed
while the center has to be covered to a certain extent. In order to understand where
exactly the sharp stall stems from, the filling of the edges lines has been refined. Before
discussing it, we first observed that the fly-swatter could present a natural curvature,
which would affect its aerodynamic response as we expose in the following section.

3.3.2 Curvature effects on CN coefficient

When testing whether the side that is filled by the tape influences the appearance of the
bistability, a collateral change has been observed. The fly-swatter is slightly curved and
curvature can have a strong effect on aerodynamic properties, as observed already by
Flachsbart in 1932 [23].

In the following, we will refer to the intrados as the concave part of the fly-swatter. When the
intrados is facing the flow, it is the configuration in Fig. 3.8.a.

To test the influence of the side on which the tape is added, four sets of experiments
were done per concentric filling configurations, two with the intrados on the same side
of the tape and two with the tape opposite to the intrados. In the end, no influence of
the tape was observed, while the orientation of the intrados seems to greatly alter the
CN coefficient as shown in Fig. 3.8.

In Fig. 3.8.a-b), the evolution of θ(U) with the filling is similar but a few small
differences come to light. In particular, the bistable zone is much narrower when the
intrados faces downstream (b) than upstream (a). For the same flow velocity, for instance
U = 6 m · s−1, the angle attained is much higher in the latter configuration, leading to a
higher CN coefficient for high angles, as observed in Fig. 3.8c-d.
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Figure 3.8: Influence of curvature on the aerodynamic response of the partially filled fly-swatter.
Top (a,b): θ(U) portraits for two curvature configurations with concentric filling
starting from the center towards the edges. Bottom (c,d): associated CN coefficient
reconstructed using Eq. 3.1. Left (a,c): Intrados facing upstream. Right (b,d): Intrados
downstream-oriented. Color codes for the configuration, same as in Fig. 3.7.a) and
3.7.c.

By looking at angles instead of flow velocity, the difference is much smaller than an-
ticipated. When the orange filling attains θ = 60◦ for both configurations, the solid
case reaches θ = 68◦ for the downstream-facing intrados and θ = 70◦ in the upstream
configuration. This impression of dissimilarity is more of an optical illusion due to the
difference in flow velocity.

It is on the CN coefficient (Fig. 3.8.c-d) that the difference between both curvature
configurations is the most visible. On average, for all configurations and all angles, the
CN coefficient is much higher for the intrados facing upstream. A striking observation
is on the sharpness of the stall. For the fully-filled fly-swatter, the stall is indeed much
smaller when the intrados is facing downstream (d) than upstream (c), with a factor of
two for the amplitude of the discontinuity.
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Furthermore, in the low-angle region, in Fig. 3.8.c), CN appears to diverge, while in
Fig. 3.8.d), it seems to fall to 0. This is true whatever the filling configuration, which
supports the conjecture that this is an effect of curvature. To better understand how
such a difference arises, visualization of the wake and pressure measurements would
be interesting. However it would require much more experiments and could not be
done within the time frame of my PhD project.

Hence, in the following, as in the previous section, only the case of the intrados facing
upstream (Fig. 3.8.a and c) is considered. Similar results are likely to be obtained in the
other configuration, as has been verified for the concentric filling.

3.3.3 Where stall starts

From section 3.3.1, we know that bistability emerges only when filling the last two lines
of holes on the periphery if the inner holes are all sealed. To understand the emergence
of bistability in this final step, seven configurations with a partially filled periphery
were tested.

We present in Figure 3.9, the configurations that expand the bistability. In Figure
3.10, the configurations, that despite a similar filling fraction present no bistability, are
described.

Figure 3.9: Expanding the bistability by partially filling the outer rows of holes on the fly-swatter.
Color codes for the configuration, described at the bottom. a) θ(U) portrait. b) CN
coefficient reconstructed from a) and Eq. 3.1.

In Fig. 3.9.a), the two first configurations do not present any bistability, while it
develops from the four others. From the third configuration, the range of bistable
positions increases with the filling fraction.
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The bistability thus first arises, when in addition to the center of the fly-swatter, the top
two rows are covered with tape in their entirety in the third configuration. The filling of
the two top corners seems fundamental, as, if they remain uncovered as in the second
configuration, bistability does not exist.

In Fig. 3.9.b), the same increase is observed for the CN coefficient, with a higher
increase for angles above 60◦, seemingly correlated with the separation of the lift and
drag branches of the CN coefficient. More precisely, we can see that the filling of the
two corners only brings a modification of the CN coefficient for a few angles between
63◦ and 67◦. This slight increase is nonetheless sufficient to induce a “sharp” stall as all
other values remain the same, as an inflection point appears on the CN coefficient. It
marks the separation between the drag- and lift-dominated regimes. When the filling
fraction increases, the lift-dominated part of the CN coefficient gains ground in angle
while the drag branch recedes.

A possibly coincidental characteristic, common between all these CN coefficient with
a θ(U) bistability, is the gap of unattained angles remaining quasi-constant. Indeed,
despite the growth of the bistable region in flow velocity and in angles, it seems that
the range of “forbidden” angles is almost constant, about 6◦, while the stall angle shifts
towards 50◦. This observation is for now not understood and if not an experimental
artifact, may be linked with wake properties unknown to us at this stage.

Figure 3.10: Partially filling the outer rows of holes on the fly-swatter without achieving bista-
bility. Color codes for the configuration, described at the bottom. a) θ(U) portrait.
b) CN coefficient reconstructed from a) and Eq. 3.1.

For non-bistable configurations, in Fig. 3.10.a), no bistability is observed for any
configuration apart from the fully filled one. The overall shape of the θ(U) portrait does
not vary but to attain high angles like θ = 60◦, the flow velocity required is lower as is
the filling fraction. A particularity of all non-bistable configurations tested thus far is
the presence of holes on the upper rows.
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Looking at the CN coefficient (Fig. 3.10.b), the sharp stall is only present for the solid
case (last configuration) and most of the variation between the configurations occurs in
the range of angles θ ∈ [45◦, 70◦]. Over the three last configurations of increasing filling
fraction before the solid configuration, the CN coefficient is observed to only slightly
increase at θ = 60◦, while otherwise remaining the same. In particular, the addition

of the two upper corners shifts
dCN

dθ
from negative to positive at θ = 58◦ between the

fourth and fifth configurations.
By matching the CN coefficient evolution with the filling pattern of the fly-swatter,

it appears that filling the lateral edges is sufficient for obtaining the CN coefficient of
the solid case on the drag branch (θ < 45◦) and on part of the lift branch (θ > 70◦).
However, the region in which the sharp stall occurs for the solid case remains smooth if
the whole of the upper rows is not covered.

This detailed study of the filling of the last two rows of the fly-swatter suggests that
a necessary condition for the existence of the bistability is the filling of the upper rows
from edge to edge. It is sufficient for the inner part of the fly-swatter to be covered as
well, but not if only the edges are, as in Fig. 3.7.b. The minimal bistable configuration
we have tested is thus the third one in Fig. 3.9, with the whole center covered and the
two upper rows sealed as well in their entirety. It is possible that it is not the absolute
minimal hole configuration , as 2484 − 18, i. e. more than 4.9 × 10145, filling possibilities
remain.

3.4 discussion

3.4.1 Wake and stall entanglement

From section 3.3.3, knowing the filling fraction of the fly-swatter is not sufficient to
predict the existence of bistability, as configurations with the same filling fraction (for
instance: Fig. 3.9 4th configuration and Fig. 3.10 3rd configuration) present quite differ-
ent behaviors and CN coefficient. The filling fraction plays a quite distinct role on the
CN coefficient from that of the aspect ratio developed in Chapter 2.

The position of the sealed holes is key to understanding how the bistability and the
sharp stall develop. As we already mentioned, a small hole can be seen as a small vortex
and small vortices tend to destabilize large 2D structures when stabilizing 3D vortices.
Therefore, when the upper rows of the fly-swatter are left open, it is likely that the
leading-edge vortex, which is most a 2D vortex, cannot form properly (see Fig. 3.11 left).
Similarly, when the side lines are not covered, it is more difficult for wingtip vortices
to grow (see Fig. 3.11 middle). In particular, the wingtip vortex formation requires an
anchor point for the roll-up, as they result from the finite span of the fly-swatter. When
this anchor point is available but the sides remain holed, the wingtip vortices may be
“lifted” above the fly-swatter (see Fig. 3.11 right) thus not acting to their full extent on
the fly-swatter in terms of forces.
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Figure 3.11: Schematic representation of the wake behind partially-sealed fly-swatters in the
three first configuration of 3.9. The trailing-edge vortex is represented in yellow, the
leading-edge vortex in red and the wingtip vortices in orange (same colors in Fig.
3). In blue are represented the hole-induced vortices.

Note that this is hand-waving phenomenology and a thorough PIV analysis is
required to fully explain the aerodynamic mechanism at work in the process of stall for
porous plates.

3.4.2 CN perturbation at θ = 15◦

At θ = 15◦, the CN coefficient presents a discontinuity whatever the hole configuration,
as can be observed in Figures 3.7, 3.8, 3.9 and 3.10. To try to explain this phenomenon,
two possibilities come to mind: one extended from Chapter 2 and the other from the
literature.

As the discontinuity exists even when the fly-swatter square is completely sealed,
it seems unrelated to holes. From Chapter 2, for θ about 20◦, a longitudinal flat plate
stalls. Since the fly-swatter is attached to a rod, resembling a longitudinal flate plate,
the discontinuity might be an experimental artifact resulting from the interaction
of the wake of the rod and of the fly-swatter. However, as the same rod was used
for both the fly-swatter and the rectangles, we would expect the same perturbation
on the CN to be visible on the rectangle data, which is not the case as shown in Fig. 2.8.b.

In fact, when we consider the fully filled fly-swatter, there remain a few holes open at
the extreme top, as the fly swatter is not strictly square, as presented in Fig. 3.6. Thus
the discontinuity might be related to the holes in some fashion. To look for possible
aerodynamic mechanisms from holes that could explain the bistability, perforated plates
are a system quite similar to our fly-swatter [24].

In the case of perforated plates, when flow penetrates in the holes, a recirculation
bubble is created in each hole and its size grows as the plate gets closer to the horizontal
(Fig. 3.12). A conjectured estimate of the occupation ratio s/D of the recirculation bubble
in the pore is given by:

s
D

= sin1.3(θ) tanh
(

4
t
D

)
(3.2)

with t/D the aspect ratio of the pore defined in Fig. 3.12, formula adapted from [24].
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Figure 3.12: Schematic representation of the inner wake of a perforated plate, from [24].

For θ = 15◦, the occupation ratio of the recirculation bubble is estimated at s/D ≃
17%, which does not seem to present any particularity , as we would expect s/D ∼ 1 to
trigger a CN discontinuity. This equation 3.2 however was formulated in [24] for a 2D
plate and the exponent 1.3 and the factor of four are determined empirically. Hence,
it would be presumptuous to fully consider this a correct estimation in our particular
case.

3.5 perspectives

By sealing holes on a fly-swatter, we observe the emergence of bistability. In all tested
configurations that present a bistability, the upper rows are filled and a major part of
the holes around the center are also sealed off.

Seen in a different light, the bistability of a square plate disappears as soon as holes
are open on the upper rows, without impairing the lift production for angles θ > 70◦.
Leading-edge porosity may thus be interesting for dampening stall. Surface porosity
close to the leading-edge on airfoils has also been observed to reduce pressure load due
to wing-vortex interactions [25].

An aspect we have not investigated here is the noise reduction by the holes on the
fly-swatter. Indeed, porosity at the leading- and trailing-edge is often associated with
noise reduction [26]. The small vortices induced by the pores destabilizes the two
leading- and trailing-edge vortices, which are responsible to a large extent for the sound
noise production of planes.

This effect of porosity was, in fact, first observed in Nature [27] and biomimetic
concerns spread it to aerospace engineering [28].

Owls are particularly known for their silent flight and recent studies have shown how
the particular structure of their flight feathers enables this feat [29]. The owl feather
presents serrations at its leading-edge, and sometimes also throughout the inner vane.
Serrations are an ultra-thin comb of barbules and increase the porosity of the feather.
The comb breaks the two-dimensionality of the leading-edge vortex which is no longer
sustained [30].

While a complete study on the noise produced by the fly-swatter depending on its number
of holes is way beyond the scope of this thesis, the reader is invited to do a small experiment at
home. The experiment consists in listening to the sweep of the fly-swatter both in its original
perforated condition and with all its holes sealed.
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4
TA X O N O M Y O F T H E P E N D U L U M
D Y N A M I C S I N T H E B I S TA B L E R E G I O N

What temporal dynamics does the pendulum present in the bistable zone?

4.0 introduction

This chapter is quite different from the others as it presents a variety of behaviors
observed in the bistable region of the pendulum, without trying to understand them
at this point. Some will be encountered again and explained in Chapter 5 and others
have been described in Chapter 2. As such, the chapter will be divided in sections each
corresponding to a “taxon” of behavior. A total of 5 different behaviors are documented
here and not only can they be investigated for this particular pendulum, they can also
be found in other bistable systems, as we will see in the following. The wind-swept
pendulum used in this thesis may thus be used as a model system to understand in
greater depth particular dynamics of dynamical bistable systems. The 5 events discussed
here are the following:

1. Spontaneous one-way transitions,

2. Both-ways transitions,

3. Unstable position visits,

4. Overshoots,

5. Excursions.

4.0.1 Multistability in fluid dynamics

In Physics, and in particular in both Solid and Fluid Mechanics, the stability of any
equilibrium state is always a central question for any studied system.

A standard example for this in Solid Mechanics is the
number and stability of equilibrium positions for a homo-
geneous solid.
Though V. I. Arnold conjectured that the minimal number
of equilibrium positions for a homogeneous solid would
be 2 in 1995, it was only in 2006 that a solid verifying
this conjecture would be constructed by Várkonyi and
Domokos: the Gömböc [1, 2], and also exists in Nature as
the shell of the Indian Star Tortoise (Geochelone elegans).
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In Fluid Dynamics, the Navier-Stokes equations are still fully understood, even less
so solved, as only the existence of multiple weak solutions in particular configurations
has been mathematically proved [3–5]. From this on, multistability of flows is almost a
given, which experiments and numerical simulations tend to confirm this.

