
Chapter 2

Linear Models for
Continuous Data

The starting point in our exploration of statistical models in social research
will be the classical linear model. Stops along the way include multiple
linear regression, analysis of variance, and analysis of covariance. We will
also discuss regression diagnostics and remedies.

2.1 Introduction to Linear Models

Linear models are used to study how a quantitative variable depends on one
or more predictors or explanatory variables. The predictors themselves may
be quantitative or qualitative.

2.1.1 The Program Effort Data

We will illustrate the use of linear models for continuous data using a small
dataset extracted from Mauldin and Berelson (1978) and reproduced in Table
2.1. The data include an index of social setting, an index of family planning
effort, and the percent decline in the crude birth rate (CBR)—the number
of births per thousand population—between 1965 and 1975, for 20 countries
in Latin America and the Caribbean.

The index of social setting combines seven social indicators, namely lit-
eracy, school enrollment, life expectancy, infant mortality, percent of males
aged 15–64 in the non-agricultural labor force, gross national product per
capita and percent of population living in urban areas. Higher scores repre-
sent higher socio-economic levels.

G. Rodŕıguez. Revised September 2007
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Table 2.1: The Program Effort Data

Setting Effort CBR Decline

Bolivia 46 0 1
Brazil 74 0 10
Chile 89 16 29
Colombia 77 16 25
CostaRica 84 21 29
Cuba 89 15 40
Dominican Rep 68 14 21
Ecuador 70 6 0
El Salvador 60 13 13
Guatemala 55 9 4
Haiti 35 3 0
Honduras 51 7 7
Jamaica 87 23 21
Mexico 83 4 9
Nicaragua 68 0 7
Panama 84 19 22
Paraguay 74 3 6
Peru 73 0 2
Trinidad-Tobago 84 15 29
Venezuela 91 7 11

The index of family planning effort combines 15 different program indi-
cators, including such aspects as the existence of an official family planning
policy, the availability of contraceptive methods, and the structure of the
family planning program. An index of 0 denotes the absence of a program,
1–9 indicates weak programs, 10–19 represents moderate efforts and 20 or
more denotes fairly strong programs.

Figure 2.1 shows scatterplots for all pairs of variables. Note that CBR
decline is positively associated with both social setting and family planning
effort. Note also that countries with higher socio-economic levels tend to
have stronger family planning programs.

In our analysis of these data we will treat the percent decline in the
CBR as a continuous response and the indices of social setting and family
planning effort as predictors. In a first approach to the data we will treat the
predictors as continuous covariates with linear effects. Later we will group
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Figure 2.1: Scattergrams for the Program Effort Data

them into categories and treat them as discrete factors.

2.1.2 The Random Structure

The first issue we must deal with is that the response will vary even among
units with identical values of the covariates. To model this fact we will treat
each response yi as a realization of a random variable Yi. Conceptually, we
view the observed response as only one out of many possible outcomes that
we could have observed under identical circumstances, and we describe the
possible values in terms of a probability distribution.

For the models in this chapter we will assume that the random variable
Yi has a normal distribution with mean µi and variance σ2, in symbols:

Yi ∼ N(µi, σ
2).

The mean µi represents the expected outcome, and the variance σ2 measures
the extent to which an actual observation may deviate from expectation.

Note that the expected value may vary from unit to unit, but the variance
is the same for all. In terms of our example, we may expect a larger fertility
decline in Cuba than in Haiti, but we don’t anticipate that our expectation
will be closer to the truth for one country than for the other.

The normal or Gaussian distribution (after the mathematician Karl Gauss)
has probability density function

f(yi) =
1√

2πσ2
exp{−1

2

(yi − µi)2

σ2
}. (2.1)
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Figure 2.2: The Standard Normal Density

The standard density with mean zero and standard deviation one is shown
in Figure 2.2.

Most of the probability mass in the normal distribution (in fact, 99.7%)
lies within three standard deviations of the mean. In terms of our example,
we would be very surprised if fertility in a country declined 3σ more than
expected. Of course, we don’t know yet what to expect, nor what σ is.

So far we have considered the distribution of one observation. At this
point we add the important assumption that the observations are mutually
independent. This assumption allows us to obtain the joint distribution of
the data as a simple product of the individual probability distributions, and
underlies the construction of the likelihood function that will be used for
estimation and testing. When the observations are independent they are
also uncorrelated and their covariance is zero, so cov(Yi, Yj) = 0 for i 6= j.

It will be convenient to collect the n responses in a column vector y,
which we view as a realization of a random vector Y with mean E(Y) = µ
and variance-covariance matrix var(Y) = σ2I, where I is the identity matrix.
The diagonal elements of var(Y) are all σ2 and the off-diagonal elements are
all zero, so the n observations are uncorrelated and have the same variance.
Under the assumption of normality, Y has a multivariate normal distribution

Y ∼ Nn(µ, σ2I) (2.2)

with the stated mean and variance.

2.1.3 The Systematic Structure

Let us now turn our attention to the systematic part of the model. Suppose
that we have data on p predictors x1, . . . , xp which take values xi1, . . . , xip
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for the i-th unit. We will assume that the expected response depends on
these predictors. Specifically, we will assume that µi is a linear function of
the predictors

µi = β1xi1 + β2xi2 + . . .+ βpxip

for some unknown coefficients β1, β2, . . . , βp. The coefficients βj are called
regression coefficients and we will devote considerable attention to their in-
terpretation.

This equation may be written more compactly using matrix notation as

µi = x′iβ, (2.3)

where x′i is a row vector with the values of the p predictors for the i-th unit
and β is a column vector containing the p regression coefficients. Even more
compactly, we may form a column vector µ with all the expected responses
and then write

µ = Xβ, (2.4)

where X is an n× p matrix containing the values of the p predictors for the
n units. The matrix X is usually called the model or design matrix. Matrix
notation is not only more compact but, once you get used to it, it is also
easier to read than formulas with lots of subscripts.

The expression Xβ is called the linear predictor, and includes many
special cases of interest. Later in this chapter we will show how it includes
simple and multiple linear regression models, analysis of variance models
and analysis of covariance models.

The simplest possible linear model assumes that every unit has the same
expected value, so that µi = µ for all i. This model is often called the null
model, because it postulates no systematic differences between the units.
The null model can be obtained as a special case of Equation 2.3 by setting
p = 1 and xi = 1 for all i. In terms of our example, this model would expect
fertility to decline by the same amount in all countries, and would attribute
all observed differences between countries to random variation.

At the other extreme we have a model where every unit has its own
expected value µi. This model is called the saturated model because it has
as many parameters in the linear predictor (or linear parameters, for short)
as it has observations. The saturated model can be obtained as a special
case of Equation 2.3 by setting p = n and letting xi take the value 1 for
unit i and 0 otherwise. In this model the x’s are indicator variables for the
different units, and there is no random variation left. All observed differences
between countries are attributed to their own idiosyncrasies.
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Obviously the null and saturated models are not very useful by them-
selves. Most statistical models of interest lie somewhere in between, and
most of this chapter will be devoted to an exploration of the middle ground.
Our aim is to capture systematic sources of variation in the linear predictor,
and let the error term account for unstructured or random variation.

2.2 Estimation of the Parameters

Consider for now a rather abstract model where µi = x′iβ for some predictors
xi. How do we estimate the parameters β and σ2?

2.2.1 Estimation of β

The likelihood principle instructs us to pick the values of the parameters
that maximize the likelihood, or equivalently, the logarithm of the likelihood
function. If the observations are independent, then the likelihood function
is a product of normal densities of the form given in Equation 2.1. Taking
logarithms we obtain the normal log-likelihood

logL(β, σ2) = −n
2

log(2πσ2)− 1

2

∑
(yi − µi)2/σ2, (2.5)

where µi = x′iβ. The most important thing to notice about this expression
is that maximizing the log-likelihood with respect to the linear parameters β
for a fixed value of σ2 is exactly equivalent to minimizing the sum of squared
differences between observed and expected values, or residual sum of squares

RSS(β) =
∑

(yi − µi)2 = (y−Xβ)′(y−Xβ). (2.6)

In other words, we need to pick values of β that make the fitted values
µi = x′iβ as close as possible to the observed values yi.

Taking derivatives of the residual sum of squares with respect to β and
setting the derivative equal to zero leads to the so-called normal equations
for the maximum-likelihood estimator β̂

X′Xβ̂ = X′y.