Among common multistable flows, some arise from flow instabilities like Rayleigh-
Bénard convection [6], while others are due to the presence of a solid-fluid boundary
like the wake behind bluff bodies [7]. Fluid multistability is often geometrical, in the
sense that the flow structure presents different equilibrium states (e. g.1-cell/2-cell
configurations in Von Kármán flows). When this structure can not be observed, due
to the lack of visualization possibilities for instance, other flow-derived quantities can
be found to be multistable, such as the magnetic field in dynamo experiments [8], the
torque difference between the rotating disks of von Kármán flows [9] or the wall shear
stress in a rotating spherical Couette flow [10].

Other examples of multistable flows are found in climate sciences, such as flow
streams, both zonal jets and ocean currents [11, 12]. Geometrical multistability is even
observed in standard flow configurations like Taylor-Green vortices [13] or Taylor-
Couette flows [14]. The transition to turbulence may be also seen as a bistable system,
as for the same Reynolds number, both laminar and turbulent flows can exist [15].

In this plethora of multistable systems in Fluid dynamics, the aerodynamic bistability
of the pendulum may be only one system among others [16]. However, its simplicity
coupled with the diversity of its dynamics make it an ideal candidate to investigate
some aspects of stochastic multistable phenomena. This chapter will thus present an
overview of which aspects are explorable in our particular pendular system.

4.0.2 Taming the bistability

In the context of dynamical systems, bistability often occurs with a subcritical bifurca-
tion.

In the pendulum case presented here, two parameters control the shape of the
bistable zone in the (U,θ) space, both of them geometric. The first one is the shape of
the pendulum itself, as discussed in Chapters 2 and 3. By changing the shape, one can
influence the angular dependence of the CN coefficient and thus the resulting bistability.
As there is yet no common parameter to quantify the effect of the plate shape on the
CN , the first control parameter for the bistability is taken as the CN coefficient itself,
provided it is either referenced or can be known otherwise. The second parameter, once
the overall shape is fixed, comes from the equilibrium equation (from Eq. 0.5), which
can be rewritten as:

sin
(
θeq
)

CN(θeq)
=

1
2

ρ

g
SL
ml

U2 = γU2 (4.1)

The control parameter is then γ =
1
2

ρSL
mgl

which is fixed by geometrical constraints

such as the distance L between the swivel and the disk and the distance l between the
swivel and the center of mass. As we know from Chapter 0, bistability occurs when, for
one value of the flow velocity U, Eq. 4.1 has at least two solutions – three when one is
unstable. At fixed shape, hence for a given CN(θ), the bistable zone, in the (U, θ) space,
can only deform in the flow velocity direction and not in the angular one.
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Figure 4.1.a) presents the particular case of a disk that will interest us in the following.
In this figure, the solutions of Eq. 4.1, the angles θeq, are plotted against the variable
γU2. For the range of γU2 identified by γU2

min and γU2
max (dotted lines), 3 possible

equilibrium positions θeq exist. Umax is the highest flow velocity for which bistability
exists, and Umin the equivalent minimal flow velocity.

While this range γU2
max − γU2

min (thus in the γU2 space) is constant for a given
shape, the range of flow velocity ∆U for which bistability occurs can be tuned via
γU2

max − γU2
min = γ∆U(Umax + Umin). By varying only γ, it is possible to thus narrow

or broaden the bistable range of the flow velocity.

a) b)(    +     )

Figure 4.1: a) Solutions θeq to Eq. 4.1 as a function of γU2 for a disk. The bistability range is
delimited by the dashed lines. b) Theoretical ∆U as a function of the distance l
between the pivot point and the center of mass for the standard 4 cm disk pendulum.
The value for the standard configuration of l = 5.7 cm is shown by an orange square.

For a disk, the upper limit of multistability is γU2
max = 0.68 and the lower limit is

γU2
min = 0.45, as shown in Fig. 4.1.a. Assuming the gravitational acceleration and the

air density constant, respectively at 9.81 m · s−2 and 1.18 kg · m−3, it results that ∆U is a

function of
ml
SL

as:

∆U = Umax − Umin ≃

√
1
γ
(
√

0.68 −
√

0.45) ≃ 0.62

√
ml
SL

(4.2)

This calculated ∆U is a theoretical estimate. In the experiment, the “real” ∆U is smaller due
to ambient noise which destabilizes the extreme equilibrium positions and the turbulence rate
which tends to smooth out the CN coefficient.

To illustrate this, let us take the example of the standard 4 cm disk pendulum, which
we can attach to different lengths, so that the distances from the swivel to the disk L
and to the center of mass l vary, while keeping the distance L − l between the disk
and the center of mass constant. In this configuration, the ratio l/L can be rewritten as

l
l + (L − l)

, and thus only a function of l. Figure 4.1.b) presents the typical values of ∆U

obtained for the standard 4 cm disk pendulum, used in the experiments and described
in Chapter 0. The particular configuration that was used to study the transitions in this
chapter and in Chapter 5 is marked by the square.



98 taxonomy of the pendulum dynamics in the bistable region

a)

b)

c)

Figure 4.2: a) Standard 4 cm-pendulum. b) Fly-swatter in minimal bistable configuration (see
Chapter 3). c) PIV 6 cm-pendulum.

A third way to modify the bistability, through the CN coefficient, is to make use of
the turbulence rate. It has been shown that incoming turbulence can modify the angular
dependence of the CN coefficient up to the disappearance of the bistability [16]. This
will not be investigated here as such a study requires a specific apparatus in the wind
tunnel. A few preliminary results, extended from [16], will only be briefly mentioned in
Chapter 7.

4.0.3 Experimental setup

In this chapter, to investigate the different behaviors, three different pendulums have
been used in Fig. 4.2

a) the standard pendulum with a disk of 4 cm diameter (details in Chapter 0), whose
∆U is represented in Fig. 4.1.b by the square.

b) the fly-swatter pendulum of minimal bistability (see Chapter 3),

c) and the PIV pendulum with a disk of 6 cm diameter used for the PIV measurements
(details in Chapter 1).

An estimate of the maximal ∆U from Eq. 4.2 for the two disk pendulums is ∆U4 ≤
1.3 m · s−1 for the standard pendulum and ∆U6 ≤ 0.72 m · s−1 for the PIV pendulum.
The bistable velocity range is thus for the PIV pendulum only half the size of the one of
the standard pendulum.

For the fly-swatter, as we have no measurements of CN at fixed angles, it is difficult to
estimate the extremal values of the CN required in Eq. 4.2. In particular, extremal points
are usually unreachable experimentally due to natural fluctuations. We have therefore
no theoretical estimate of ∆U for the fly-swatter, though thz experimental ∆U is close
to that of the PIV disk.
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4.1 spontaneous one-way transitions

When ∆U is large, as it is for the standard pendulum, only one-way transitions are
observed, close to Umin and Umax. As we will see in Chapter 5, it is not that the reverse
transition is not possible, but that it takes an infinitely long time on average to achieve.
For instance, if we do a 3 h-long experiment with the highest flow velocity for which the
bistability is observed U ∼ Umax, only one upward D→L transition will be recorded,
usually occurring in the first few minutes.

In Fig. 4.3, typical time series of recorded transition events are presented. The angle
oscillates for a variable waiting time around an initial position, with fluctuations of
about 1−2◦ before suddenly jumping to another angle, whose value is substantially
outside that of natural fluctuations. For an upward transition, the initial angle is about
47◦ for a final angle around 56◦. For downward transitions, initial angles are about 53◦

with final angles about 43◦. The waiting time ahead of the transition spans from a few
seconds to more than a thousand seconds. This does not change whether the pendulum
is attached using the potentiometer or the air bearing, only the intensity of fluctuations
around each initial and final position varies from one configuration to the other (with
damped fluctuations when the potentiometer is used due to the additional solid friction).

This particular one-way transition is the central event investigated in Chapter 5, so
that we will no linger more on the subject. Similar one-way transitions are also observed
in other systems, such as for instance von Kármán flows [9].

4.2 both-ways transitions

When ∆U is small, for instance ∆U < 1 m · s−1, transitions in both directions may occur
for a given flow velocity.

For instance, with the fly-swatter, we can record bistable angular signals at constant
flow velocity (see Fig. 4.4), for which the two equilibrium positions are switching back
and forth over small characteristic time scales. In Fig. 4.4, 41 transitions between the
two states are observed in a one-hour experiment. Such both-ways transition behavior
has never been observed for the standard pendulum as presented in Fig. 4.1.

In addition to having a small velocity range for the bistability, the angular range of
the bistability of the fly swatter is also much narrower, with a difference between the
two stable positions less than 4◦. While one may think this could be a reason for such
jumpy behavior, the PIV pendulum also exhibits the same bistable switching. In Fig. 4.5,
an angular time series is presented, with increasing the flow velocity step by step (about
δU ≃ 0.02 m · s−1) every hour. As shown on the probability density function (pdf) of
the angle θ, the bistability evolves with the flow velocity U, with a strong bimodality
of the pdf. The predominance of one position on the other changes from the lower
position (θ ≃ 47◦) one at low velocity to the higher position (θ ≃ 54◦) for high flow
velocity. While the relative proportion of each position over a given time varies with
U, the difference θ f − θi between the upper and lower positions is almost constant, at
about 6◦.
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a)

b)

c)

d)

e)

f)

g)

h)

waiting time

waiting time

long

short

Figure 4.3: Examples of one-way transitions. a-d) Experiments conducted with the potentiometer.
e-h) Experiments conducted with the air bearing. a,c,e,g: upward D→L transitions.
b,d,f,h: downward L→D transitions. Both long and short waiting times ahead of
transition are observed for all configurations.
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Figure 4.4: One-hour long angular time series θ(t) for the fly-swatter at constant flow velocity.
The fly-swatter switches 41 times between two equilibrium positions, at θ = 48◦ and
θ = 52◦.

a) b)

Figure 4.5: a) Angular time series θ(t) obtained with a step by step increase in flow velocity
after each hour. b) Corresponding probability density functions (pdf). Color codes
for the flow velocity. Dotted lines represent the same experiment with decreasing
flow velocity. Experiments conducted with the 6 cm-pendulum used for the PIV
measurements in Chapter 1.

Such bistable switching is observed in many fluid systems. In particular, geometrical
bistabilities are especially susceptible to this kind of behavior. For instance, bluff body
wakes present left-right reversals in their vortex structure [17], while magnetic field
switches direction in dynamo experiment and simulation like in the Earth [18, 19].

4.3 unstable position visits

During a transition, if an unstable equilibrium position exists between the two positions,
sometimes the system may visit a brief instant this position. Such a position may not
exist if at least one position is metastable. For a system with two stable positions
resulting from a subcritical bifurcation, an unstable position is required to exist by the
Poincaré-Bendixon theorem.
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When the standard pendulum is placed in almost laminar flow (below 1% turbu-
lence)1, it may visit its unstable position during any transition, by slowing down at a
particular angle as it transits. In Fig. 4.6.a), an example of such slowdown is presented
for the angular time series. This phenomenon is best shown in the phase portrait (θ,θ̇) in
Fig. 4.6.b. Indeed, the phase portrait provides a complementary approach in particular
as θ̇ directly translates the slowdown by first increasing as the transition starts, then
returning close to 0 and increasing again to leave the unstable position and finish the
transition. In Fig. 4.6.b), the slowdown is notably visible as all curves are two-lobed,
while a direct transition is only one-lobed.

a) b)

Figure 4.6: a) Angular time series θ(t) at the moment of transition. b) Phase portrait (θ,θ̇)
of various transitions. Experiments performed with the standard pendulum from
Chapter 0 in the wind tunnel at LEGI in Grenoble.

Looking at the slowdown time ttrans (see Fig. 4.6) for each transition, it appears that
this time ttrans spent in the unstable position follows an exponential law as shown
by its cumulative distribution function in Fig. 4.7. Even with as few as 14 transitions,
a characteristic time of transition τtrans of about 0.55 s seems a good estimate for an
exponential distribution for this particular set of experiments. It might be possible to
reconstruct part of the energetic landscape using this time τtrans and the characteristic
time (τT

c , see Chapter 5) preceding transition in both directions, through for instance
Kramers relations [20]. However, due to the separation of time scales between the
upward and downward transition for the standard pendulum (about 6 to 8 orders of
magnitude between the two times τL→D

c and τD→L
c for a given γU2 ), this approach

could not be pursued in the framework of this PhD thesis. Other configurations might
be more interesting for this study, like the fly-swatter with its both-ways transitions.

The unstable position is not always visited during a transition. For instance, natural
fluctuations may bring the pendulum close to the unstable position before returning to
its initial position. For the fly-swatter that jumps intensively back and forth, the unstable
position can be visited multiple times as shown in Fig. 4.8.a. The unstable position is
represented in yellow.

1 The experiments in laminar flow were conducted in the wind tunnel of the LEGI in Grenoble, a wind
tunnel similar to the one in Lyon though with much lower turbulence rate thanks to the presence of guide
vanes and contraction ahead of the test section.
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Figure 4.7: Cumulative distribution function of the time of transition ttrans for a set of 14 upward
transitions in laminar flow. Experiments performed in the wind tunnel at the LEGI
in Grenoble.

We see that, for instance at t ≃ 500 s and t ≃ 900 s, the unstable position is visited
first from the upper position and then from the lower. In both cases, the fly-swatter
returns to its origin position right after. At t ≃ 660 s, a slowdown during a transition is
also observed, like the one for the standard pendulum.

a) b)

Figure 4.8: a) 20-minute long time series of the fly-swatter angle θ(t). Three angles are high-
lighted: the lower equilibrium position, the upper equilibrium position and the
unstable position. b) Associated probability density function (pdf) with two fits: a
sum of two gaussian distributions and a sum of three gaussian distributions, corre-
sponding to the positions highlighted in a).

To better quantify the importance of the unstable position for the fly-swatter, we
can look at its angular probability density function (pdf) in Fig. 4.8.b. It exhibits two
well-separated modes of almost equal prominence. However when fitting this pdf
with the sum of two gaussian functions, in green, the probability of the intermediate
position is not well estimated by almost a factor of two compared to the experimental
pdf in black. By adding a third gaussian to the fit, in grey, we completely recover the
experimental pdf. The mean lower equilibrium angle, determined by the blue gaussian
in Fig. 4.8.b, is represented by the full blue line in Fig. 4.8.a) with its standard deviation
in dotted lines. Similarly, the red lines in Fig. 4.8.a) correspond to the upper equilibrium
position.
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The unstable equilibrium position (yellow in Fig. 4.8) presents a higher standard
deviation than the equilibrium positions as the fly-swatter does not stay a long time
near it with only flybys. Statistical convergence of the probability for this position is
thus more difficult to achieve.

In the case of bluff body wakes, when the wake reverses from a large recirculation
flow towards the left to its mirror equilibrium towards the right, the system goes
through a weak symmetric state, which corresponds to the unstable position [21, 22].

4.4 overshoots

In the transition presented in Fig. 4.6.a), two features are highlighted. The first one is
the slowdown about which we commented previously in section 4.3 and the second one
is the subject of this section: the presence of an overshoot. An overshoot occurs when the
pendulum exceeds for a short time its final position at the end of its transition. These
tend to represent an excess in kinetic energy for crossing the energy barrier between
the two stable equilibrium positions. Examples of overshoots are visible in Fig. 4.9.a.

a)

b)

Figure 4.9: a) Examples of transitions in laminar flow presenting overshoots. b) Superposition
of the overshoots observed in a), all overshoots last approximately the same time,
beforethe stabilization of the pendulum is achieved. Experiments performed in the
wind tunnel at LEGI in Grenoble.

Stacking all the overshoot events synchronized by their start as in Fig. 4.9.b), it appears
that all overshoots take approximately the same time to complete tover ≃ 0.5 s. Compared
to the exponential distribution from the slowdowns (section 4.3), overshoots seem to
follow a gaussian distribution with a small standard deviation (std(tover) ≃ 0.1 s).
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This particularity, resembling an overdamped second-order oscillator, might result
from the pendulum characteristics rather than from aerodynamic considerations. In-
deed, overshoots are only observed for experiments conducted with the potentiometer
and none were observed for the air bearing (in the latter configuration, the angular
natural fluctuations are much stronger with the lack of solid friction). The threshold for
determining an overshoot with the air bearing is much more difficult to estimate, just
like for downward transitions as the pendulum also presents higher fluctuations on the
lower (drag-dominated) branch.

Hence, overshoots may be experimental artifacts due to the potentiometer, but even
so their presence may help us understand how solid friction impacts on the overall
dynamics of the system.

4.5 excursions

In section 4.3, we mentioned the possibility of visiting the vicinity of the unstable posi-
tion, without going all the way through the transition, thus going back to its original
position. Such an event can be defined as an excursion. In general, the excursion is not
necessarily constrained to the unstable position and we will extend its definition to
any incursion into the hysteretic cycle without concluding in a change of equilibrium
positions. Examples of such excursions for the standard pendulum in laminar flow are
presented in Fig. 4.10.

a)

b) c) d)A B
A A

B

Figure 4.10: a) Example of a complete time series of a transition in laminar flow. b-d) Zoom on
particular excursion events, with the reconstruction of the aerodynamic torque Γaero
represented in the bottom figures. Experiments carried out in the wind tunnel at
LEGI in Grenoble.
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Two types of excursions can be identified from the angular time series in Fig. 4.10.a:

• Type A excursions are short, ∆texc ≤ 0.2 s, almost symmetric in the initial and final
motions, as in Fig. 4.10.b.

• Type B excursions on the contrary are of longer duration, ∆texc ≃ 0.5 − 1 s, with a
quick motion to its extremum and then a slow return to the initial equilibrium
position, as in Fig. 4.10.c.

Through the reconstruction of the aerodynamic torque using equation 5.4, Γaero(t) =
Jθ̈ − mglsin(θ)2, we can observe the aerodynamic torque variations during an excursion,
shown in Fig. 4.10 bottom row. From this, we can extract the signature of the two types
of excursions. Type A excursions present a sharp “V” shape in the torque evolution,
with intense negative torque (Fig. 4.10.b). On the other hand, Type B excursions show a
torque evolution with more of an “N” shape. A last observation is that despite attaining
similar angles, about 4◦ above the mean angle, the intensity of the synchronous torque
fluctuations is quite different between the two types of excursions.

Due to this particularity, it might be possible that these two excursions emanate from
separate aerodynamic mechanisms. For instance, with a typical time ∆texc of about
0.1 s, Type A excursions occur over the time of a vortex shedding event, as a frequency
of 10 Hz is close to the Strouhal frequency for the disk, as mentioned in Chapter 0.
With duration ∆texc ≃ 0.5 s, a Type B excursion seems to correspond more to a natural
response of the pendulum, as if the pendulum were disturbed by incident turbulence,
for instance, but would relax to its initial position through its own dynamics almost
unrestrained by aerodynamic considerations. Type A excursions on the contrary would
result from abnormal vortex shedding events, possibly of the leading-edge vortex, which
tends to be the most stable vortex in the wake and would thus generate strong pressure
fluctuations when shedding abnormally.

The mechanisms of the excursions are, however, only speculative at this point and a
thorough study of a higher number of events, ideally completed with PIV measurements
in the mean wake, is fundamental to gain a better understanding of this phenomenon.
Preliminary PIV measurements have been carried out and will be presented in Chapter 5.

We can find an equivalent of the excursion we present here in the geomagnetic field.
An excursion is then usually defined as a deviation of the virtual geomagnetic pole
resulting in a reduction of the magnetic field projected onto its initial axis by a factor
less than 1/

√
2 [23]. Examples of such magnetic excursions have been recorded on

Earth [24] and in dynamo experiments and numerical simulations [18, 19, 25, 26]. In
rotational spherical Couette flow, excursions, as incursions in the bistable region, are
also observed [10].

2 θ̈ is calculated by differentiating twice the angular time series, which however requires a strong filtering
on the signal to smooth the acquisition noise.
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4.6 conclusion

In this chapter, we have presented a bestiary of various temporal dynamics observed
for the pendulum in the bistable zone. We made the choice of keeping this bestiary
mostly descriptive as the following chapter, Chapter 5, will enter more into the details
of transitions, in particular one-way transitions. In that chapter, the time distribution of
the transitions will be discussed and a model will be proposed based on the transition
to turbulence.

The diversity of dynamics of the pendulum exposed in this chapter is a good example
of how a simple pendulum can show dynamics as complex as that of natural systems.
The pendulum can be used as a toy system to explore dynamical system properties in
addition to probing intricate aerodynamic couplings, as we presented in Part i.
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5
R A R E - E V E N T T R I G G E R I N G F O R
S P O N TA N E O U S T R A N S I T I O N S

What triggers the spontaneous transitions of the pendulum, ambient turbulence or
vortex-induced events?

5.1 introduction

Spontaneous transitions in multistable systems are always shrouded in mystery as to
what might trigger such events. Sometimes ambient noise is responsible for the change
of stability, sometimes on the contrary its absence.

To understand what kind of trigger lies behind spontaneous transitions, a few steps
are usually required, common throughout the diversity of multistable systems.

First, an analysis of the statistics of the transitions is often useful. By observing a large
number of transitions, similarities or invariants may come to light, precursor events
appear and well-documented statistical properties may arise. A standard statistics in the
study of transitions between stable states is the distribution of waiting/survival times.
The waiting time ahead of a transition is defined by the time in a given initial state before
the transition occurs. For systems presenting two mirror stable states, geometric like a
bluff-body wake [1], or scalar like a magnetic field (projected onto a reference axis) in
a dynamo [2], the waiting time can be seen as the time before reversal. For transient
systems, the waiting time is closer to a lifetime of the transient state, such as puffs in
the transition to turbulence [3]. For independent events, the probability distribution
of the waiting times is an exponential law. Such distributions are found throughout
physical systems, from turbulent lifetimes [4] to climate events return times [5] and
radioactive degeneracy [6]. Not all phenomena are bound to exponential distribution.
For instance, in the case of earthquakes, long-time correlations between two events are
observed, thus the return time distribution is found to follow a power law exponential
(or heuristic) probability distribution [7]. From the time distributions, characteristic
values can be extracted such as the mean, the standard deviation or the skewness.
The mean is usually considered to define a characteristic time τc of the phenomenon.
Exponential distributions have the particularity of having equal mean and standard
deviation.

After collecting enough statistics for a given set of control parameters, it is possible
to look at the evolution of the characteristic time with a parameter. For instance, in
a von-Kármán flow driven by two counter rotating disks, the characteristic time of
spontaneous symmetry breaking is observed experimentally to follow a −6 power law
scaling of the dimensionless frequency shift between the two disks [8]. For the transition
to turbulence, a double-exponential scaling is observed for the lifetime of turbulent
puffs as a function of the Reynolds number in pipe, plane Couette flows and forced
isotropic turbulence [9–11].

109
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From there on, two things come to mind: looking for a model or looking for a trigger.
Each can lead to the other, as a model can provide insights on the intrinsic phenomenon,
while identifying a trigger can orient the search for a model.

In bistable systems, a common modeling approach is based on energy potential wells
and transitions are stimulated by a noise intensity kT, exceeding the potential energy
barrier ∆E set by the energy of the unstable fixed point between the two stable positions.
The characteristic time then follows an Arrhenius law, τc = τ0 exp(−∆E/kT). This was,
for instance, observed for climate models [12], glass transition [13] and sometimes for
the transition to turbulence [14]. Other models supported by extreme or rare events are
found in magneto-hydrodynamic dynamo [15] and transition to turbulence [16], among
others.

In aerodynamic wake bifurcations, it is widespread to look for a mechanism or trigger
to the transition as it occurs within the structure of the wake itself. Indeed, experimental
observations of the transition often already encompass flow visualization and force or
local pressure measurements so that there is a direct access to local variables instead of
integrated ones like turbulence rate or thermal noise. In particular, the flow dynamics of
wake reversals have been thoroughly investigated both numerically and experimentally
and precursor events on the drag force measurements have been reported [17, 18].

In this chapter, we will follow the same path towards a better understanding of the
spontaneous transitions observed for the pendulum and described in Chapter 4. At
first, we will investigate the statistics of waiting times ahead of transitions for a given
initial angle, before comparing the characteristic times obtained. Inspired by studies
on the transition to turbulence, a model will be proposed to provide insights on the
possible aerodynamic mechanisms at work. Finally, preliminary flow visualization
during transitions will be presented with the identification of potential precursors to
the transition in the wake of the pendulum.

This chapter is based mainly on a published article [19].

5.2 experimental protocol

The standard pendulum described in Chapter 0 presents a large bistability between the
drag-dominated branch (D-branch) and the lift-dominated branch (L-branch), as shown
in Fig. 5.1. The observed transitions were all one-way in this configuration, as discussed
in Chapter 4. Thus, to accumulate a substantial number of transitions for this system, a
specific experimental protocol had to be designed. Note that the transitions presented
earlier for the fly-swatter were observed both ways and could be recorded at fixed flow
velocity over a long period of time, provided that no atmospheric pressure drift exists
as discussed in the interlude of this chapter.

The protocol implemented is sketched in Fig. 5.1 for the case of upwards (D→L)
transitions. As previously mentioned, when the pendulum jumps from the D to the
L-branch at U = 6.4 m · s−1, it stays in the L-branch as long as the control parameter is
kept constant. Therefore, we modulate the flow velocity to aggregate the statistics of
thousands of transitions.
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Figure 5.1: Left: Angular position θ of the pendulum as a function of U. Right: time series
illustrating the protocol used to probe the statistics of spontaneous jumps from the
the D- to the L-branch, at Utest = 6.4 m · s−1 (see text for details)

At time t = 0, the wind velocity, initially at Utrans = 5 m · s−1, below the bistable
region, is rapidly increased to a fixed test velocity Utest, within the bistable region
(e.g. 6.4 m · s−1) . After a short transient (dynamics displayed in green in Fig. 5.1),
the pendulum reaches the initial average equilibrium angle θi (in the D-branch), and
spontaneously jumps to the L-branch after a time τ, finally reaching a final average
equilibrium angle θ f (displayed in orange in Fig. 5.1). A few seconds after the transition,
the flow velocity is decreased back to Utrans where it is maintained for typically two
minutes in order to restore the global flow structure in the wind tunnel (displayed
in light blue in Fig. 5.1) before repeating the cycle. During the time interval τ, the
equilibrium position of the pendulum fluctuates around the average equilibrium angle
θi, with a standard deviation ∆θ. Note that ∆θ ≪ |θ f − θi|, so that there is no ambiguity
between the occurrence of a transition and simple natural fluctuations.

This protocol is repeated hundreds of times (typically 200 times) for several values
of the test velocities Utest, allowing to analyse the statistics of the waiting times τ as
a function of the control parameter of the bifurcation. A similar protocol is used for
probing the L→D transition, for which Utrans lies in the L-branch, above the bistable
region (e.g. 7 m · s−1), and is decreased down to a prescribed test velocity Utest within
the bistable region (e.g. 5.7 m · s−1).

As this protocol can be kept running for long periods of time, temperature drifts are
likely in the wind tunnel due to turbulence, as the wind turbines provide the system
with constant energy. To avoid such drifts, it is possible to add a third velocity stop in
the protocol. Before returning to the transient flow velocity Utrans, either a complete
halt of the wind tunnel is possible for a few minutes to stabilize the temperature to the
room temperature or a high flow velocity is set to stabilize the temperature at a higher
level, thus diminishing the air density. This, for instance, could be used for keeping a
velocity instruction Utest constant while slightly changing the initial angle θi. Indeed,
the equilibrium position θi is set by the dynamic pressure ρU2

test from the following
equation:
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−Γweighti = mgl sin(θi) =
1
2

ρLSU2
testCN(θi) = Γaeroi (5.1)

With this consideration, it appears that while the practical control parameter of the
experimental is Utest, the physical one is the aerodynamic torque which is ultimately
related to θi. We thus chose to present our experimental results as a function of the
initial angle θi, a better proxy for the physical control parameter than the flow velocity
Utest. Indeed, because of small variations of atmospheric pressure P and temperature

T, and hence air density ρ =
PM
RT

, the aerodynamic torque varies over a series of
measurements at constant velocity Utest, resulting in a series of θi values typically
spanning 0.14◦ around a mean value θi.

In the following, the test velocity will be simply referred to as U, as the transient velocity
Utrans does not play any role in the temporal dynamics of the transitions.

5.3 waiting time probability

5.3.1 Survival function

By reproducing the protocol about 800 times for the upwards (D→L) transitions and
1800 times for the downwards (L→D) transition, we obtained well-converged probability
distributions for the waiting times τ ahead of transition for different values of θi (namely
six for the D→L transitions and eight values for the L→D transitions). For a better
characterization of the probability distribution, we chose to look at the survival function
Pθi

(τ ≥ t), which in the case of an exponential distribution is an exponential, rather
than the cumulative density function which is Pθi

(τ < t) = 1 − exp
(
−t/τc(θi)

)
.