If the model matrix X is of full column rank, so that no column is an exact
linear combination of the others, then the matrix of cross-products X′X is
of full rank and can be inverted to solve the normal equations. This gives an
explicit formula for the ordinary least squares (OLS) or maximum likelihood
estimator of the linear parameters:
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β̂ = (X′X)−1X′y. (2.7)

If X is not of full column rank one can use generalized inverses, but inter-
pretation of the results is much more straightforward if one simply eliminates
redundant columns. Most current statistical packages are smart enough to
detect and omit redundancies automatically.

There are several numerical methods for solving the normal equations,
including methods that operate on X′X, such as Gaussian elimination or the
Choleski decomposition, and methods that attempt to simplify the calcula-
tions by factoring the model matrix X, including Householder reflections,
Givens rotations and the Gram-Schmidt orthogonalization. We will not dis-
cuss these methods here, assuming that you will trust the calculations to a
reliable statistical package. For further details see McCullagh and Nelder
(1989, Section 3.8) and the references therein.

The foregoing results were obtained by maximizing the log-likelihood
with respect to β for a fixed value of σ2. The result obtained in Equation
2.7 does not depend on σ2, and is therefore a global maximum.

For the null model X is a vector of ones, X′X = n and X′y =
∑

yi
are scalars and β̂ = ȳ, the sample mean. For our sample data ȳ = 14.3.
Thus, the calculation of a sample mean can be viewed as the simplest case
of maximum likelihood estimation in a linear model.

2.2.2 Properties of the Estimator

The least squares estimator β̂ of Equation 2.7 has several interesting prop-
erties. If the model is correct, in the (weak) sense that the expected value of
the response Yi given the predictors xi is indeed x′iβ, then the OLS estimator
is unbiased, its expected value equals the true parameter value:

E(β̂) = β. (2.8)

It can also be shown that if the observations are uncorrelated and have con-
stant variance σ2, then the variance-covariance matrix of the OLS estimator
is

var(β̂) = (X′X)−1σ2. (2.9)

This result follows immediately from the fact that β̂ is a linear function of the
data y (see Equation 2.7), and the assumption that the variance-covariance
matrix of the data is var(Y) = σ2I, where I is the identity matrix.

A further property of the estimator is that it has minimum variance
among all unbiased estimators that are linear functions of the data, i.e.
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it is the best linear unbiased estimator (BLUE). Since no other unbiased
estimator can have lower variance for a fixed sample size, we say that OLS
estimators are fully efficient.

Finally, it can be shown that the sampling distribution of the OLS es-
timator β̂ in large samples is approximately multivariate normal with the
mean and variance given above, i.e.

β̂ ∼ Np(β, (X
′X)−1σ2).

Applying these results to the null model we see that the sample mean
ȳ is an unbiased estimator of µ, has variance σ2/n, and is approximately
normally distributed in large samples.

All of these results depend only on second-order assumptions concerning
the mean, variance and covariance of the observations, namely the assump-
tion that E(Y) = Xβ and var(Y) = σ2I.

Of course, β̂ is also a maximum likelihood estimator under the assump-
tion of normality of the observations. If Y ∼ Nn(Xβ, σ2I) then the sampling
distribution of β̂ is exactly multivariate normal with the indicated mean and
variance.

The significance of these results cannot be overstated: the assumption of
normality of the observations is required only for inference in small samples.
The really important assumption is that the observations are uncorrelated
and have constant variance, and this is sufficient for inference in large sam-
ples.

2.2.3 Estimation of σ2

Substituting the OLS estimator of β into the log-likelihood in Equation 2.5
gives a profile likelihood for σ2

logL(σ2) = −n
2

log(2πσ2)− 1

2
RSS(β̂)/σ2.

Differentiating this expression with respect to σ2 (not σ) and setting the
derivative to zero leads to the maximum likelihood estimator

σ̂2 = RSS(β̂)/n.

This estimator happens to be biased, but the bias is easily corrected dividing
by n− p instead of n. The situation is exactly analogous to the use of n− 1
instead of n when estimating a variance. In fact, the estimator of σ2 for
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the null model is the sample variance, since β̂ = ȳ and the residual sum of
squares is RSS =

∑
(yi − ȳ)2.

Under the assumption of normality, the ratio RSS/σ2 of the residual sum
of squares to the true parameter value has a chi-squared distribution with
n − p degrees of freedom and is independent of the estimator of the linear
parameters. You might be interested to know that using the chi-squared
distribution as a likelihood to estimate σ2 (instead of the normal likelihood
to estimate both β and σ2) leads to the unbiased estimator.

For the sample data the RSS for the null model is 2650.2 on 19 d.f. and
therefore σ̂ = 11.81, the sample standard deviation.

2.3 Tests of Hypotheses

Consider testing hypotheses about the regression coefficients β. Sometimes
we will be interested in testing the significance of a single coefficient, say βj ,
but on other occasions we will want to test the joint significance of several
components of β. In the next few sections we consider tests based on the
sampling distribution of the maximum likelihood estimator and likelihood
ratio tests.

2.3.1 Wald Tests

Consider first testing the significance of one particular coefficient, say

H0 : βj = 0.

The m.l.e. β̂j has a distribution with mean 0 (under H0) and variance given
by the j-th diagonal element of the matrix in Equation 2.9. Thus, we can
base our test on the ratio

t =
β̂j√

var(β̂j)
. (2.10)

Note from Equation 2.9 that var(β̂j) depends on σ2, which is usually un-
known. In practice we replace σ2 by the unbiased estimate based on the
residual sum of squares.

Under the assumption of normality of the data, the ratio of the coefficient
to its standard error has under H0 a Student’s t distribution with n − p
degrees of freedom when σ2 is estimated, and a standard normal distribution
if σ2 is known. This result provides a basis for exact inference in samples of
any size.
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Under the weaker second-order assumptions concerning the means, vari-
ances and covariances of the observations, the ratio has approximately in
large samples a standard normal distribution. This result provides a basis
for approximate inference in large samples.

Many analysts treat the ratio as a Student’s t statistic regardless of
the sample size. If normality is suspect one should not conduct the test
unless the sample is large, in which case it really makes no difference which
distribution is used. If the sample size is moderate, using the t test provides
a more conservative procedure. (The Student’s t distribution converges to
a standard normal as the degrees of freedom increases to ∞. For example
the 95% two-tailed critical value is 2.09 for 20 d.f., and 1.98 for 100 d.f.,
compared to the normal critical value of 1.96.)

The t test can also be used to construct a confidence interval for a co-
efficient. Specifically, we can state with 100(1 − α)% confidence that βj is
between the bounds

β̂j ± t1−α/2,n−p
√

var(β̂j), (2.11)

where t1−α/2,n−p is the two-sided critical value of Student’s t distribution
with n− p d.f. for a test of size α.

The Wald test can also be used to test the joint significance of several
coefficients. Let us partition the vector of coefficients into two components,
say β′ = (β′1,β

′
2) with p1 and p2 elements, respectively, and consider the

hypothesis

H0 : β2 = 0.

In this case the Wald statistic is given by the quadratic form

W = β̂
′
2 var−1(β̂2) β̂2,

where β̂2 is the m.l.e. of β2 and var(β̂2) is its variance-covariance matrix.
Note that the variance depends on σ2 which is usually unknown; in practice
we substitute the estimate based on the residual sum of squares.

In the case of a single coefficient p2 = 1 and this formula reduces to the
square of the t statistic in Equation 2.10.

Asymptotic theory tells us that under H0 the large-sample distribution of
the m.l.e. is multivariate normal with mean vector 0 and variance-covariance
matrix var(β2). Consequently, the large-sample distribution of the quadratic
form W is chi-squared with p2 degrees of freedom. This result holds whether
σ2 is known or estimated.

Under the assumption of normality we have a stronger result. The dis-
tribution of W is exactly chi-squared with p2 degrees of freedom if σ2 is



2.3. TESTS OF HYPOTHESES 11

known. In the more general case where σ2 is estimated using a residual sum
of squares based on n− p d.f., the distribution of W/p2 is an F with p2 and
n− p d.f.

Note that as n approaches infinity for fixed p (so n− p approaches infin-
ity), the F distribution times p2 approaches a chi-squared distribution with
p2 degrees of freedom. Thus, in large samples it makes no difference whether
one treats W as chi-squared or W/p2 as an F statistic. Many analysts treat
W/p2 as F for all sample sizes.

The situation is exactly analogous to the choice between the normal and
Student’s t distributions in the case of one variable. In fact, a chi-squared
with one degree of freedom is the square of a standard normal, and an F with
one and v degrees of freedom is the square of a Student’s t with v degrees of
freedom.

2.3.2 The Likelihood Ratio Test

Consider again testing the joint significance of several coefficients, say

H0 : β2 = 0

as in the previous subsection. Note that we can partition the model matrix
into two components X = (X1,X2) with p1 and p2 predictors, respectively.
The hypothesis of interest states that the response does not depend on the
last p2 predictors.

We now build a likelihood ratio test for this hypothesis. The general
theory directs us to (1) fit two nested models: a smaller model with the first
p1 predictors in X1, and a larger model with all p predictors in X; and (2)
compare their maximized likelihoods (or log-likelihoods).

Suppose then that we fit the smaller model with the predictors in X1

only. We proceed by maximizing the log-likelihood of Equation 2.5 for a
fixed value of σ2. The maximized log-likelihood is

max log L(β1) = c− 1

2
RSS(X1)/σ

2,

where c = −(n/2) log(2πσ2) is a constant depending on π and σ2 but not
on the parameters of interest. In a slight abuse of notation, we have written
RSS(X1) for the residual sum of squares after fitting X1, which is of course
a function of the estimate β̂1.

Consider now fitting the larger model X1 +X2 with all predictors. The
maximized log-likelihood for a fixed value of σ2 is

max log L(β1,β2) = c− 1

2
RSS(X1 + X2)/σ

2,
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where RSS(X1 +X2) is the residual sum of squares after fitting X1 and X2,
itself a function of the estimate β̂.

To compare these log-likelihoods we calculate minus twice their differ-
ence. The constants cancel out and we obtain the likelihood ratio criterion

−2 log λ =
RSS(X1)− RSS(X1 + X2)

σ2
. (2.12)

There are two things to note about this criterion. First, we are directed
to look at the reduction in the residual sum of squares when we add the
predictors in X2. Basically, these variables are deemed to have a significant
effect on the response if including them in the model results in a reduction
in the residual sum of squares. Second, the reduction is compared to σ2, the
error variance, which provides a unit of comparison.

To determine if the reduction (in units of σ2) exceeds what could be
expected by chance alone, we compare the criterion to its sampling distri-
bution. Large sample theory tells us that the distribution of the criterion
converges to a chi-squared with p2 d.f. The expected value of a chi-squared
distribution with ν degrees of freedom is ν (and the variance is 2ν). Thus,
chance alone would lead us to expect a reduction in the RSS of about one σ2

for each variable added to the model. To conclude that the reduction exceeds
what would be expected by chance alone, we usually require an improvement
that exceeds the 95-th percentile of the reference distribution.

One slight difficulty with the development so far is that the criterion
depends on σ2, which is not known. In practice, we substitute an estimate
of σ2 based on the residual sum of squares of the larger model. Thus, we
calculate the criterion in Equation 2.12 using

σ̂2 = RSS(X1 + X2)/(n− p).

The large-sample distribution of the criterion continues to be chi-squared
with p2 degrees of freedom, even if σ2 has been estimated.

Under the assumption of normality, however, we have a stronger result.
The likelihood ratio criterion −2 log λ has an exact chi-squared distribution
with p2 d.f. if σ2 is know. In the usual case where σ2 is estimated, the
criterion divided by p2, namely

F =
(RSS(X1)− RSS(X1 + X2))/p2

RSS(X1 + X2)/(n− p)
, (2.13)

has an exact F distribution with p2 and n− p d.f.
The numerator of F is the reduction in the residual sum of squares per

degree of freedom spent. The denominator is the average residual sum of
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squares, a measure of noise in the model. Thus, an F -ratio of one would
indicate that the variables in X2 are just adding noise. A ratio in excess of
one would be indicative of signal. We usually reject H0, and conclude that
the variables in X2 have an effect on the response if the F criterion exceeds
the 95-th percentage point of the F distribution with p2 and n − p degrees
of freedom.

A Technical Note: In this section we have built the likelihood ratio test
for the linear parameters β by treating σ2 as a nuisance parameter. In other
words, we have maximized the log-likelihood with respect to β for fixed
values of σ2. You may feel reassured to know that if we had maximized the
log-likelihood with respect to both β and σ2 we would have ended up with an
equivalent criterion based on a comparison of the logarithms of the residual
sums of squares of the two models of interest. The approach adopted here
leads more directly to the distributional results of interest and is typical of
the treatment of scale parameters in generalized linear models.2

2.3.3 Student’s t, F and the Anova Table

You may be wondering at this point whether you should use the Wald test,
based on the large-sample distribution of the m.l.e., or the likelihood ratio
test, based on a comparison of maximized likelihoods (or log-likelihoods).
The answer in general is that in large samples the choice does not matter
because the two types of tests are asymptotically equivalent.

In linear models, however, we have a much stronger result: the two tests
are identical. The proof is beyond the scope of these notes, but we will
verify it in the context of specific applications. The result is unique to linear
models. When we consider logistic or Poisson regression models later in the
sequel we will find that the Wald and likelihood ratio tests differ.

At least for linear models, however, we can offer some simple practical
advice:

• To test hypotheses about a single coefficient, use the t-test based on
the estimator and its standard error, as given in Equation 2.10.

• To test hypotheses about several coefficients, or more generally to com-
pare nested models, use the F -test based on a comparison of RSS’s, as
given in Equation 2.13.

The calculations leading to an F -test are often set out in an analysis of
variance (anova) table, showing how the total sum of squares (the RSS of
the null model) can be partitioned into a sum of squares associated with X1,
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a sum of squares added by X2, and a residual sum of squares. The table also
shows the degrees of freedom associated with each sum of squares, and the
mean square, or ratio of the sum of squares to its d.f.

Table 2.2 shows the usual format. We use φ to denote the null model.
We also assume that one of the columns of X1 was the constant, so this
block adds only p1 − 1 variables to the null model.

Table 2.2: The Hierarchical Anova Table

Source of Sum of Degrees of
variation squares freedom

X1 RSS(φ)− RSS(X1) p1 − 1
X2 given X1 RSS(X1)− RSS(X1 + X2) p2
Residual RSS(X1 + X2) n− p
Total RSS(φ) n− 1

Sometimes the component associated with the constant is shown explic-
itly and the bottom line becomes the total (also called ‘uncorrected’) sum of
squares:

∑
y2i . More detailed analysis of variance tables may be obtained by

introducing the predictors one at a time, while keeping track of the reduction
in residual sum of squares at each step.

Rather than give specific formulas for these cases, we stress here that all
anova tables can be obtained by calculating differences in RSS’s and differ-
ences in the number of parameters between nested models. Many examples
will be given in the applications that follow. A few descriptive measures of
interest, such as simple, partial and multiple correlation coefficients, turn
out to be simple functions of these sums of squares, and will be introduced
in the context of the applications.

An important point to note before we leave the subject is that the order
in which the variables are entered in the anova table (reflecting the order in
which they are added to the model) is extremely important. In Table 2.2, we
show the effect of adding the predictors in X2 to a model that already has
X1. This net effect of X2 after allowing for X1 can be quite different from
the gross effect of X2 when considered by itself. The distinction is important
and will be stressed in the context of the applications that follow.
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2.4 Simple Linear Regression

Let us now turn to applications, modelling the dependence of a continuous
response y on a single linear predictor x. In terms of our example, we will
study fertility decline as a function of social setting. One can often obtain
useful insight into the form of this dependence by plotting the data, as we
did in Figure 2.1.

2.4.1 The Regression Model

We start by recognizing that the response will vary even for constant values of
the predictor, and model this fact by treating the responses yi as realizations
of random variables

Yi ∼ N(µi, σ
2) (2.14)

with means µi depending on the values of the predictor xi and constant
variance σ2.

The simplest way to express the dependence of the expected response µi
on the predictor xi is to assume that it is a linear function, say

µi = α+ βxi. (2.15)

This equation defines a straight line. The parameter α is called the
constant or intercept, and represents the expected response when xi = 0.
(This quantity may not be of direct interest if zero is not in the range of
the data.) The parameter β is called the slope, and represents the expected
increment in the response per unit change in xi.

You probably have seen the simple linear regression model written with
an explicit error term as

Yi = α+ βxi + εi.