Figure 5.2: Survival distribution function of the waiting time τ for different values of θi for the
(top) D→L and (bottom) L→D transition. Dotted lines represent the exponential fits.
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In Fig 5.2, the survival functions are presented for the 14 tested initial positions
θi, sorted by the D→L and L→D transitions. As represented by the dotted lines, the
experimental distributions Pθi

(τ ≥ t) are fitted by exp
(
−t/τc(θi)

)
with a very good

agreement, just as observed in other multi-stable systems [20–23].

A striking feature brought to light by Fig. 5.2 is that the characteristic time-scale τc

strongly depends on θi. It spans nearly four orders of magnitude when θi spans only a
few degrees for both D→L and L→D transitions.

A closer look at Fig. 5.2 shows deviations from the exponential law for some experi-
ments, in particular in the long term behavior (e.g. θi = 46.9◦ for the D→L transition)
– likely due to finite size sampling, as observed for similar distributions [9] or small
deviations of the physical control parameter ρU2 during a series of measurements at
constant velocity U due to environmental variations.

Interlude
During long experimental runs, it appeared that the time of the transition would
evolve towards longer or shorter time over the duration of the run. This led to non
exponential survival functions at first for a given flow velocity. In particular, during
one run, a storm passed above Lyon and the time statistics resulting from that run
were especially far from an exponential distribution.
The explanation for this was that, instead of simply using U as the control parameter,
the true control parameter is in fact ρU2 and as ρ = Patm M/RT, the atmospheric
pressure Patm and the ambient temperature T are fundamental to correctly estimate
the aerodynamic torque on the pendulum. From this consideration, the measurement
of the temperature and the atmospheric pressure in the wind tunnel were added to
the acquisition.
An example of a long experimental run for the fly-swatter with a consequent mete-
orological drift is shown below, with close to proportionality between ρ and θ and
between θ and Patm, as the temperature remained constant. In the first few hours,
the bistable switching (see Chapter 4) is observed, but, by t = 20 h, the lower branch
could no longer subsist for the measured value of ρU2.

Left: Angular time series over 60 h with the corresponding air density ρ measured simultaneously. Right: drift of the
angle θ with the atmospheric pressure Patm.
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5.3.2 Double-exponential distribution

Reducing 2596 recorded spontaneous transitions into 14 characteristic times can be a bit
extreme to try to understand how the characteristic times depend on the initial angle,
especially as the initial angle presents fluctuations over a series and not all series are
converged to the same extent. In particular, series with a long characteristic time have
fewer experimental points than series with a short one.

In order to take a step back and consider the entirety of the experimental data,
Figure 5.3 presents the waiting time τ as a function of the initial angle sin(θi). Note that
according to Eq. 5.1, sin(θi) is a accurate proxy for the aerodynamic torque. The colorbar
corresponds to the joint probability of the variables sin(θi) and τ, computed as the
local density of the experimental points in the (sin(θi), τ) space, through a 2D-Voronoï
computation. The characteristic times τc(θi) computed from the exponential fits for
several values of θi are located close to the brightest spots in Fig. 5.3 (not displayed for
the legibility of the figure).

Figure 5.3: Waiting time τ as a function of sin(θi) for the two transitions. Dash-dotted corre-
sponds to the best fits according to Eq. 5.2. Inset: Evolution of ln(ln(τ/τ0)) as a
function of sin(θi). See text for details.

Weighting the experimental points with their joint probability, the waiting times
for each transition T (D→L or L→D) are fit with excellent agreement by a double-
exponential function as:

τ = τT
0 exp

[
exp

(
sin(θi)− sin

(
θT

0
)

ηT

)]
. (5.2)
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Following the previous studies in which double-exponential dependency was found,
the fitting parameter τT

0 is expected to be a characteristic time scale of the system, which
stems here from the spectral signature of the pendulum. 1/τT

0 is taken as the frequency
of the first peak in the power spectral density of θ. In particular, τD→L

0 ≃ 0.11 s and
τL→D

0 ≃ 0.09 s. These times might be interpreted as vortex shedding characteristic times
as we will detail further later. In the fitting procedure, only sin

(
θT

0
)

and ηT are free
fitting parameters. The best fits are shown as dash-dotted lines in Fig. 5.3 for both
transitions. We will also discuss later a potential interpretation of both sin(θ0) and η.

5.4 rare-event triggering model

We present in the following a rare-event phenomenology for this behavior, inspired by
a model previously proposed in the context of transition to turbulence.

5.4.1 Transition to turbulence

As we previously mentioned, similar double-exponential statistics were reported for
the characteristic lifetime of turbulent puffs as a function of the Reynolds number
Re during the transition to turbulence in pipe flows [3, 24] and were analyzed in the
framework of rare-event dynamics [25, 26]. After a brief description of this framework
for the transition to turbulence, we will present a model for the pendulum transitions
following the same steps to explain double-exponential dynamics.

In pipe flows, for Reynolds num-
bers between laminar and fully
turbulent states, turbulence devel-
ops as turbulent puffs that may
evolve in three different manners.
They can remain, decay or split.
The double exponential statistics
are found for the time to decay
and time to split as a function of
the Reynolds number, as shown
in the opposite figure [3, 4].

Mean lifetime of turbulent puffs before decaying or
splitting in pipe flow with double-exponential statistics
from [3].

The rare-event-based phenomenology proposed first by Goldenfeld et al. in 2010

[25] assumes that the turbulent state cannot be sustained when the turbulent kinetic
energy ⟨u2⟩ lies below a given threshold Bc for a certain time τ0, which depends on
the Reynolds number. In other words, turbulence dies if all local maxima of the ki-
netic energy lie below this threshold Bc during at least τ0. This can be reduced again
to the fact that the global maximum of the kinetic energy in the puff lies below the
threshold during a time τ0. In the transition to turbulence phenomenology, the charac-
teristic time scale τ0 was proposed to be the correlation time of the flow fluctuations. It
represents the memory lapse of the flow after which the flow “forgets” its previous state.
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From the gaussian distribution of the velocity fluctuations, the maxima of the turbu-
lent kinetic energy follow a Gumbel distribution [25]. The probability that the maximum
of kinetic energy is below the threshold is the cumulative probability for all possible
maximum values below the threshold:

P(⟨u2⟩max < Bc) = exp
[
− exp

(
−Bc − µ

β

)]
(5.3)

with µ and β characteristic parameters of the Gumbel distribution, which we will
describe in more detail for the pendulum.

By directly linking the probability of decay τ0/τc to the
probability P(⟨u2⟩max < Bc), the double-exponential statis-
tic is recovered by a Taylor-expansion of Bc around Re0

the Reynolds number for which the turbulent puffs are
observable for the first time, Bc = Bc0 + Bc1(Re − Re0) +

O((Re − Re0)2) [25].
Note that when the characteristic time of transition τc is
above 2 τ0, the threshold lies in the sub-gaussian part of
the Gumbel distribution. It follows that it is not extreme
events (on the over-gaussian tail of the Gumbel) that are
responsible for the decay, but rather rare events.

5.4.2 A model for the pendulum

Let us extend this approach to the bistable pendulum by focusing first on the L→D
transition.

We propose the following mechanism: the pendulum jumps when the L state cannot
be sustained, or equivalently when all maxima of the aerodynamic torque Γaero lie below
a given threshold over a certain time τ0. The lift (L) state is thus only maintained thanks
to enough upwards fluctuations of the pendulum. As soo, as these fluctuations are no
longer sufficient, the pendulum falls towards the drag (D) state, like the relaminarization
of the turbulent puff. To support this phenomenology and its implications on the time
statistics, we first need to verify that the torque fluctuation maxima follow a Gumbel
distribution.

To compute the instantaneous aerodynamic torque Γaero(t), we use the momentum
equation of the pendulum (Chapter 0, Eq. 0.1) without assuming a model for the
aerodynamic forces:

Jθ̈ = −mglsin(θ) + Γaero(t), (5.4)

with J the moment of inertia of the pendulum.

The aerodynamic torque Γaero(t) is retrieved from the time series θ(t) following
Eq. 5.4. The probability density functions (pdf) of the torque fluctuations δΓ = Γaero(t)−
⟨Γaero(t)⟩ (where ⟨Γaero(t)⟩ is the time-averaged torque) display exponential tails, as
shown in Fig. 5.4.a.

Exponential-tailed distributions present Gumbel distribution for their extrema. This
leads to the rare-event statistical approach [27].
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To support this, the maxima δΓmax of δΓ are computed over disjoint time intervals
τL→D

0 (as in Section 5.3.2), for each realization during the waiting time (of length
τ ≫ τL→D

0 ) before the transition to the D-branch. For each θi, accumulating statistics
over all realizations leads to more than 105 samples of maxima measurements, whose
pdf are displayed in Fig 5.4.c.

These pdf are fitted as Gumbel distributions P(δΓmax) =
1
β exp [−X/β + exp (−X/β)],

where X = δΓmax − µ and µ and β are calculated from the mean and the standard devia-
tion of the distribution. The mean value is µ + βγ , with γ ≃ 0.577 the Euler-Mascheroni
constant and the standard deviation is βπ/

√
6. For each value of θi, β and µ have been

extracted from experimental signals. The agreement between the pdf and the Gumbel
distribution is excellent over three decades as shown in Fig. 5.4 and further checked on
the cumulative distribution function in Annex B.1.

Assuming that a L→D transition occurs when the maximum δΓmax of torque fluctua-
tions lies below a threshold δΓc during a time τL→D

0 , we now apply the statistical model
developed for turbulent puffs [25] to our experimental data in order to compute δΓc as
a function of sin

(
θi
)
. For a given value of θi, the probability p that the transition occurs

during τL→D
0 is given as p = τL→D

0 /τc(θi), and is linked to the pdf of the maxima of δΓ
as p = P(δΓmax < δΓc).

Using the parameters β and µ extracted from the pdf of δΓmax, the threshold δΓc can
then be estimated from the relation 5.3 [25]:

p(θi) =
τ0

τc(θi)
= exp

[
− exp

(
−δΓc(θi)− µ(θi)

β(θi)

)]
. (5.5)

The evolution of δΓc/β as a function of sin
(
θi
)

is shown in Fig. 5.4.d. The best linear
regression (dash-dotted lines) matches the slope of the double-exponential fit following
Eq. 5.2. As such, η appears to be intrinsically determined by the system as both a purely
statistical approach on the waiting time and its estimation based on dynamical criteria
give similar values.

The linear evolution of δΓc is, moreover, understood from the fact that µ(θi)/β(θi)

is observed constant for the L→D transition (see Fig. 5.4.e). From the definition of µ

and β, we can rewrite this as the fact that for the whole angular range, the standard
deviation of the torque fluctuation maxima is proportionnal to its mean value, by a
constant factor, recalling a homogeneous dilatation. We have no explanation for now on
this homothetic property of the Gumbel distribution, but it might either be coincidental
or resulting from aerodynamic effects.

This translates into the following. As sin
(
θi
)

decreases from 0.82 to 0.79, the threshold
normalized to the torque standard deviation decreases, which corresponds to more
probable transitions, and thus shorter waiting times. On the other hand, the standard
deviation of the torque fluctuations strongly increases as sin

(
θi
)

decreases (see Fig.
5.4.e), which is reminiscent of the increase of standard deviation of the pendulum
angular position ∆θ, color-coded as in the inset of Fig. 5.3).
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Figure 5.4: Normalized and centered pdf of the torque-fluctuation a) δΓ, b) minima δΓmin and
c) maxima δΓmax and associated fitted Gumbel distributions (dash-dotted lines). d)
Evolution of δΓc/β and µ/β, as a function of sin

(
θi
)

and linear fit (dash-dotted lines).
e) δΓc and β as a function of sin

(
θi
)
.

µ/β is observed to be independent of θi. δΓc unexpectedly increases as θi approaches
the edges of the bistable zone. Yet as β shows a stronger increase, τc gets smaller.
The color code for θi is identical to that of Fig. 5.2.
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While we detailed the whole analytic process for the L→D transition, it applies also
to the D→L transition symmetrically. A transition occurs when the D state cannot be
sustained anymore i. e.when the minimum aerodynamic torque during time τD→L

0 lies
above a given threshold. This transition is thus controlled by the pdf of the minima
δΓmin of δΓ, computed over τD→L

0 , and displayed in Fig. 5.4.b), in excellent agreement
with Gumbel distributions for the same reasons as the pdf of the maxima. A similar
application of the rare-event statistical model leads to conclusions similar to those
drawn for the L→D transition and summarized in Fig. 5.4.d) for sin

(
θi
)

between 0.725

and 0.745, see also Fig. 5.5.e. Here again, the linear best fits of δΓc/β as a function
of sin

(
θi
)

shown as dash-dotted lines in Fig. 5.4.d) are in excellent agreement with
those shown in the inset of Fig. 5.3, a strong asset for the validity of the proposed
phenomenology.

5.4.3 What can we tell from this rare-event model

From the model presented above, though no direct information on the possible trigger
to the transition is exposed, a few points can give insight on the transition mechanisms.

First, the characteristic times τT
0 ≃ 0.10 s identified for the double-exponential fit

correspond to Strouhal numbers St = ddisk
Uτ0

≃ 0.07 and recall values reported in previ-
ous studies for transverse vortex shedding (in the x − y plane) for a disk at non zero
incidence [28]. In contrast, the correlation time of the incoming flow is τf low ≃ 0.95 s,
based on the hot-wire measurement. This separation of time scales suggests that the
mechanisms behind the transition should be found in the wake of the disk rather than
in the ambient turbulence in the incoming flow.