Did I forget the error term? Not really. Equation 2.14 defines the random
structure of the model, and is equivalent to saying that Yi = µi + εi where
εi ∼ N(0, σ2). Equation 2.15 defines the systematic structure of the model,
stipulating that µi = α + βxi. Combining these two statements yields the
traditional formulation of the model. Our approach separates more clearly
the systematic and random components, and extends more easily to gener-
alized linear models by focusing on the distribution of the response rather
than the distribution of the error term.
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2.4.2 Estimates and Standard Errors

The simple linear regression model can be obtained as a special case of the
general linear model of Section 2.1 by letting the model matrix X consist of
two columns: a column of ones representing the constant and a column with
the values of x representing the predictor. Estimates of the parameters,
standard errors, and tests of hypotheses can then be obtained from the
general results of Sections 2.2 and 2.3.

It may be of interest to note that in simple linear regression the estimates
of the constant and slope are given by

α̂ = ȳ − β̂x̄ and β̂ =

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
.

The first equation shows that the fitted line goes through the means of the
predictor and the response, and the second shows that the estimated slope
is simply the ratio of the covariance of x and y to the variance of x.

Fitting this model to the family planning effort data with CBR decline
as the response and the index of social setting as a predictor gives a residual
sum of squares of 1449.1 on 18 d.f. (20 observations minus two parameters:
the constant and slope).

Table 2.3 shows the estimates of the parameters, their standard errors
and the corresponding t-ratios.

Table 2.3: Estimates for Simple Linear Regression
of CBR Decline on Social Setting Score

Parameter Symbol Estimate Std.Error t-ratio

Constant α -22.13 9.642 -2.29
Slope β 0.5052 0.1308 3.86

We find that, on the average, each additional point in the social setting
scale is associated with an additional half a percentage point of CBR decline,
measured from a baseline of an expected 22% increase in CBR when social
setting is zero. (Since the social setting scores range from 35 to 91, the
constant is not particularly meaningful in this example.)

The estimated standard error of the slope is 0.13, and the corresponding
t-test of 3.86 on 18 d.f. is highly significant. With 95% confidence we estimate
that the slope lies between 0.23 and 0.78.

Figure 2.3 shows the results in graphical form, plotting observed and
fitted values of CBR decline versus social setting. The fitted values are
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calculated for any values of the predictor x as ŷ = α̂+ β̂x and lie, of course,
in a straight line.
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Figure 2.3: Linear Regression of CBR Decline on Social Setting

You should verify that the analogous model with family planning effort
as a single predictor gives a residual sum of squares of 950.6 on 18 d.f., with
constant 2.336(±2.662) and slope 1.253(±0.2208). Make sure you know how
to interpret these estimates.

2.4.3 Anova for Simple Regression

Instead of using a test based on the distribution of the OLS estimator, we
could test the significance of the slope by comparing the simple linear regres-
sion model with the null model. Note that these models are nested, because
we can obtain the null model by setting β = 0 in the simple linear regression
model.

Fitting the null model to the family planning data gives a residual sum
of squares of 2650.2 on 19 d.f. Adding a linear effect of social setting reduces
the RSS by 1201.1 at the expense of one d.f. This gain can be contrasted
with the remaining RSS of 1449.1 on 18 d.f. by constructing an F -test. The
calculations are set out in Table 2.4, and lead to an F -statistic of 14.9 on
one and 18 d.f.

These results can be used to verify the equivalence of t and F test statis-
tics and critical values. Squaring the observed t-statistic of 3.86 gives the
observed F -ratio of 14.9. Squaring the 95% two-sided critical value of the
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Table 2.4: Analysis of Variance for Simple Regression
of CBR Decline on Social Setting Score

Source of Degrees of Sum of Mean F -
variation freedom squares squared ratio

Setting 1 1201.1 1201.1 14.9
Residual 18 1449.1 80.5

Total 19 2650.2

Student’s t distribution with 18 d.f., which is 2.1, gives the 95% critical value
of the F distribution with one and 18 d.f., which is 4.4.

You should verify that the t and F tests for the model with a linear effect
of family planning effort are t = 5.67 and F = 32.2.

2.4.4 Pearson’s Correlation Coefficient

A simple summary of the strength of the relationship between the predictor
and the response can be obtained by calculating a proportionate reduction
in the residual sum of squares as we move from the null model to the model
with x. The quantity

R2 = 1− RSS(x)

RSS(φ)

is know as the coefficient of determination, and is often described as the
proportion of ‘variance’ explained by the model. (The description is not
very accurate because the calculation is based on the RSS not the variance,
but it is too well entrenched to attempt to change it.) In our example the
RSS was 2650.2 for the null model and 1449.1 for the model with setting, so
we have ‘explained’ 1201.1 points or 45.3% as a linear effect of social setting.

The square root of the proportion of variance explained in a simple linear
regression model, with the same sign as the regression coefficient, is Pearson’s
linear correlation coefficient. This measure ranges between −1 and 1, taking
these values for perfect inverse and direct relationships, respectively. For
the model with CBR decline as a linear function of social setting, Pearson’s
r = 0.673. This coefficient can be calculated directly from the covariance of
x and y and their variances, as

r =

∑
(y − ȳ)(x− x̄)√∑

(y − ȳ)2
∑

(x− x̄)2
.
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There is one additional characterization of Pearson’s r that may help in
interpretation. Suppose you standardize y by subtracting its mean and di-
viding by its standard deviation, standardize x in the same fashion, and
then regress the standardized y on the standardized x forcing the regression
through the origin (i.e. omitting the constant). The resulting estimate of
the regression coefficient is Pearson’s r. Thus, we can interpret r as the
expected change in the response in units of standard deviation associated
with a change of one standard deviation in the predictor.

In our example, each standard deviation of increase in social setting
is associated with an additional decline in the CBR of 0.673 standard de-
viations. While the regression coefficient expresses the association in the
original units of x and y, Pearson’s r expresses the association in units of
standard deviation.

You should verify that a linear effect of family planning effort accounts
for 64.1% of the variation in CBR decline, so Pearson’s r = 0.801. Clearly
CBR decline is associated more strongly with family planning effort than
with social setting.

2.5 Multiple Linear Regression

Let us now study the dependence of a continuous response on two (or more)
linear predictors. Returning to our example, we will study fertility decline
as a function of both social setting and family planning effort.

2.5.1 The Additive Model

Suppose then that we have a response y and two predictors x1 and x2. We
will use yi to denote the value of the response and xi1 and xi2 to denote the
values of the predictors for the i-th unit, where i = 1, . . . , n.

We maintain the assumptions regarding the stochastic component of the
model, so yi is viewed as a realization of Yi ∼ N(µi, σ

2), but change the
structure of the systematic component. We now assume that the expected
response µi is a linear function of the two predictors, that is

µi = α+ β1xi1 + β2xi2. (2.16)

This equation defines a plane in three dimensional space (you may want
to peek at Figure 2.4 for an example). The parameter α is the constant,
representing the expected response when both xi1 and xi2 are zero. (As
before, this value may not be directly interpretable if zero is not in the
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range of the predictors.) The parameter β1 is the slope along the x1-axis
and represents the expected change in the response per unit change in x1
at constant values of x2. Similarly, β2 is the slope along the x2 axis and
represents the expected change in the response per unit change in x2 while
holding x1 constant.

It is important to note that these interpretations represent abstractions
based on the model that we may be unable to observe in the real world. In
terms of our example, changes in family planning effort are likely to occur
in conjunction with, if not directly as a result of, improvements in social
setting. The model, however, provides a useful representation of the data
and hopefully approximates the results of comparing countries that differ in
family planning effort but have similar socio-economic conditions.

A second important feature of the model is that it is additive, in the
sense that the effect of each predictor on the response is assumed to be the
same for all values of the other predictor. In terms of our example, the
model assumes that the effect of family planning effort is exactly the same
at every social setting. This assumption may be unrealistic, and later in this
section we will introduce a model where the effect of family planning effort
is allowed to depend on social setting.

2.5.2 Estimates and Standard Errors

The multiple regression model in 2.16 can be obtained as a special case
of the general linear model of Section 2.1 by letting the model matrix X
consist of three columns: a column of ones representing the constant, a
column representing the values of x1, and a column representing the values
of x2. Estimates, standard errors and tests of hypotheses then follow from
the general results in Sections 2.2 and 2.3.

Fitting the two-predictor model to our example, with CBR decline as the
response and the indices of family planning effort and social setting as linear
predictors, gives a residual sum of squares of 694.0 on 17 d.f. (20 observations
minus three parameters: the constant and two slopes). Table 2.5 shows the
parameter estimates, standard errors and t-ratios.

We find that, on average, the CBR declines an additional 0.27 percentage
points for each additional point of improvement in social setting at constant
levels of family planning effort. The standard error of this coefficient is
0.11. Since the t ratio exceeds 2.11, the five percent critical value of the t
distribution with 17 d.f., we conclude that we have evidence of association
between social setting and CBR decline net of family planning effort. A
95% confidence interval for the social setting slope, based on Student’s t
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Table 2.5: Estimates for Multiple Linear Regression of
CBR Decline on Social Setting and Family Planning Effort Scores

Parameter Symbol Estimate Std.Error t-ratio

Constant α -14.45 7.094 −2.04
Setting β1 0.2706 0.1079 2.51
Effort β2 0.9677 0.2250 4.30

distribution with 17 d.f., has bounds 0.04 and 0.50.

Similarly, we find that on average the CBR declines an additional 0.97
percentage points for each additional point of family planning effort at con-
stant social setting. The estimated standard error of this coefficient is 0.23.
Since the coefficient is more than four times its standard error, we conclude
that there is a significant linear association between family planning effort
and CBR decline at any given level of social setting. With 95% confidence
we conclude that the additional percent decline in the CBR per extra point
of family planning effort lies between 0.49 and 1.44.

The constant is of no direct interest in this example because zero is not
in the range of the data; while some countries have a value of zero for the
index of family planning effort, the index of social setting ranges from 35 for
Haiti to 91 for Venezuela.

The estimate of the residual standard deviation in our example is σ̂ =
6.389. This value, which is rarely reported, provides a measure of the extent
to which countries with the same setting and level of effort can experience
different declines in the CBR.

Figure 2.4 shows the estimated regression equation ŷ = α̂+ β̂1x1 + β̂2x2
evaluated for a grid of values of the two predictors. The grid is confined to
the range of the data on setting and effort. The regression plane may be
viewed as an infinite set of regression lines. For any fixed value of setting,
expected CBR decline is a linear function of effort with slope 0.97. For any
fixed value of effort, expected CBR decline is a linear function of setting
with slope 0.27.

2.5.3 Gross and Net Effects

It may be instructive to compare the results of the multiple regression anal-
ysis, which considered the two predictors simultaneously, with the results of
the simple linear regression analyses, which considered the predictors one at
a time.
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Figure 2.4: Multiple Regression of CBR Decline on
Social Setting and Family Planning Effort

The coefficients in a simple linear regression represent changes in the
response that can be associated with a given predictor, and will be called
gross effects. In our simple linear regression analysis of CBR decline as
a function of family planning effort we found that, on the average, each
additional point of family planning effort was associated with an additional
1.25 percentage point of CBR decline. Interpretation of gross effects must
be cautious because comparisons involving one factor include, implicitly,
other measured and unmeasured factors. In our example, when we compare
countries with strong programs with countries with weak programs, we are
also comparing implicitly countries with high and low social settings.

The coefficients in a multiple linear regression are more interesting be-
cause they represent changes in the response that can be associated with a
given predictor for fixed values of other predictors, and will be called net ef-
fects. In our multiple regression analysis of CBR decline as a function of both
family planning effort and social setting, we found that, on the average, each
additional point of family planning effort was associated with an additional
0.97 percentage points of CBR decline if we held social setting constant, i.e.
if we compared countries with the same social setting. Interpretation of this
coefficient as measuring the effect of family planning effort is on somewhat
firmer ground than for the gross effect, because the differences have been
adjusted for social setting. Caution is in order, however, because there are
bound to be other confounding factors that we have not taken into account.
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In my view, the closest approximation we have to a true causal effect
in social research based on observational data is a net effect in a multiple
regression analysis that has controlled for all relevant factors, an ideal that
may be approached but probably can never be attained. The alternative
is a controlled experiment where units are assigned at random to various
treatments, because the nature of the assignment itself guarantees that any
ensuing differences, beyond those than can be attributed to chance, must
be due to the treatment. In terms of our example, we are unable to ran-
domize the allocation of countries to strong and weak programs. But we
can use multiple regression as a tool to adjust the estimated effects for the
confounding effects of observed covariates.

Table 2.6: Gross and Net Effects of Social Setting
and Family Planning Effort on CBR Decline

Predictor
Effect

Gross Net

Setting 0.505 0.271
Effort 1.253 0.968

Gross and net effects may be presented in tabular form as shown in Table
2.6. In our example, the gross effect of family planning effort of 1.25 was
reduced to 0.97 after adjustment for social setting, because part of the ob-
served differences between countries with strong and weak programs could be
attributed to the fact that the former tend to enjoy higher living standards.
Similarly, the gross effect of social setting of 0.51 has been reduced to 0.27
after controlling for family planning effort, because part of the differences
between richer and poorer countries could be attributed to the fact that the
former tend to have stronger family planning programs.

Note, incidentally, that it is not reasonable to compare either gross or
net effects across predictors, because the regression coefficients depend on
the units of measurement. I could easily ‘increase’ the gross effect of family
planning effort to 12.5 simply by dividing the scores by ten. One way to
circumvent this problem is to standardize the response and all predictors,
subtracting their means and dividing by their standard deviations. The re-
gression coefficients for the standardized model (which are sometimes called
‘beta’ coefficients) are more directly comparable. This solution is particu-
larly appealing when the variables do not have a natural unit of measure-
ment, as is often the case for psychological test scores. On the other hand,
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standardized coefficients are heavily dependent on the range of the data; they
should not be used, for example, if one has sampled high and low values of
one predictor to increase efficiency, because that design would inflate the
variance of the predictor and therefore reduce the standardized coefficient.

2.5.4 Anova for Multiple Regression

The basic principles of model comparison outlined earlier may be applied to
multiple regression models. I will illustrate the procedures by considering a
test for the significance of the entire regression, and a test for the significance
of the net effect of one predictor after adjusting for the other.

Consider first the hypothesis that all coefficients other than the constant
are zero, i.e.

H0 : β1 = β2 = 0.

To test the significance of the entire regression we start with the null model,
which had a RSS of 2650.2 on 19 degrees of freedom. Adding the two linear
predictors, social setting and family planning effort, reduces the RSS by
1956.2 at the expense of two d.f. Comparing this gain with the remaining
RSS of 694.0 on 17 d.f. leads to an F -test of 24.0 on two and 17 d.f. This
statistic is highly significant, with a P-value just above 0.00001. Thus, we
have clear evidence that CBR decline is associated with social setting and
family planning effort. Details of these calculations are shown in Table 2.7

Table 2.7: Analysis of Variance for Multiple Regression
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Regression 1956.2 2 978.1 24.0
Residual 694.0 17 40.8
Total 2650.2 19

In the above comparison we proceeded directly from the null model to the
model with two predictors. A more detailed analysis is possible by adding
the predictors one at a time. Recall from Section 2.4 that the model with
social setting alone had a RSS of 1449.1 on 18 d.f., which represents a gain of
1201.1 over the null model. In turn, the multiple regression model with both
social setting and family planning effort had a RSS of 694.0 on 17 d.f. which
represents a gain of 755.1 over the model with social setting alone. These
calculation are set out in the hierarchical anova shown in Table 2.8.
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Table 2.8: Hierarchical Analysis of Variance for Multiple Regression
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting 1201.1 1 1201.1 29.4
Effort|Setting 755.1 1 755.1 18.5
Residual 694.0 17 40.8
Total 2650.2 19

Note the following features of this table. First, adding the sums of squares
and d.f.’s in the first two rows agrees with the results in the previous table;
thus, we have further decomposed the sum of squares associated with the
regression into a term attributed to social setting and a term added by family
planning effort.

Second, the notation Effort|Setting emphasizes that we have considered
first the contribution of setting and then the additional contribution of effort
once setting is accounted for. The order we used seemed more natural for
the problem at hand. An alternative decomposition would introduce effort
first and then social setting. The corresponding hierarchical anova table is
left as an exercise.

Third, the F -test for the additional contribution of family planning effort
over and above social setting (which is F = 18.5 from Table 2.8) coincides
with the test for the coefficient of effort based on the estimate and its stan-
dard error (which is t = 4.3 from Table 2.5), since 4.32 = 18.5. In both cases
we are testing the hypothesis

H0 : β2 = 0

that the net effect of effort given setting is zero. Keep in mind that divid-
ing estimates by standard errors tests the hypothesis that the variable in
question has no effect after adjusting for all other variables. It is perfectly
possible to find that two predictors are jointly significant while neither ex-
ceeds twice its standard error. This occurs when the predictors are highly
correlated and either could account for (most of) the effects of the other.