Secondly, as we already expect the transition dynamics to be strongly associated
with the CN coefficient, we can propose a possible interpretation of the sin(θ0) and η

parameters from the double-exponential fit (Eq. 5.2). In the transition to turbulence,
the equivalent to sin(θ0) is a Reynolds number Re0. Re0 is suggested to be the minimal
Reynolds number above which turbulent puffs are visible, in the sense that their lifetime
is long enough for an experimental or numerical observation. As such, sin(θ0) may
represent the extremal θ for which the bistability can be observed. If we consider the
CN coefficient to be fully continuous, sin(θ0)

T would correspond to the angles θmeta

for which dCN
dθ |θmeta = CN(θmeta) cot(θmeta), limit cases for the existence of the angular

bistability for the dynamical system point of view (see Interlude in Chapter 2).
For η, the interpretation is more difficult, in particular as we lack estimates for this

fitting parameter in different configurations and no interpretation is proposed in the
model for the transition to turbulence. It is only seen as the first-order coefficient from
the Taylor-expansion of the threshold. If, however, we try to combine the rare-event
transition model to a double-well energy-based model like an Arrhenius law, the pa-
rameter η might be linked with the potential energy landscape. For instance, it might
be related to the depth or width of the mean potential well of the initial position. In
that sense, we might expect this parameter η to be a function of the curvature of the
potential well, thus a linear combination of cos(θi) and dCN

dθ |θi . This however is just a
hypothesis and further investigations are required to confirm or reject it.
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A last point can be extracted from the value of the threshold of torque fluctuations
for the transition relative to the mode µ of the Gumbel distribution. As we already men-
tioned, the threshold is in the rare-event (sub-gaussian) part of the Gumbel distribution.
This means that the threshold corresponds to a lack of upward fluctuations for a L→D
transition (resp. downward fluctuations for a D→L transition). Therefore, the transition
does not require an extreme downward (resp. upwards) fluctuation to occur. Looking
at the wake structure from Chapter 1, we go from a quasi-periodic vortex shedding in
the D-branch towards a more plane-like quite stable wake with two wingtip vortices in
the L-branch. A possible interpretation for the mechanism of the downwards transition
would for instance be that the two vortices connect close enough to the disk so that
the wake temporarily forms a ring vortex limiting upward torque fluctuations from the
leading-edge vortex. For the upwards transition, right after its shedding, the ring vortex
might take time to regrow and the two wingtip vortices have time to roll-up without the
formation of the trailing-edge vortex and thus limit the downward torque fluctuations.

5.5 precursors events in the wake?

5.5.1 Transition and PIV in the experiment

As we have conjectured that a major part of the mechanism to transition lies in the
wake dynamics, we have tried to identify structural changes in the wake using PIV
measurements synchronized with the detection of the transition. To this end, due to
experimental constraints for transverse PIV (see 0.4.1.5 for more details), we changed
from the 4 cm disk pendulum to the 6 cm disk pendulum for which UL→D ≃ 2.8 m · s−1

and UD→L ≃ 3.4 m · s−1, thus much lower than the velocities for the initial pendulum
detailed in Fig. 5.1. The same protocol as previously is used for the transition but
with an added part. The detection of the transition also triggers the PIV camera and
the triggering signal is back-acquired to synchronize both acquisitions. The signal
acquisition is done at a frequency of 10 000 Hz (only three transitions were acquired at
only 1000 Hz) with the PIV acquisition at 4000 fps. The plane of visualization is taken
about 4 cm behind the disk. This induces a delay of visualization if anything happens
in the near wake. As the advection velocity within the wake is not yet completely
determined experimentally right behind the disk, we chose to keep the synchronization
at the trigger point.A synchronous evolution of the wake structure and of the angular position
corresponds to a wake modification born at the location of the disk occurring before the motion of
the pendulum.

In total, 10 transitions have been recorded with both angular and PIV measurements,
summarized in Table 5.1. Among those are six L→D and four D→L transitions. For each
transition, the video lasts 3.15 s with the detection of the transition between t = 1.5 s
and t = 2.5 s. In addition to these transitions, two excursions L→L were recorded
with PIV measurements. One excursion, of type B (see Chapter 4), has been recorded
standalone, as its large amplitude over a long duration triggered the acquisition system
like a transition. The other excursion is of type A (see Chapter 4) and is much shorter. It
was recorded right after an upward transition. These excursions have yet to be analyzed
thoroughly and will thus only be mentioned succinctly in the next section 5.6, as a
perspective to this study.
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Event D→L L→D L→L

Number of realizations 4 6 2
Mean initial angle θi 48.5◦ 52.5◦ 53.5◦

Mean final angle θ f 53.5◦ 48◦ 53.5◦

Excursion angle θexc – – 51.2◦

Total duration ∼6.5 s ∼7.7 s ∼2.0 s
Number of images ∼ 26000 ∼ 30800 ∼ 8000

Table 5.1: PIV and angular characteristics of the different recorded transition events. Total
duration and number of images cover for the transition or excursion only, though
sometimes the definition of the start and end of the transition was difficult on the
experimental angular signal.

5.5.2 Wake structure on both sides of the transition

For simplicity, we will first present only one example of a D→L transition in this section,
while the next section will detail both D→L and L→D transitions. As the initial and
final angles on both directions of transitions are almost identical, we can expect a strong
symmetry of the two cases in particular in the wake structure, before and after the
transition.

Figure 5.5 shows the mean wake structure behind the disk before and after the
transition.

At the lower angle, before the transition on the D-branch, the wake presents intense
flow velocity fluctuations (more than 1 m · s−1), with two large regions of transverse
velocity fluctuations vrms and a large horse-shoe region of fluctuations for the vertical
component wrms. The intense fluctuation at the bottom of the horse-shoe is the signature
of a strong trailing-edge vortex separation. The two symmetric regions on fluctuations
around z = 20 mm corresponds to the location of the wingtip vortices. Their fluctuation
both in the transverse and vertical directions is a marker of the transverse vortex
shedding.

On the contrary, after the transition, on the L-branch, the wake fluctuates much less,
with about only 0.6 m · s−1 standard deviations. The regions of fluctuation are both
also reduced, with a rounder shape for the vertical velocity fluctuations. The maximum
of the vertical velocity fluctuations is no longer at the bottom but rather on the side,
meaning that the trailing-edge vortex is less intense not only compared to the D-branch
but also compared to the vertical fluctuations of the wingtips vortices.

This change of structure confirms that something happens in the wake during the
transition and to this end, let us have a closer look at the temporal dynamics of the
wake in the strong-fluctuation regions.
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Figure 5.5: Wake structure before and after a D→L transition.
Top: time-averaged flow structure before the transition, on the D-branch. Middle:
Angular time series of the D→L transition. Bottom: time-average flow structure after
the transition, on the L-branch. Left: standard deviation of the transverse velocity
vrms. Right: standard deviation of the vertical velocity wrms.
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5.5.3 Events in the wake

To look at the temporal dynamics of the wake during a transition, we decided to focus
on the strong-fluctuation zones identified in Fig. 5.5. By visualizing the flow velocity
at a constant height or abscissa over the duration of the transition, we can observe
interesting behaviors as shown in Fig. 5.7.c-f) for a D→L transition and 5.8.c-f) for a
L→D transition.

For instance, by looking at the time
evolution of the vertical velocity along a
horizontal line in the region of intense
fluctuation, we can partially reconstruct
the trailing-edge vortex (TEV). Signatures
such as the presence or absence of the TEV
or the Strouhal number can be extracted
from the spatio-temporal diagram.

Indeed, when a vortex of direction
co-planar with the plane of visualization
goes through it, it modifies the flow
velocity in one direction first before its
core crosses the plane and then in the
other direction.

In particular, in the case of a detached
trailing-edge vortex going through a trans-
verse plane, its signature is a starting up-
ward flow velocity w followed by a down-
ward motion, as shown in Fig. 5.6, due
to its vorticity along −ey. We can identify
such trailing-edge vortices in Fig. 5.7.e-f.

Figure 5.6: Trailing-edge vortex going through
a transverse visualization plane over half a
Strouhal period T.

For vortices that present a vorticity normal to the plane of visualization, the temporal
fluctuations of velocity can indicate the displacement of the center of the vortex, without
the calculation of the vorticity and finding the location of its peak. In Fig. 5.7.c, the time
series of the position of the center of the vortex along the y-axis is estimated from the
spatio-temporal evolution of the vertical flow velocity w: it corresponds to the location
where w = 0. This is shown by the white part in the figure. The z coordinate of the
center of the vortex can similarly be estimated from the spatiotemporal evolution of the
horizontal flow velocity v.

Thanks to these considerations, even without computing the vorticity quantitatively,
we can observe structural modifications of the wake during the transition, as shown for
a D→L in Fig. 5.7 and for a L→D in Fig. 5.8.
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Figure 5.7: Details of the temporal dynamics in the wake for a D→L transition. a-b) Average flow
structure and fluctuations over the whole duration of transition (a: vrms, b: wrms). d)
Angular time series. c,e-f) Spatio-temporal evolution of w along a horizontal segment.
The corresponding segments for each spatio-temporal diagram are represented with
matching colors in panel b.

In Fig. 5.7.c), a precursor1 to the upward transition seems to be a reduction of the
intensity, as well as a slow-down, of the oscillation of the center of the wingtip vortex at
t = 2 s,. Conjointly with a slight delay at t = 2.1 s, a trailing-edge vortex goes through
the plane at the altitude corresponding to the upper angle region of fluctuation, in Fig.
5.7.e. At the same time, the trailing-edge vortex shedding at the altitude for the initial
position dies down in Fig. 5.7.f. Time landmarks are shown by white lines throughout
Fig.5.7.c-f.

For the downward transition in Fig. 5.8.d, the precursor to the transition seems to
be on the contrary the disappearance of the trailing-edge vortex at t ≃ 1 s, in Fig. 5.8.e.
Later at t = 1.4 s, the trailing-edge vortex reappears in its lower final position, in Fig.
5.8.f. At about t = 1.5 s, the fluctuations of the center of the wingtip vortex increase to
the intensity of the ones observed in the lower angles for the upward transitions (Fig.
5.8.c and 5.7.c). Time landmarks are shown by white lines throughout Fig.5.8.c-f.

1 As we already mentioned, thus a wake event synchronous with the angular evolution
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Figure 5.8: Details on the temporal dynamics in the wake for a L→D transition. a-b) Average flow
structure and fluctuations over the whole duration of transition (a: vrms, b: wrms). d)
Angular time series. c,e-f) Spatio-temporal evolution of w along a horizontal segment.
The corresponding segments for each spatio-temporal diagram are represented with
matching colors in panel b.

Interestingly, it seems that despite moving early in the transition process, the trailing-
edge vortex directly attains its final position for both transitions. The change of dynamics
for the center of the wingtip vortex also happens around the start of the transition.
Hence, we have not yet identified a possible “closing” mechanism to the transition to
assist the complete travel, compared to an excursion which comes back to the same
branch. It might also be that the three observations of modification of the wake are
alone to initiate the transition, so that as soon as the transition starts with these wake
restructurings, it will conclude in a change of branch. As such, excursions would not be
aborted transitions but a different mechanism.
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5.6 perspectives

In this chapter, we have presented the temporal statistics of the spontaneous transitions
observed in our pendulum system. As it exhibits a double-exponential distribution, we
have developed a phenomenological model inspired from the transition to turbulence,
where such double-exponential statistics are common. The resulting phenomenology
focuses on the fact that transitions are not triggered by extreme fluctuations towards the
final position but rather by a rare lack of fluctuations leading back to the initial position.

The preliminary analysis of the synchronized PIV measurements brought up some
possible triggers to the transition, in particular in the trailing-edge vortex. However, a
more thorough study is necessary to fully understand the global changes happening
during the transition and its chronology, in a similar fashion as has been done for bluff
body wake reversals [18]. The vorticity analysis in particular, as initiated in Chapter 1,
might provide insight on the balance between the vortices during the transition.

The comparison of the wake structure evolution during a transition and an excursion
will also be central in the comprehension of both phenomena. With the short duration
of type A excursions, structural changes are expected to be minute due to the flow
time response, which is why it might be difficult to observe them in the vorticity, as
it requires a rather strong spatial filtering. To overcome this flaw, proper orthogonal
decomposition (POD) analysis applied to the raw velocity field might be an interesting
method to try out on the PIV measurement, as it has already proved its effectiveness on
bluff body wakes [18, 29].

Complementary investigations on various pendulum configurations remain also to
be pursued, to document in particular the physical meaning of η, θ0 and confirm the
choice of τ0 in the double-exponential fit and model.
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B A C K T O S L E E P





6T H E S TA B I L I Z AT I O N O F
W I N D - I N D U C E D S E L F - O S C I L L AT I O N S

Knowing the static aerodynamic coefficients of a weathercock, can we predict its
dynamics or do we have to define dynamical coefficients?

6.1 introduction

Fundamental aerodynamic characteristics, the drag and lift coefficients have been
mostly identified for static objects, and time-averaged to reduce the influence of vortex
shedding on the measurements. However, in nature, it might be interesting and of
great importance to be able to define dynamical aerodynamic coefficients. In particular,
two fluid-structure-interaction domains come to mind on that regard, wind-induced
structural oscillations and flapping flight.

These two situations possess in common that, through movement, a new coupling
between vortex and structure can arise. The movement is either forced for flight or free in
the case of wind-induced oscillations. Yet in both, two timescales exert utmost influence
on the coupling. One is due to vortex shedding tvs = 1/ fvs = D/StU, with St the
Strouhal number, D the characteristic length of the system and U the flow velocity. The
other is the characteristic time of the system tsel f ; it can relate to the flapping frequency
in flight or the elastic-response frequency for a vibrating structure. From these two
timescales, a dimensionless parameter, the reduced velocity Ur, can be extracted:

Ur =
1
St

tsel f

tvs
=

U
D fsel f

. (6.1)

This parameter gauges how the vortex shedding and the characteristic oscillation
are close to one another and as such what kind of interaction is expected. For instance,
when Ur is high, the vortex shedding happens on a much shorter time scale than the
system oscillation and as such, a quasi-steady approach might be possible to model
the system dynamics [1]. On the contrary, when Ur is close to 1/St, the oscillation and
vortex shedding synchronize and a lock-in in frequency may arise, so that the vortex
shedding deviates from its original pulsation to unfold coincidentally with the system
oscillation [2].

Quasi-steadiness is here understood as the negligibility of fluid memory effect, so that the
aerodynamic moment and forces are solely dependent on the motion of the system [3].

An intriguing trait of the definition of Ur is the factor 1/St which is also a dimension-
less parameter. Its presence can be interpreted by the fact that the vortex shedding may
be influenced by the dynamics of the mobile system and as such, both tvs and St may
vary from an a priori estimation with handbook tables or theory for static situations.
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With these considerations, various interpretations of the reduced velocity are possible:

• it compares the vortex shedding and self-oscillation without prior approximation
on the vortex shedding, and can be used to define St by how variables, like added
mass or damping, evolve as function of Ur.

• it defines a Strouhal number based on the self-oscillation frequency rather than
the vortex shedding, Ur = 1/Stself.