2.5.5 Partial and Multiple Correlations

A descriptive measure of how much we have advanced in our understanding
of the response is given by the proportion of variance explained, which was
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first introduced in Section 2.4. In our case the two predictors have reduced
the RSS from 2650.2 to 694.0, explaining 73.8%.

The square root of the proportion of variance explained is the multiple
correlation coefficient, and measures the linear correlation between the re-
sponse in one hand and all the predictors on the other. In our case R = 0.859.
This value can also be calculated directly as Pearson’s linear correlation be-
tween the response y and the fitted values ŷ.

An alternative construction of R is of some interest. Suppose we want
to measure the correlation between a single variable y and a set of variables
(a vector) x. One approach reduces the problem to calculating Pearson’s
r between two single variables, y and a linear combination z = c′x of the
variables in x, and then taking the maximum over all possible vectors of
coefficients c. Amazingly, the resulting maximum is R and the coefficients
c are proportional to the estimated regression coefficients.

We can also calculate proportions of variance explained based on the hi-
erarchical anova tables. Looking at Table 2.8, we note that setting explained
1201.1 of the total 2650.2, or 45.3%, while effort explained 755.1 of the same
2650.2, or 28.5%, for a total of 1956.2 out of 2650.2, or 73.8%. In a sense
this calculation is not fair because setting is introduced before effort. An
alternative calculation may focus on how much the second variable explains
not out of the total, but out of the variation left unexplained by the first
variable. In this light, effort explained 755.1 of the 1449.1 left unexplained
by social setting, or 52.1%.

The square root of the proportion of variation explained by the second
variable out of the amount left unexplained by the first is called the partial
correlation coefficient, and measures the linear correlation between y and x2
after adjusting for x1. In our example, the linear correlation between CBR
decline and effort after controlling for setting is 0.722.

The following calculation may be useful in interpreting this coefficient.
First regress y on x1 and calculate the residuals, or differences between
observed and fitted values. Then regress x2 on x1 and calculate the residuals.
Finally, calculate Pearson’s r between the two sets of residuals. The result
is the partial correlation coefficient, which can thus be seen to measure the
simple linear correlation between y and x2 after removing the linear effects
of x1.

Partial correlation coefficients involving three variables can be calculated
directly from the pairwise simple correlations. Let us index the response y
as variable 0 and the predictors x1 and x2 as variables 1 and 2. Then the
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partial correlation between variables 0 and 2 adjusting for 1 is

r02.1 =
r02 − r01r12√

1− r201
√

1− r212
,

where rij denotes Pearson’s linear correlation between variables i and j.
The formulation given above is more general, because it can be used to
compute the partial correlation between two variables (the response and one
predictor) adjusting for any number of additional variables.

Table 2.9: Simple and Partial Correlations of CBR Decline
with Social Setting and Family Planning Effort

Predictor
Correlation

Simple Partial

Setting 0.673 0.519
Effort 0.801 0.722

Simple and partial correlation coefficients can be compared in much the
same vein as we compared gross and net effects earlier. Table 2.9 summarizes
the simple and partial correlations between CBR decline on the one hand
and social setting and family planning effort on the other. Note that the
effect of effort is more pronounced and more resilient to adjustment than
the effect of setting.

2.5.6 More Complicated Models

So far we have considered four models for the family planning effort data:
the null model (φ), the one-variate models involving either setting (x1) or
effort (x2), and the additive model involving setting and effort (x1 + x2).

More complicated models may be obtained by considering higher order
polynomial terms in either variable. Thus, we might consider adding the
squares x21 or x22 to capture non-linearities in the effects of setting or effort.
The squared terms are often highly correlated with the original variables,
and on certain datasets this may cause numerical problems in estimation. A
simple solution is to reduce the correlation by centering the variables before
squaring them, using x1 and (x1− x̄1)2 instead of x1 and x21. The correlation
can be eliminated entirely, often in the context of designed experiments, by
using orthogonal polynomials.
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We could also consider adding the cross-product term x1x2 to capture
a form of interaction between setting and effort. In this model the linear
predictor would be

µi = α+ β1xi1 + β2xi2 + β3xi1xi2. (2.17)

This is simply a linear model where the model matrix X has a column
of ones for the constant, a column with the values of x1, a column with the
values of x2, and a column with the products x1x2. This is equivalent to
creating a new variable, say x3, which happens to be the product of the
other two.

An important feature of this model is that the effect of any given variable
now depends on the value of the other. To see this point consider fixing x1
and viewing the expected response µ as a function of x2 for this fixed value
of x1. Rearranging terms in Equation 2.17 we find that µ is a linear function
of x2:

µi = (α+ β1xi1) + (β2 + β3xi1)xi2,

with both constant and slope depending on x1. Specifically, the effect of x2
on the response is itself a linear function of x1; it starts from a baseline effect
of β2 when x1 is zero, and has an additional effect of β3 units for each unit
increase in x1.

The extensions considered here help emphasize a very important point
about model building: the columns of the model matrix are not necessarily
the predictors of interest, but can be any functions of them, including linear,
quadratic or cross-product terms, or other transformations.

Are any of these refinements necessary for our example? To find out, fit
the more elaborate models and see if you can obtain significant reductions
of the residual sum of squares.

2.6 One-Way Analysis of Variance

We now consider models where the predictors are categorical variables or
factors with a discrete number of levels. To illustrate the use of these mod-
els we will group the index of social setting (and later the index of family
planning effort) into discrete categories.

2.6.1 The One-Way Layout

Table 2.10 shows the percent decline in the CBR for the 20 countries in our
illustrative dataset, classified according to the index of social setting in three
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categories: low (under 70 points), medium (70–79) and high (80 or more).

Table 2.10: CBR Decline by Levels of Social Setting

Setting Percent decline in CBR

Low 1, 0, 7, 21, 13, 4, 7
Medium 10, 6, 2, 0, 25
High 9, 11, 29, 29, 40, 21, 22, 29

It will be convenient to modify our notation to reflect the one-way layout
of the data explicitly. Let k denote the number of groups or levels of the
factor, ni denote the number of observations in group i, and let yij denote the
response for the j-th unit in the i-th group, for j = 1, . . . , ni, and i = 1, . . . , k.
In our example k = 3 and yij is the CBR decline in the j-th country in the
i-th category of social setting, with i = 1, 2, 3; j = 1, . . . , ni;n1 = 7, n2 = 5
and n3 = 8).

2.6.2 The One-Factor Model

As usual, we treat yij as a realization of a random variable Yij ∼ N(µij , σ
2),

where the variance is the same for all observations. In terms of the systematic
structure of the model, we assume that

µij = µ+ αi, (2.18)

where µ plays the role of the constant and αi represents the effect of level i
of the factor.

Before we proceed further, it is important to note that the model as
written is not identified. We have essentially k groups but have introduced
k+ 1 linear parameters. The solution is to introduce a constraint, and there
are several ways in which we could proceed.

One approach is to set µ = 0 (or simply drop µ). If we do this, the
αi’s become cell means, with αi representing the expected response in group
i. While simple and attractive, this approach does not generalize well to
models with more than one factor.

Our preferred alternative is to set one of the αi’s to zero. Conventionally
we set α1 = 0, but any of the groups could be chosen as the reference cell or
level. In this approach µ becomes the expected response in the reference cell,
and αi becomes the effect of level i of the factor, compared to the reference
level.
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A third alternative is to require the group effects to add-up to zero, so∑
αi = 0. In this case µ represents some sort of overall expected response,

and αi measures the extent to which responses at level i of the factor deviate
from the overall mean. Some statistics texts refer to this constraint as the
‘usual’ restrictions, but I think the reference cell method is now used more
widely in social research.

A variant of the ‘usual’ restrictions is to require a weighted sum of the
effects to add up to zero, so

∑
wiαi = 0. The weights are often taken to be

the number of observations in each group, so wi = ni. In this case µ is a
weighted average representing the expected response, and αi is, as before,
the extent to which responses at level i of the factor deviate from the overall
mean.

Each of these parameterizations can easily be translated into one of the
others, so the choice can rest on practical considerations. The reference
cell method is easy to implement in a regression context and the resulting
parameters have a clear interpretation.

2.6.3 Estimates and Standard Errors

The model in Equation 2.18 is a special case of the generalized linear model,
where the design matrix X has k+1 columns: a column of ones representing
the constant, and k columns of indicator variables, say x1, . . . , xk, where xi
takes the value one for observations at level i of the factor and the value zero
otherwise.

Note that the model matrix as defined so far is rank deficient, because
the first column is the sum of the last k. Hence the need for constraints.
The cell means approach is equivalent to dropping the constant, and the ref-
erence cell method is equivalent to dropping one of the indicator or dummy
variables representing the levels of the factor. Both approaches are eas-
ily implemented. The other two approaches, which set to zero either the
unweighted or weighted sum of the effects, are best implemented using La-
grange multipliers and will not be considered here.

Parameter estimates, standard errors and t ratios can then be obtained
from the general results of Sections 2.2 and 2.3. You may be interested to
know that the estimates of the regression coefficients in the one-way layout
are simple functions of the cell means. Using the reference cell method,

µ̂ = ȳ1 and α̂i = ȳi − ȳ1 for i > 1,

where ȳi is the average of the responses at level i of the factor.
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Table 2.11 shows the estimates for our sample data. We expect a CBR
decline of almost 8% in countries with low social setting (the reference cell).
Increasing social setting to medium or high is associated with additional de-
clines of one and 16 percentage points, respectively, compared to low setting.

Table 2.11: Estimates for One-Way Anova Model of
CBR Decline by Levels of Social Setting

Parameter Symbol Estimate Std. Error t-ratio

Low µ 7.571 3.498 2.16
Medium (vs. low) α2 1.029 5.420 0.19
High (vs. low) α3 16.179 4.790 3.38

Looking at the t ratios we see that the difference between medium and
low setting is not significant, so we accept H0 : α2 = 0, whereas the difference
between high and low setting, with a t-ratio of 3.38 on 17 d.f. and a two-
sided P-value of 0.004, is highly significant, so we reject H0 : α3 = 0. These
t-ratios test the significance of two particular contrasts: medium vs. low
and high vs. low. In the next subsection we consider an overall test of the
significance of social setting.

2.6.4 The One-Way Anova Table

Fitting the model with social setting treated as a factor reduces the RSS
from 2650.2 (for the null model) to 1456.4, a gain of 1193.8 at the expense
of two degrees of freedom (the two α’s). We can contrast this gain with the
remaining RSS of 1456.4 on 17 d.f. The calculations are laid out in Table
2.12, and lead to an F -test of 6.97 on 2 and 17 d.f., which has a P-value of
0.006. We therefore reject the hypothesis H0 : α2 = α3 = 0 of no setting
effects, and conclude that the expected response depends on social setting.

Table 2.12: Analysis of Variance for One-Factor Model
of CBR Decline by Levels of Social Setting

Source of Sum of Degrees of Mean F -
variation squares Freedom squared ratio

Setting 1193.8 2 596.9 6.97
Residual 1456.4 17 85.7

Total 2650.2 19
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Having established that social setting has an effect on CBR decline, we
can inspect the parameter estimates and t-ratios to learn more about the
nature of the effect. As noted earlier, the difference between high and low
settings is significant, while that between medium and low is not.

It is instructive to calculate the Wald test for this example. Let α =
(α2, α3)

′ denote the two setting effects. The estimate and its variance-
covariance matrix, calculated using the general results of Section 2.2, are

α̂ =

(
1.029

16.179

)
and v̂ar(α̂) =

(
29.373 12.239
12.239 22.948

)
.

The Wald statistic is

W = α̂′ v̂ar−1(α̂) α̂ = 13.94,

and has approximately a chi-squared distribution with two d.f. Under the
assumption of normality, however, we can divide by two to obtain F = 6.97,
which has an F distribution with two and 17 d.f., and coincides with the
test based on the reduction in the residual sum of squares, as shown in Table
2.12.

2.6.5 The Correlation Ratio

Note from Table 2.12 that the model treating social setting as a factor with
three levels has reduced the RSS by 1456.6 out of 2650.2, thereby explaining
45.1%. The square root of the proportion of variance explained by a discrete
factor is called the correlation ratio, and is often denoted η. In our example
η̂ = 0.672.

If the factor has only two categories the resulting coefficient is called the
point-biserial correlation, a measure often used in psychometrics to correlate
a test score (a continuous variable) with the answer to a dichotomous item
(correct or incorrect). Note that both measures are identical in construction
to Pearson’s correlation coefficient. The difference in terminology reflects
whether the predictor is a continuous variable with a linear effect or a discrete
variable with two or more than two categories.

2.7 Two-Way Analysis of Variance

We now consider models involving two factors with discrete levels. We il-
lustrate using the sample data with both social setting and family planning
effort grouped into categories. Key issues involve the concepts of main effects
and interactions.
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2.7.1 The Two-Way Layout

Table 2.13 shows the CBR decline in our 20 countries classified according
to two criteria: social setting, with categories low (under 70), medium (70–
79) and high (80+), and family planning effort, with categories weak (0–4),
moderate (5–14) and strong (15+). In our example both setting and effort
are factors with three levels. Note that there are no countries with strong
programs in low social settings.

Table 2.13: CBR Decline by Levels of Social Setting
and Levels of Family Planning Effort

Setting
Effort

Weak Moderate Strong

Low 1,0,7 21,13,4,7 –
Medium 10,6,2 0 25
High 9 11 29,29,40,21,22,29

We will modify our notation to reflect the two-way layout of the data.
Let nij denote the number of observations in the (i, j)-th cell of the table,
i.e. in row i and column j, and let yijk denote the response of the k-th unit
in that cell, for k = 1, . . . , nij . In our example yijk is the CBR decline of the
k-th country in the i-th category of setting and the j-th category of effort.

2.7.2 The Two-Factor Additive Model

Once again, we treat the response as a realization of a random variable
Yijk ∼ N(µijk, σ

2). In terms of the systematic component of the model, we
will assume that

µijk = µ+ αi + βj (2.19)

In this formulation µ represents a baseline value, αi represents the effect
of the i-th level of the row factor and βj represents the effect of the j-th
level of the column factor. Before we proceed further we must note that
the model is not identified as stated. You could add a constant δ to each of
the αi’s (or to each of the βj ’s) and subtract it from µ without altering any
of the expected responses. Clearly we need two constraints to identify the
model.

Our preferred approach relies on the reference cell method, and sets to
zero the effects for the first cell (in the top-left corner of the table), so that
α1 = β1 = 0. The best way to understand the meaning of the remaining
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parameters is to study Table 2.14, showing the expected response for each
combination of levels of row and column factors having three levels each.

Table 2.14: The Two-Factor Additive Model

Row
Column

1 2 3

1 µ µ+ β2 µ+ β3
2 µ+ α2 µ+ α2 + β2 µ+ α2 + β3
3 µ+ α3 µ+ α3 + β2 µ+ α3 + β3

In this formulation of the model µ represents the expected response in the
reference cell, αi represents the effect of level i of the row factor (compared
to level 1) for any fixed level of the column factor, and βj represents the
effect of level j of the column factor (compared to level 1) for any fixed level
of the row factor.

Note that the model is additive, in the sense that the effect of each factor
is the same at all levels of the other factor. To see this point consider moving
from the first to the second row. The response increases by α2 if we move
down the first column, but also if we move down the second or third columns.

2.7.3 Estimates and Standard Errors

The model in Equation 2.19 is a special case of the general linear model,
where the model matrix X has a column of ones representing the constant,
and two sets of dummy or indicator variables representing the levels of the
row and column factors, respectively. This matrix is not of full column
rank because the row (as well as the column) dummies add to the constant.
Clearly we need two constraints and we choose to drop the dummy variables
corresponding to the first row and to the first column. Table 2.15 shows the
resulting parameter estimates, standard errors and t-ratios for our example.

Thus, we expect a CBR decline of 5.4% in countries with low setting
and weak programs. In countries with medium or high social setting we
expect CBR declines of 1.7 percentage points less and 2.4 percentage points
more, respectively, than in countries with low setting and the same level of
effort. Finally, in countries with moderate or strong programs we expect
CBR declines of 3.8 and 20.7 percentage points more than in countries with
weak programs and the same level of social setting.

It appears from a cursory examination of the t-ratios in Table 2.15 that
the only significant effect is the difference between strong and weak pro-



2.7. TWO-WAY ANALYSIS OF VARIANCE 35

Table 2.15: Parameter Estimates for Two-Factor Additive Model
of CBR Decline by Social Setting and Family Planning Effort

Parameter Symbol Estimate Std. Error t-ratio

Baseline low/weak µ 5.379 3.105 1.73
Setting medium α2 −1.681 3.855 −0.44

high α3 2.388 4.457 0.54
Effort moderate β2 3.836 3.575 1.07

strong β3 20.672 4.339 4.76

grams. Bear in mind, however, that the table only shows the comparisons
that are explicit in the chosen parameterization. In this example it turns out
that the difference between strong and moderate programs is also significant.
(This test can be calculated from the variance-covariance matrix of the esti-
mates, or by fitting the model with strong programs as the reference cell, so
the medium-strong comparison becomes one of the parameters.) Questions
of significance for factors with more than two-levels are best addressed by
using the F -test discussed below.