• it quantifies the number of oscillations during the period a fluid particle crosses
the object, and as such compares self-oscillation with flow advection.

While the reduced velocity Ur is common in self-oscillating fluid-structure interac-
tions studies, it is scarcely spread in the flapping flight community, where frequency
ratios are usually solely taken as Strouhal numbers [4]. In the case of plunging or
pitching airfoils, the standard parameter to quantify the vortex-movement interaction
is rather the inverse of the reduced velocity, the reduced frequency k = π fsel f D/U [5, 6].

In this chapter, for simplicity, only the reduced velocity Ur, defined in Eq. 6.1, will be
considered, as, in the following, models will be based on self-oscillating fluid-structure
interactions. A point that will be discussed later is that in our system, Ur is yet in-
dependent from the flow velocity U due to the self-oscillation having a frequency
proportionnal to U.

However, estimating Ur is only the first step to understand the fluid-structure coupling
and to build dynamical aerodynamic coefficients. The key to our objective is the model
of the vortices, responsible for most of the unsteadiness. On that aspect, a common
approach to both flight and structural oscillations is added mass, that corrects flow
influence at 2nd order time derivative. While in periodically oscillating motion of wings
and airfoils, standard calculation of added mass is based on Theodorsen’s theory and
potential flow [6–9], for wind-induced oscillations, due to the onset of flow instabilities,
added mass is more difficult to estimate and complements to it such as added stiffness
are often introduced [10].

In the latter case, the question of a dynamical aerodynamic coefficient is yet less
important than the real dynamics of the system, in particular as wind-induced oscilla-
tions can be destructive, such as in the Tacoma Narrows Bridge flutter incident. Thus
more classical approaches on the subject encompass global mode analysis [11], linear
stability analysis [12] and time-domain expansion [13]. This goes especially for flutter
instability, also known as galloping instability in civil engineering. A criterion has been
proposed for the onset of flutter by Nakamura in 1979 [3], as a condition on the phase
difference between the movement and the aerodynamic torque. This condition also
depends on the distance between the center of rotation and the center of mass. Hence,
Blevins summarizes the apparition of flutter when the center of mass is ahead of the
center of rotation while divergence occurs when the aerodynamic center is in front of
the center of rotation. In addition to that, flutter is observed to exist mostly for Ur above
10 for which the quasi-steady approximation is valid, whereas below this value, another
regime is expected, vortex-induced vibrations (VIV) [1].
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In this chapter, we investigate the dynamics of a balanced disk pendulum acting
as a weathercock, subject to cross flow as initial conditions towards its alignment to
the flow. Due to the balancing of the pendulum (placing the center of rotation at the
center of mass), the condition to flutter is undefined, as the center of rotation and the
center of mass coincide, and as the aerodynamic center is far from the rotation point,
no divergence is expected and the torsional motion should be governed by quasi-steady
effects [1, 3]. By covering a wide range of angles of attack, our aim is to propose mod-
els that enable the reconstruction of the dynamics over the whole angular landscape
of the system. Towards that end, two approaches are presented, one based on VIV
time-domain expansion and the other empirical and closer to flapping flight with the
definition of dynamical aerodynamic coefficients.

Similar configurations have been explored for different purposes. Pendula have since
long been used for the estimation of fluid friction as described in Chapter 0, among
which a recent study has been the investigation of the galloping instability and its
control using a filament behind the pendulum [14]. This work is yet very different
from ours as the pendulum is heavy and possesses a natural frequency independent
from aerodynamic considerations and as such experiences unstable regimes above a
certain threshold flow velocity, modeled by galloping instability. A closer investigation
is that of a freely rotating disk placed in a flow [15]. The aim is to research wake
symmetry-breaking at small amplitudes with an equilibrium position normal to the
flow. A stochastic model is then proposed to reconstruct experimental pressure and
angle measurements with good agreement especially on the variations of the location of
the center of pressure. While the angular amplitude in that study [15] is much smaller
(up to 10◦ around the equilibrium) than the one presented in this section-chapter (up to
90◦), some experimental techniques such as the pressure measurement array placed in
the disk would be very interesting to implement to provide a finer quantification of the
fluid movement impacting on the pendulum dynamics we model in the following.

6.2 material and methods

6.2.1 Experimental setup

For these experiments, the wind tunnel is set as referred to in Chapter 0, while the
pendulum is attached at its center of mass to an air bushing equipped with a rotary
contact-less encoder that records the angular position α of the blade with minimal
damping. For cross-reference between chapters, α is defined here as α = θ − 90◦, and
would correspond to the opposite of the angle of attack in the literature.

In addition to the balancing of the pendulum, few modifications have been made to
the initial setup (see Fig.6.1). The size of the disk ddisk and its material have been varied
throughout the experiments. The change of materials, from Aluminium to Vivak®

polyester, was imposed by the weight of the disk that would only allow for a short
distance L to the attach point, in order to balance the pendulum. This would however
increase the sensibility of the system to the attach and its own vortex shedding. Due to
the elasticity of the polyester, the thickness has also been increased for the larger disks
to compensate for potential aeroelastic effects, which are not quantified here.
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Figure 6.1: Experimental setup showing the test section of the wind-tunnel, the pendulum made
of a thin disk and the coil for setting the pendulum to the vertical. A detailed view
on the pendulum presents the effective flow velocity Ueff and angle of attack αeff
acting on the moving disk.

As detailed later (Eq. 6.9), the change in disk diameter throughout the study enabled
the probing of a wide range of reduced velocity Ur. Such exploration is necessary as
we expect behavioral variations depending on this particular parameter coding for the
relative relevance of vortex shedding on the dynamics. A simple sweep in the flow
velocity U, as done in classic flutter experiments [10], is not sufficient for the variation
of Ur, due to the fact that the self-oscillation frequency is proportional to U and with it
Ur is independent in the flow velocity as we will see in section 6.3.1.

For each of the 7 tested disk diameters, two configurations were tested: one bal-
anced on its own and the other balanced using a thin circular magnet opposite to
the disk and aligned to the wind (all 14 configurations are detailed in Table 6.1). This
magnet was first placed on the system to ensure reproducibility of initial conditions.
Indeed a coil was placed below the pendulum, outside the wind tunnel, which re-
coils the magnet between each experiment and maintains the pendulum close to the
vertical before the start of the next experiment. Turning the coil off acts then as a
starting point for the acquisition and movement of the system. The recoiling is achieved
by taking advantage of the magnetic torque m⃗B ∧ B⃗, and magnetic force ∇(m⃗B · B⃗),
with m⃗B the magnetic moment of the magnet and B⃗ the magnetic field produced by
the coil (Fig.6.1). No quantitative study has been done on this magnetic setup, due
to the complexity of interactions and its sole purpose to help automatize the experiment.
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However, due to the aerodynamic moment at the vertical rapidly overcoming the
magnetic torque, this method could only be used for small flow velocities and small
disks. For the larger disks and higher flow velocities, the pendulum was set vertical
manually, and maintained to position by a long beam released at the start of each
experiment. Despite the human intervention, no particular bias has been observed on
the pendulum trajectories and each experiment conducted multiple times to reduce
such uncertainty, as described later. The magnet was still used to vary the inertia
momentum J of the balanced pendulum, thus helping exploring an even wider range
of the parameter space, in particular for the reduced velocity Ur, proportional to

√
J.

Diameter ddisk (cm) 3 4 5 6 8 9 10

Material Al Al Al Al Al Vivak® Vivak®

Thickness e (mm) 0.3 0.3 0.3 0.3 0.3 0.6 0.6
Distance L (cm) 13.5 13.8 13.3 12.9 11.8 12.5 12.1
Inertia J (kg · cm2) 1.34 1.57 1.66 1.89 2.24 2.57 2.90

Equivalent Ur 91.2 55.0 36.9 27.8 17.8 14.6 12.8

L with magnet (cm) 17.4 17.5 17.3 16.9 16.2 16.5 16.0
J with magnet (kg · cm2) 2.36 2.63 2.86 3.25 3.95 4.31 4.82

Equivalent Ur 107 63.3 42.5 31.8 20.1 16.5 14.3

Table 6.1: Physical characteristics of the different pendula used in the experiment. Each disk
enables for two sets of experiments, one with a magnet at the blade’s opposite end
and the other without. Al stands for aluminium.

An experimental run progresses as follows. Once the pendulum is placed at the
vertical using one of the two methods presented before, the flow velocity is increased to
the desired test value. Once the flow is stable, after typically 1 min, the pendulum is set
free and left to oscillate around its equilibrium position, which by static considerations
is at the horizontal. This run is then repeated for about 10 times for one given value
of U. The process is then replicated for around 8 to 14 values of U for each pendulum
configuration, totaling 751 runs all configurations included.

Figure 6.2: Example of an experimental signal: the pendulum is set to the vertical and left to
oscillate. Inset: Semi-log presentation of the signal amplitude over time. A pulsation
ω can be defined from the period T of oscillation and a damping coefficient β can be
extracted from the exponential decrease of amplitude of characteristic time τ.
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Fig. 6.2 shows typical time series obtained following the aforementioned protocol.
Presenting periodic oscillations and exponential decay (inset), this signal can be pa-
rameterized by to characteristic times, its period T = 2π/ω and its attenuation time
τ = 2/β, with ω the pulsation of oscillation and β the damping coefficient, so that the
system may be described by a damped harmonic oscillator equation:

α̈ + βα̇ + ω2α = 0 (6.2)

Interlude
When looking at an exponentially damped
oscillating time series, the urge to model
it with a linearly damped harmonic os-
cillator equation like Eq. 6.2 is great but
might be hasty. A double-checking can be
done through the use of a phase portrait.
Indeed, the phase portrait of a damped
harmonic oscillator possesses some well-
defined properties.

Time series and phase portrait of a damped har-
monic oscillator, its non-damped equivalent, and
the solutions of dα̇

dα = 0.

In particular, while the two-fold symmetry of the envelop is commonly known, a
less-known property which is however interesting is found on the derivative of the
phase portrait.
The points (αi, α̇i) verifying the condition dα̇

dα = 0 are aligned along a line whose slope
is function of the frequency and damping ratio, −ω2

β .

It results from a simple calculation based on the expression of dα̇
dα as dα̇

dt
dt
dα and the

expression of α̈ from Eq. 6.2.

6.2.2 Momentum equation

While a damped harmonic oscillator equation seems a good approach to the system
dynamics, the momentum equation of the pendulum can be written in the absence of
any weight nor forcing forces through the torque balance:

Jα̈ = Γaero(t, α, α̇) (6.3)

with Γaero being the instantaneous aerodynamic torque.
A standard expression for Γaero based on dimensional analysis for the Reynolds

number Re ∼ 103 − 104 is Γaero = 1
2 ρSU2LCN(α, α̇, t), with ρ the air density and S =

πd2
disk/4, U and L previously introduced. CN is the normal aerodynamic coefficient

which can be written as CN = −CL cos(α)− CD sin(α).
As the system moves in the flow, one needs to consider its retro-action on the flow

and a common approach consists in adjusting the flow velocity Ueff in the reference
frame of the disk and the angle of attack to this corrected flow velocity αeff, see Fig. 6.1.
The disk velocity estimated as Lα̇, Ueff and αeff can be defined as in Eq. 6.4 [2, 4, 5].
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 U2
eff = U2 + 2LUα̇ sin(α) + L2α̇2

αeff = α + arctan
(

Lα̇ cos(α)
U+Lα̇ sin(α)

) (6.4)

Combining the above equations and considering that angular velocity only affects the
aerodynamic coefficient in αeff, the momentum equation becomes Eq. 6.5.

Jα̈ =
1
2

ρSLU2
e f f CN(αe f f , t) (6.5)

Through a Taylor expansion in α around the equilibrium position α = 0◦, a damped
harmonic oscillator equation is obtained, involving dCN

dα |0 , the angular derivative of the
CN coefficient at α = 0◦ (details of the Taylor expansion in Annex C):

α̈ +
ρSL2U

2J

∣∣∣∣dCN

dα
|0

∣∣∣∣ α̇ +
ρSLU2

2J

∣∣∣∣dCN

dα
|0

∣∣∣∣ α = O(α3) (6.6)

The similarity between Eq. 6.6 and Eq. 6.2 supports the characterization of the signal
by the pulsation and attenuation, described in Fig. 6.2.

6.3 results

6.3.1 VIV-inspired time domain expansion

In order to quantitatively compare the dynamics resulting from Eqs. 6.2 and 6.6, the
normal CN coefficient is required.

A first approximation for it is to take the static coefficient CNst as CN in Eq.6.5. For a
disk, it depends strongly on α, but is almost linear for α spanning from about −π/4
to π/4 [16]. Using the Taylor expansion (Eq. 6.6), we can define a pulsation ωst and

an attenuation βst, whose expressions are respectively ω2
st =

ρSLU2

2J

∣∣∣∣dCNst

dα
|0

∣∣∣∣ and

βst =
ρSL2U

2J

∣∣∣∣dCNst

dα
|0

∣∣∣∣.
Figure 6.3 compares the experimental values for ω2 and β with their static coeffi-

cient approximations ω2
st and βst. While the order of magnitude for both ω2 and β is

correct in the static approximation, it does not capture the experimentally computed
values, in particular when ω2

st is high, which corresponds to large disks and high flow
velocity. Hence, the static approximation does not recover the real dynamics, despite
the consideration of non-stationarity in Ueff and αeff, commonly introduced in various
fluid-structure interaction fields.

When observing frequency shift in unsteady aerodynamics, a standard theoreti-
cal approach is the addition of stiffness and mass to the dynamics equation, thus
taking into account vortex shedding effects on the free dynamics [2, 10]. In our case,
an added mass would correspond to an added inertia due to the rotational environment.

Also known as time-domain expansion, this method consists in appending supplementary
time derivatives of a relevant variable (for us α), a0α, a1α̇, a2α̈, etc... to the governing equation
of a system.
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Figure 6.3: a) Experimental measured pulsation ω2 with respect to the static estimated pulsation
ω2

st. b) Experimental measured damping coefficient β with respect to the static
estimated damping βst. Dash-dotted lines represent identity and the color codes for
the Ur parameter of each experiment on both graphs.

In vortex-induced vibration (VIV) models, added mass, stiffness and damping are
appended to the system equation in the simplest way possible, which writes from Eq.
6.6 as follows:

(1 + m)α̈ + (βst + γU)α̇ + (ω2
st + k)α = 0 (6.7)

with m the added mass, γU the added damping and k the added stiffness.

For Eq. 6.7 to reconstruct the experimental dynamics, whose equation may be ex-
pressed by Eq. 6.2, an identification of both the pulsation and the attenuation is necessary.
As such, m, γU and k can be defined by the following relations:{

ω2 =
ω2

st+k
1+m

β = βst+γU
1+m

(6.8)

To estimate m and k, a linear fit of ω2 as a function of ω2
st is done. Then γ is obtained

by inverting Eq. 6.8: γ = (1+m) β
U − βst

U , with m taken from the previous fit. An example
of the linear fit is shown in Annex C. This computation is done using the whole range
of flow velocity for each tested disk configuration, giving only one value for m, γ and k
per disk, as ωst/U is constant by calculation.

Stemming from the VIV framework, behavioral dynamics likely depend on the ratio
between the vortex shedding frequency and the frequency of natural oscillation of the
system, the reduced velocity Ur, which was previously introduced but not yet defined
in our particular case.
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As it is a control parameter and should be known a priori, the self-oscillation frequency
in the definition of Ur (Eq. 6.1) is taken as the one from the static approximation ωst/2π,
which from the Figure 6.3 is not that different from ω. It follows that:

Ur =
1
St

fvs

f
=

U
d

2π√
1
2

ρSU2L
J

∣∣∣∣dCN

dα
|0

∣∣∣∣
=

4
d2

√√√√√ 2π J

ρL
∣∣∣∣dCN

dα
|0

∣∣∣∣ (6.9)

In view of the particularity of wind-induced self-oscillation, observed in Eq. 6.9, Ur
is independent of the flow velocity U. As such, Ur is varied in the experiments by the
modifications of geometrical parameters (d, J, L). The range of explored Ur in this study
is spanning from 12 to 110, as introduced in Table 6.1.

As previously mentioned, a condition to apply quasi-steady models is to have Ur>10,
which here is thus respected for all configurations.

Now that we have a proper definition of Ur and a way of estimating m, γ and k
for one configuration, Figure 6.4 shows the evolution of these three added terms as
functions of the parameter Ur.

Figure 6.4: Added stiffness k, mass m and damping γ obtained for each Ur parameter in the
experiments. Dash-dotted line represents 1/St with St ≃ 0.07.

The three of them exhibit the same overall tendency with its maximum around Ur
≃ 15 and a decrease to a constant value as Ur tends to higher values. The maximum
corresponds to a value of St ≃ 0.07, represented in Fig. 6.4 by a dash-dotted line,
and estimated in the literature to be linked with a transverse vortex shedding for a
disk [17]. Such divergence around UrSt ∼ 1 is expected in VIV systems, for which
the oscillations couple together due to the similarity of frequencies, leading to lock-in
synchronicity between vortex shedding and natural oscillations. Another observation
is that the maximum of the added mass is close to 0.5, which relates to the added
mass coefficient found in particle-laden flows for a sphere immersed in fluid [18, 19]. A
possible interpretation for this value would thus be that at synchronization, the disk
and its wake form a "sphere" of fluid that does only detach at a specific step in the
oscillation cycle.
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Figure 6.5: a) Dynamic (solid lines) vs static (dashed line) CN coefficients as function of the
angular position αe f f given by Eq. 6.4 for various flow velocities U, which color
codes as follows: the lighter the color, the smaller U. b) Ratio between the slope
of the dynamic CNin coefficient and the static coefficient CNst with respect to flow
velocity. c) Damping estimated from the empirical correction on the CNst coefficient
compared to the experimental damping β.

6.3.2 Dynamical CN coefficient

Contrary to the VIV approach for which a strong hypothesis of damped-harmonic
oscillator behavior is done, we propose an empirical model which does not require any
hypothesis of the sort.

Going back to Eq. 6.5, it is possible to invert the momentum equation to extract an
instantaneous CNin(αeff, t) coefficient:

CNin(αeff, t) =
2Jα̈

ρSLUeff2
(6.10)

The thus-obtained experimental instantaneous CNin coefficient is presented in Fig.
6.5.a) for one disk configuration together with its static CNst equivalent known for a
disk [16], as a function of the effective angle of attack αeff. The color codes for the flow
velocity U: the lighter the line, the lower the velocity. A first observation is the strong
dependency of the linear section of the CN coefficient around α = 0◦ on flow velocity.
This dependency is less marked on the constant part of the signal (αeff ≳ 50), which
corresponds to the initial oscillation starting at α = 90◦.

While it might seem unusual to look at CNin as a function of αeff rather than α, CNin

has to be defined in the reference frame of the disk. Appendix C presents how αeff is
important for the correct definition of CNin .
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With this consideration, we expect an empirical model to be simply a multiplicative
factor correction to the static model, especially as αe f f enables the CN reconstructions to
collapse on a single line over time (see Annex), accounting for the change in the slope
of CNin compared to that of CNst around αeff = 0.

Jα̈ =
1
2

ρSLU2
e f f CNst(αe f f )×

dCNin
dα |0

dCNst
dα |0

(6.11)

When looking at the slope of the linear section of the dynamic CNin coefficient with
respect to the slope of the static CNst coefficient as a function of the flow velocity U, (Fig.
6.5.b), a trend compatible with a −1/2 power law scaling is observed. This power law
reminds of the skin friction drag coefficient dependency in Reynolds number, around
Re∼ 103 − 104, corresponding to the range we cover in our experiments [20]. By adding
this correction into the equation 6.5 however, the damping is also modified by the same

factor
dCNin

dα |0 / dCNst
dα |0 , especially visible when the Taylor expansion is done as in Eq. 6.6.

In Fig. 6.5.c), the newly computed damping term is plotted against the experimental
damping coefficient. It is thus clear that this multiplicative factor in the equation does
not entirely reconstruct the dynamics and another damping χα̇ has to be added into
this empirical model for better results. While it is not yet understood, it appears that
the needed damping to be added in this case is close enough to the added damping γU
from the previous model, so that γUα̇ can just be appended to Eq. 6.11 to recover the
experimental behavior.

Jα̈ + χα̇ =
1
2

ρSLU2
e f f CNst(αe f f )×

dCNin
dα |0

dCNst
dα |0

(6.12)

The validity of this complete model will be tested in the following, by comparison
between the two approaches both in terms of time series and phase portrait.

6.4 discussion

6.4.1 Physical interpretations to the models

Now that the two models have been presented, a physical interpretation for each
complementary term is welcome.

In particular, the added mass (or inertia) can be interpreted, like in particle-laden
flows and VIV, as the mass of fluid displaced and dragged by the disk in its movement.
We can therefore compute the diameter dair of an equivalent air sphere around the disk
centered at the center of the disk and of inertia momentum mJ:

d3
air(L3 +

d2
air

10
) =

6mJ
πρ

(6.13)

As shown in Fig. 6.6.a), this diameter dair is almost linear in the diameter of the
disk ddisk with a plateau at the smaller values probably due to the influence of the rod
holding the disk.
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With regards to the added stiffness, it is difficult to conclude on a phenomenological
interpretation. Yet we hypothesized that it transcribes into the momentum equation
the rolling of the wingtip vortices that have to change their rotation between positive
and negative angles of attack, leading to a restoring spring-like torque −kα with their
coupling to the leading- and trailing-edge vortices.

Figure 6.6: Evolution of the interpreted added terms dair (a), ϵ (b left axis) and ξ (b right axis) as
functions of the diameter of the disk ddisk.

On the other hand, for the added damping, we can define a factor ϵ = γU
(1+m)βst

which
considers it in the reference frame of the static coefficient equation 6.6 corrected in
added mass, so that β = βst

1+m + ϵ. ϵ is therefore the correction required with respect to
the static description of the system. In Fig. 6.6.b), the ϵ estimate for each pendulum
configuration is presented versus the pendulum diameter ddisk. Though the value for
the smaller disk is close to 0.7, ϵ tends to converge at higher ddisk towards a constant
value ϵc, represented by the dash-dotted lines. A good candidate for this value is ϵc =

π
8

(dark line) which can be related to the potential flow theory and has been described as
damping in unsteady aerodynamic flutter models [1, 21]. A refinement of the formula
from Fung 1969 in our specific case would be ϵc =

2π−1
16 (light line).

For the empirical model, there is also a need for additional damping as presented
previously. However, rather than introducing it as a +χα̇ in Eq. 6.12, it is possible to
implement it directly into the dynamical equation Eq. 6.11 without changing its form,
as a correction on αeff and Ueff, though for the latter, it would only result in a 3rd order
correction. It can indeed be noticed that the damping βst emanates from the Lα̇/U in
Eq. 6.6, which is the approximation taken for the relative velocity of the counter flow
in response to the pendulum movement (Fig. 6.1). By impending a modification of the
damping through the modification of the CNst coefficient, it can be balanced by simply

varying this relative velocity by a factor ξ = β
βst

dCNst
dα |0

dCNin
dα |0

, as introduced in Eq. 6.14.
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Jα̈ = 1

2 ρSLU∗2
e f f CNst(α

∗
e f f )×

dCNin
dα |0

dCNst
dα |0

U∗2
e f f = U2 + 2ξLUα̇ sin(α) + ξ2L2α̇2

α∗
e f f = α + arctan

(
ξLα̇ cos(α)

U+Lξα̇ sin(α)

) (6.14)

Estimated values for ξ are presented in Fig. 6.6.b), for three different configurations
as examples, though the uncertainty on the damping and empirical correction makes
it difficult to conclude on this part. An observation to be made yet is that ξ appears
to be higher than 1, meaning that when the aerodynamic coefficient is pondered by
a dynamical term, the air around the pendulum moves at a higher velocity than the
pendulum its self. This could be explained by the fact that not only the air behind the
pendulum is dragged away but the air ahead is deviated as well, and may induce an
supplementary advection for the air behind.

6.4.2 Comparison of models

When proposing models to reconstruct experimental dynamics, the natural thing to
do is estimating the match of the model to the experiment. To quantify this, we have
computed the quadratic angular error

√
⟨∆α2⟩ between the solution of the modeling

equation and the experimental signal for the same initial conditions α(0) and α̇(0). The
corresponding signals are shown in Fig. 6.7. (top), with the initial conditions taken
close to the vertical at rest. Here, while the VIV-inspired model collapses almost on the
experiment with

√
⟨∆α2⟩ ≤ 2◦, the empirical model is quite wrong as

√
⟨∆α2⟩ ≃ 10◦,

due to the lack of restitution of the transient dynamics. Even the static model only
exhibits a deviation of about

√
⟨∆α2⟩ ≃ 5◦ from the experimental signal despite the

lack of fidelity in both frequency and damping.

However, the phase portrait match is greater for the empirical model, especially in the
flow velocity dependence (Fig. 6.7.a-d). When looking at the α̇ = 0 line, the empirical
model is the only one that shows the same evolution in flow velocity as the experiment.
Hence it confirms that the reconstruction for this model is correct at smaller amplitude,
as the transient needs not to be considered. To support this, finally, the solutions of both
models collapses with

√
⟨∆α2⟩ ≃ 1◦ to the experimental signal for initial conditions

taken at the first minimum of oscillation (i. e.α(t = 0) ≃ 40◦), which takes place in the
linear part of the CN coefficient, ahead of stall (Fig. 6.7. bottom).

6.5 perspectives

This chapter presents two very different approaches to incorporate dynamical effects
into the static aerodynamic coefficient. Despite the seemingly verified condition on Ur
(see 0.1), the quasi-steady approximation is not sufficient in this particular case of a
weathercock-like pendulum. A possible explanation to this is the peculiar form of Ur,
which though considered a reduced velocity is independent of the flow velocity U. Such
particularity is yet not very common in fluid-structure interactions.
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Figure 6.7: Comparison between the experiment a) and the various models proposed here: b)
static coefficient model, c) empirical dynamic coefficient model with added damping
and d) VIV-based model. Top: experimental signal with the model signals with initial
conditions at the vertical. Bottom: models with initial conditions at the first minima
of oscillation. Middle: phase portraits for the experiment and models. The color
codes for the flow velocity, with the lighter being the smaller velocity. All presented
curves were obtained from the 4 cm pendulum with magnet attached, similar results
were obtained for the other pendula.
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Yet the simplicity and versatility of the system, with only a balanced pendulum
placed in a wind tunnel, offers first an ideal framework to investigate the geometrical
dependencies of dynamical corrections for aerodynamic forces. For instance, here we
propose added mass, damping and stiffness for a disk. As these three terms help
reconstructing the dynamics, it is natural to think they code for vortex interactions.
As seen in the previous chapters, such vortices are highly dependent on the geometry
already in static so we can expect strong influence on the dynamical retroaction.

A simple comparison for this can be found in the literature on flutter and VIV. All
kinds of objects have been tested, from cylinders [22, 23] to flags [24, 25], with civil
engineering models of bridges and towing cables [26–28]. Although the models are
diverse and the research in the various fields similar in many aspects, no single model
encoding the geometrical dependency has yet been proposed and the added mass,
stiffness and damping coefficients are only determined in compiled handbooks for
each particular situation. On the contrary, in static configuration, at least in 2D, some
transforms, such as Joukowski’s, enable the calculation of aerodynamic forces for almost
any shape of airfoils [8]. In flapping flight, one limitation to such standardization is the
Reynolds number, which spans from 10 to 104, from insects to birds [29]. This range
overlaps with the change in flow velocity dependence for the aerodynamic forces and
Strouhal numbers usually vary notably over that range, rendering the scaling difficult
to choose for comparison across situations.

On another note, the determination of the empirical dynamic CN coefficient may help
on a different domain than the two previously mentioned, that also makes use of wind-
induced oscillations. Knowing the aerodynamic coefficients is enssential in the design
of wind-induced energy-harvesters that are under development as new renewable
energy sources [30–32]. These harvesters collect energy from vortex shedding and
aerodynamic forces link with the collected energy levels [33]. So a better understanding
of dynamical effects in fluid-structure interactions is key to the enhancement of wind
energy extraction, as already proven for wind turbines and the use of dynamic stall to
enable energy production at lower wind speeds [34].

Weathercock aerodynamic coefficient

This chapter discusses whether a static aerodynamic coefficient is sufficient to
predict the dynamics of a weathercock. Based on this chapter, we can truthfully
say that even at low speed, some non-stationary effects impact on the weathercock
dynamics. However, it might be said that the best way to know the response of
the weathercock to a step in crosswind is to try it out. The reproducibility of
the stabilization dynamics makes it highly predictable once tested for a range of
velocities.
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7
C O N C L U S I O N

The goal of this thesis was to deeply understand the dynamics of wind-swept pendulums
and the relation between these and the wake dynamics of the pendulum, from both
fundamental aerodynamic considerations and complex system approaches.

Indeed, despite its simplicity, previous experiments with a disk pendulum placed
in a wind tunnel had brought up rich aerodynamic behaviors such as the bistability
of the equilibrium position for a range of flow velocities [1]. Although the bistability
could be explained by the shape of the aerodynamic CN coefficient, this shape and its
possible impact on other dynamical properties were not yet understood. In particular,
the bistability is induced by the presence of a sharp stall between two regimes: one
drag-dominated regime of constant CN , and the other lift-dominated regime of linear
increase of CN with the angle of attack α = 90◦ − θ.

As such, Part i researches the three-way coupling between the aerodynamic coefficient,
the wake and the geometry of the pendulum, to try understanding 3D stall.

First in Chapter 1, the wake of a fixed inclined disk was investigated, to try under-
standing how the flow around the disk could lead to the particular shape of the CN

coefficient. We observed a clear change of the wake structure between the two regimes,
from a ring vortex when drag dominates to a two-vortex plane-like wake when lift
carries the pendulum. Together with this, the vortex intensity was shown to follow a
comparable angular evolution to that of the CN coefficient. This provides a first clue
towards the understanding of the stall origin in the restructuring of the wake.

Chapter 2 then centers around the question of the aspect-ratio of the pendulum. In
Nature, disks and similarly squares are quite rare and more common objects tend to
present an oblong structure, with one dimension larger than the others. By varying the
aspect ratio of a rectangular plate, we have observed the disappearance of the bistability,
coming from the leveling of stall. Only aspect ratios close to 1 present a sharp stall and
thus a bistability in the pendulum configuration. Complementary to this, we extended
the definition of the stall angle to any profile of CN coefficient and observed that this
angle varies almost linearly with the arc-tangent of the aspect ratio, corresponding to
the angle formed by the diagonal of the rectangular plate with the chord. This gives a
rule-of-thumb estimate of the stall angle of a rectangular plate of any aspect ratio.

Like the aspect-ratio, a second geometrical property of an object that is important in
Aerodynamics is the porosity. To understand its influence on the aerodynamic coefficient
and the stall, Chapter 3 makes use of a most common everyday object: the fly-swatter.
By tuning the filling of the holes of a fly-swatter, we have been able to some extent
to control the appearance of a sharp stall. Comparing the configuration of bistability
with minimal filling and the configuration of non-bistability with maximal filling, we
have observed that the stability of the leading-edge vortex (LEV) was necessary to the
existence of the bistability but not sufficient as the wingtip vortices are also needed to
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initiate the sharp stall in their interaction with the LEV.

These first chapters suggest that the main wake structures responsible to a sharp
3D stall are the wingtip vortices, whose interaction with either the leading-edge or
trailing-edge vortex change the amplitude of stall. This would thus mean that the
mechanism of stall already dependent on the camber and thickness of an airfoil in 2D
presents another phenomenology in 3D.

Another aspect of the bistable pendulum which has not been tackled in Part i is the
dynamics of bistable pendulum itself, as Part i concentrated on a static approach of the
system only. The second part of this thesis (Part ii) thus explores the temporal dynamics
of the pendulum in the bistable zone.

Throughout Chapter 4, 5 different behaviors of the pendulum are identified: transi-
tions (both one-way and both-ways), wanderings around the unstable position, over-
shoots and excursions. By first describing the possibilities of our pendulum to behave
like other multistable systems, we have dug in this chapter a few trenches to use the
pendulum as a toy system to study not only the aerodynamics of the disk or rectangle
but also more theoretical and universal aspects of stochastic multistable systems.

In Chapter 5, one of these trenches is followed: the time statistics of the one-way
transitions. As double-exponential statistics were observed, we have developed in this
chapter a model inspired from the transition to turbulence. The underlying phenomenol-
ogy points towards a rare-event triggering of the transition in the wake, that preliminary
PIV measurements seem to support as well.

These two chapters leave many doors open in their trail, as we will further develop
in the next section.

Finally in Part iii, a simple question was asked: what would happen if our wind-swept
pendulum were not subjected to any other force than the aerodynamic efforts.

Chapter 6 thus delves into the unsteady aerodynamics of the balanced pendulum
returning to the horizontal, as a quasi-steady approach to this weathercock problem
was lacking. In transcribing the experimental dynamics, we propose in this chapter two
models to complement the static CN coefficient in a dynamical manner. One relies on
classical fluid-structure interaction modeling while the other is empirical.

This final chapter forms a bridge connecting the static/steady aspects of aerodynam-
ics to the forced aerodynamics of flight, by exploring the range of freely-moving but
not restrained nor forced objects, as the only frequency of the system is induced by the
wind itself. This first step into unsteady aerodynamics is followed by another bigger
one in the following, Part iv, with the development of a project on butterfly flight in
parallel of this thesis centered around a pendulum.
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7.1 perspectives

As we already mentioned throughout the various chapters, many things are still to be
achieved on the subject of the bistable pendulum.

7.1.1 On the wake of the pendulum

The characterization of the wake structure is a large part of the questions we left
opened in this thesis. As the pendulum itself provided us with much information,
flow visualization, which is both resource- and time-consuming, has been kept to the
minimum1, but the closure of our interrogations on the stall and on dynamical aspects
may only be achieved through flow visualization or numerical simulations.

On that matter, a few directions of research can be explored:

• The conducted PIV measurement in Chapter 1 was only two-dimensional while
the wake is three-dimensional. Thus a natural extension is the 3D visualization
of the wake through tomographic Particle Image Velocimetry (PIV) or Particle
Tracking Velocimetry (PTV) for instance. As this requires complex experimental de-
velopment, a small step can be achieved by visualizing first the longitudinal wake
to reconstruct the leading-edge and trailing-edge vortices. Then, a simultaneous
recording of both longitudinal and transverse plane would provide preliminary
insight on the 3D structure in a given region, before implementing fully resolved
3D flow measurements.

• A second aspect is the investigation of the coupling between the wake dynamics
and the object dynamics. For the pendulum, this means a synchronous acquisition
of the angle with the PIV. Though it was initiated during this PhD, the analysis
of the preliminary experiments is still lacking, thus leaving room to further
development both in the experiments, with only a few angles recorded, and
in the interpretation through the reconstruction of the wake with the vorticity
structure. A similar study would be to simultaneously acquire two-plane PIV, as
proposed before, and force measurements on static plates as a first step towards
the comprehension of the wake/force coupling.

• The wake of the rectangular plates would be interesting to visualize as well,
in order to try our hypothesis on the origin of 3D stall proposed in Chapter 2.
While PIV measurements would provide insight on the 3D structure, surface
flow measurements might be a good complement to our study on the stall angle.
In particular, the variation of the leading-edge vortex expansion on the surface
with the angle of attack and aspect ratio may be key to understanding the linear
relation between the stall angle and the arc tangent of the aspect ratio.

• For the fly-swatter in Chapter 3, like for the rectangular plates, a thorough
study of the wake is also necessary to complete our understanding of the role
of the upper corners in the existence of the bistability and of the sharp stall. A
complementary aero-acoustic study over the various configuration would also
add to the understanding of porosity.

1 Part of this choice was due to Covid pandemic that delayed the installation of the PIV setup.
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• The dynamical investigation of the wake is also important to refine both the model
for the transitions in Chapter 5 and the models for the unsteady aerodynamic coef-
ficient in Chapter 6, and extend the phenomenological and empirical approaches
with instantaneous flow dynamics.

Lastly on the wake aspects, much of the analysis of the PIV measurements remains
also to be completed, in particular for the spontaneous transitions and excursions.
Though we have presented preliminary results on that aspect, a quantitative analysis of
the evolution of vorticity for instance could add to the understanding of the aerody-
namic trigger for the transition.

7.1.2 On the model of the bistable dynamics

On the transitions and excursions, the model we proposed only covers the transitions
and as we concluded on the possibility of excursions not being aborted transitions but
a different phenomenon, it would be interesting to develop a conjoint model for the
excursions as well, following a similar approach.

The interpretation of the parameters of the double-exponential distribution η and
sin(θ0) in Chapter 5 requires many more statistics of transitions with different pendulum
configurations, especially ones that present both-ways transitions. Some experimental
data has already been acquired on that regard but their analysis is still under progress.

Introduced in Chapter 4, ∆U is, for instance, a first parameter that is convenient to
vary by simply playing on the attachment of the pendulum in order to get insight on
the physical interpretation of η and sin(θ0).

7.1.3 On the influence of turbulence

An additional subject left aside in this thesis in the characterization of the CN coeffi-
cient is the influence of the turbulence rate. Preliminary experiments were conducted,
extending partially previous results from [1] with the disappearance of the bistability
with increasing turbulence rate, by the narrowing of the flow velocity range but with
the extension of the forbidden angles. This aspect was originally planned for this thesis,
but the Covid pandemic delayed greatly the installation of an active grid for turbulence
in the wind tunnel in Lyon and set aside opportunities of extra-laboratory collaboration
for experiments.

As the turbulence rate is increased, the bistability disappears in a yet different way
to what is observed when holing a square into a fly-swatter. This might result from
the destabilization of the wake structure from the outside by the incoming vortices,
just like holes destabilize the vortices from the inside. The turbulence rate would act,
for instance, like a pressure on the wake, leading to a thermodynamic analogy, whose
development is in progress.



7.1 references 155

7.1.4 On flying itself

The first lines of this thesis, rewritten here as “[The comprehension of] flying might not be
all plain sailing but the fun of it is worth the price", give a final hint on a potential direction
to pursue.

Indeed, as we reduced the whole problem of flight into a wind-swept pendulum, we
have yet to come back to flight itself, by reintroducing the complexity of living beings
into the system. Though the first part proposed parallels between animal flight and the
different questions we asked in the chapters, it still remains to complete the analogy
and try our findings on the living characteristics of birds and insects, for the wake, the
aspect ratio and the porosity.

This part will hopefully be one of the directions pursued in my postdoctoral research,
on both insects and birds.

references

[1] M. Obligado, M. Puy, and M. Bourgoin. “Bi-stability of a pendular disk in laminar
and turbulent flows.” In: J. Fluid Mech. 728 (2013), R2.
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8P H O E B U S

This chapter is not directly a part of my PhD thesis but rather a work I initiated during my time
as a PhD student.

As the reader may have noticed by now while going through this manuscript, Zoology,
and more particularly Ornithology, is a central and quite omnipresent interest of mine1.

During this thesis, I had the opportunity to develop my own project on animal flight,
parallel to the project presented in the first 6 chapters. First as a Junior Laboratory
from the ENS de Lyon, this project PHOeBUS, which stands for Flight ObsErvation of
Butterflies Under Space-like gravity, grew during my 1st year of PhD into a funded CNES
(French Space Agency) project for parabolic flights.

As its name implies, project PHOeBUS focuses on the flight adaptation of butter-
flies to various gravity levels. It aims at understanding the fundamental aerodynamic
mechanism behind the generation of lift in flapping flight.

Though the reader might not gain much insight here on the project, he is naturally
invited to follow any updates on the project, as it shall continue developing in the
coming years, with a first step at the end of my PhD being a stay at Chiba University,
member among others of the PHOeBUS consortium.

1 If not, the reader is invited to read Chapter 0 (again).
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AA P P E N D I X : S H A P I N G T H E B I S TA B I L I T Y

a.1 bird nomenclature

Figure A.1: Bird nomenclature for the numbering of feathers (from S. Espin, et al., “Sampling
and contaminant monitoring protocol for raptors”, 2016).

a.2 effect of the square orientation on the angular bistability

Figure A.2: Angular equilibrium position θ as a function of the flow velocity U for two configu-
rations of square plates.
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BA P P E N D I X : R A R E - E V E N T T R I G G E R I N G
F O R S P O N TA N E O U S T R A N S I T I O N S

b.1 cumulative distribution function for δΓmin/max

Figure B.1: Left: Probability distribution functions (pdf) of torque fluctuations δΓ ahead of (top)
D→L transitions and (bottom) L→D transitions. The exponential tails allow the
application of rare-event statistics.
Right: Cumulative distribution functions (cdf) of the minima −δΓmin and maxima
δΓmax of torque fluctuations, rescaled by the standard deviation. The Gumbel distri-
bution best fits are represented by continuous lines (dotted or dash-dotted lines for
clarity).
The color code for the angle θi.
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CA P P E N D I X : T H E S TA B I L I Z AT I O N O F
W I N D - I N D U C E D S E L F - O S C I L L AT I O N S

quantifying human bias on the experiment

Figure C.1: Angular time series for different experimental runs for a given configuration. These
runs are set off manually, inducing a slight uncertainty on the starting condition.
Inset: standard deviation std(α) of the angular time series over the different runs.

In Fig. C.1, we present the time series of a series of experiments corresponding to the
flow velocity U = 7.3 m · s−1 and the pendulum of 4 cm weighted with the magnet with
manual set-off. We observe that the maximal standard deviation at any time for a given
pendulum configuration is std(α) ≃ 1.4◦, with a mean standard deviation of 0.62◦.

details on the taylor expansion

To carry out the Taylor expansion, two assumptions are made:

• α ≪ π (α < π/4 is sufficient in our case)

• Lα̇ ≪ U


Jα̈ = 1

2 ρSLU2
e f f CN(αe f f , t)

U2
e f f = U2 + 2LUα̇ sin(α) + L2α̇2

αe f f = α + arctan
(

Lα̇ cos(α)
U+Lα̇ sin(α)

) (C.1)

Starting from Eq. C.1, a first expansion is carried out on αeff and Ueff.
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{
U2

e f f = U2 + 2LUα̇α + L2α̇2

αe f f = α + L
U α̇(1 − α2

2 )(1 −
L
U α̇α))

(C.2)

obtaining m and k from the experiment

Figure C.2: Determination of the added mass m and added stiffness k for one particular reduced
velocity Ur = 63.3 corresponding to the pendulum of of 4 cm weighted with the
magnet.

taking into account αeff in CN inversion

U U

a) b)

Figure C.3: Reconstitution of the dynamical CN coefficient: (a) with the angle α and (b) taking
into account the effective angle of attack αe f f . We observe a collapse of the spiraling
CN(α) curves for CN(αe f f ).
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