2.7.4 The Hierarchical Anova Table

Fitting the two-factor additive model results in a residual sum of squares
of 574.4 on 15 d.f., and represents an improvement over the null model of
2075.8 at the expense of four d.f. We can further decompose this gain as an
improvement of 1193.8 on 2 d.f. due to social setting (from Section 2.6) and
a gain of 882.0, also on 2 d.f., due to effort given setting. These calculations
are set out in Table 2.16, which also shows the corresponding mean squares
and F -ratios.

Table 2.16: Hierarchical Anova for Two-Factor Additive Model
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting 1193.8 2 596.9 15.6
Effort|Setting 882.0 2 441.0 11.5
Residual 574.4 15 38.3
Total 2650.2 19
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We can combine the sum of squares for setting and for effort given setting
to construct a test for the overall significance of the regression. This results
in an F -ratio of 13.6 on four and 15 d.f., and is highly significant. The
second of the F -ratios shown in Table 2.16, which is 11.5 on two and 15 d.f.,
is a test for the net effect of family planning effort after accounting for social
setting, and is highly significant. (The first of the F -ratios in the table, 15.6
on two and 15 d.f., is not in common use but is shown for completeness; it
can be interpreted as an alternative test for the gross effect of setting, which
combines the same numerator as the test in the previous section with a more
refined denominator that takes into account the effect of effort.)

There is an alternative decomposition of the regression sum of squares
into an improvement of 2040.0 on two d.f. due to effort and a further gain
of 35.8 on two d.f. due to setting given effort. The latter can be contrasted
with the error sum of squares of 574.4 on 15 d.f. to obtain a test of the
net effect of setting given effort. This test would address the question of
whether socio-economic conditions have an effect on fertility decline after
we have accounted for family planning effort.

2.7.5 Partial and Multiple Correlation Ratios

The sums of squares described above can be turned into proportions of vari-
ance explained using the now-familiar calculations. For example the two
factors together explain 2075.8 out of 2650.2, or 78.3% of the variation in
CBR decline.

The square root of this proportion, 0.885 in the example, is the multiple
correlation ratio; it is analogous to (and in fact is often called) the multiple
correlation coefficient. We use the word ‘ratio’ to emphasize the categorical
nature of the predictors and to note that it generalizes to more than one
factor the correlation ratio introduced in Section 2.4.

We can also calculate the proportion of variance explained by one of the
factors out of the amount left unexplained by the other. In our example
effort explained 882.0 out of the 1456.6 that setting had left unexplained,
or 60.6%. The square root of this proportion, 0.778, is called the partial
correlation ratio, and can be interpreted as a measure of correlation between
a discrete factor and a continuous variable after adjustment for another
factor.
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2.7.6 Fitted Means and Standardization

Parameter estimates from the additive model can be translated into fitted
means using Equation 2.19 evaluated at the estimates. The body of Table
2.17 shows these values for our illustrative example. Note that we are able to
estimate the expected CBR decline for strong programs in low social settings
although there is no country in our dataset with that particular combination
of attributes. Such extrapolation relies on the additive nature of the model
and should be interpreted with caution. Comparison of observed and fitted
values can yield useful insights into the adequacy of the model, a topic that
will be pursued in more detail when we discuss regression diagnostics later
in this chapter.

Table 2.17: Fitted Means Based on Two-Factor Additive Model
of CBR Decline by Social Setting and Family Planning Effort

Setting
Effort

All
Weak Moderate Strong

Low 5.38 9.22 26.05 13.77
Medium 3.70 7.54 24.37 12.08
High 7.77 11.60 28.44 16.15

All 5.91 9.75 26.59 14.30

Table 2.17 also shows column (and row) means, representing expected
CBR declines by effort (and setting) after adjusting for the other factor.
The column means are calculated as weighted averages of the cell means in
each column, with weights given by the total number of countries in each
category of setting. In symbols

µ̂.j =
∑

ni.µ̂ij/n,

where we have used a dot as a subscript placeholder so ni. is the number of
observations in row i and µ.j is the mean for column j.

The resulting estimates may be interpreted as standardized means; they
estimate the CBR decline that would be expected at each level of effort
if those countries had the same distribution of social setting as the total
sample. (The column means can also be calculated by using the fitted model
to predict CBR decline for each observation with the dummies representing
social setting held fixed at their sample averages and all other terms kept as
observed. This construction helps reinforce their interpretation in terms of
predicted CBR decline at various levels of effort adjusted for setting.)
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Table 2.18: CBR Decline by Family Planning Effort
Before and After Adjustment for Social Setting

Effort
CBR Decline

Unadjusted Adjusted

Weak 5.00 5.91
Moderate 9.33 9.75
Strong 27.86 26.59

Standardized means may be useful in presenting the results of a regression
analysis to a non-technical audience, as done in Table 2.18. The column
labelled unadjusted shows the observed mean CBR decline by level of effort.
The difference of 23 points between strong and weak programs may be due to
program effort, but could also reflect differences in social setting. The column
labelled adjusted corrects for compositional differences in social setting using
the additive model. The difference of 21 points may be interpreted as an
effect of program effort net of social setting.

2.7.7 Multiple Classification Analysis

Multiple Classification Analysis (MCA), a technique that has enjoyed some
popularity in Sociology, turns out to be just another name for the two factor
additive model discussed in this section (and more generally, for multi-factor
additive models). A nice feature of MCA, however, is a tradition of present-
ing the results of the analysis in a table that contains

• the gross effect of each of the factors, calculated using a one-factor
model under the ‘usual’ restrictions, together with the corresponding
correlation ratios (called ‘eta’ coefficients), and

• the net effect of each factor, calculated using a two-factor additive
model under the ‘usual’ restrictions, together with the corresponding
partial correlation ratios (unfortunately called ‘beta’ coefficients).

Table 2.19 shows a multiple classification analysis of the program effort
data that follows directly from the results obtained so far. Estimates for the
additive model under the usual restrictions can be obtained from Table 2.18
as differences between the row and column means and the overall mean.

The overall expected decline in the CBR is 14.3%. The effects of low,
medium and high setting are substantially reduced after adjustment for ef-
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Table 2.19: Multiple Classification Analysis of CBR Decline
by Social Setting and Family Planning Effort

Factor Category Gross Eta Net Beta
Effect Effect

Setting Low −6.73 −0.54
Medium −5.70 −2.22
High 9.45 1.85

0.67 0.24
Effort Weak −9.30 −8.39

Moderate −4.97 −4.55
Strong 13.56 12.29

0.88 0.78

Total 14.30 14.30

fort, an attenuation reflected in the reduction of the correlation ratio from
0.67 to 0.24. On the other hand, the effects of weak, moderate and strong
programs are slightly reduced after adjustment for social setting, as can be
seen from correlation ratios of 0.88 and 0.78 before and after adjustment.
The analysis indicates that the effects of effort are more pronounced and
more resilient to adjustment than the effects of social setting.

2.7.8 The Model With Interactions

The analysis so far has rested on the assumption of additivity. We now
consider a more general model for the effects of two discrete factors on a
continuous response which allows for more general effects

µij = µ+ αi + βj + (αβ)ij . (2.20)

In this formulation the first three terms should be familiar: µ is a constant,
and αi and βj are the main effects of levels i of the row factor and j of the
column factor.

The new term (αβ)ij is an interaction effect. It represents the effect
of the combination of levels i and j of the row and column factors. (The
notation (αβ) should be understood as a single symbol, not a product; we
could have used γij to denote the interaction, but the notation (αβ)ij is more
suggestive and reminds us that the term involves a combined effect.)

One difficulty with the model as defined so far is that it is grossly overpa-
rameterized. If the row and column factors have R and C levels, respectively,
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we have only RC possible cells but have introduced 1 +R+C +RC param-
eters. Our preferred solution is an extension of the reference cell method,
and sets to zero all parameters involving the first row or the first column in
the two-way layout, so that α1 = β1 = (αβ)1j = (αβ)i1 = 0. The best way
to understand the meaning of the remaining parameters is to study Table
2.20, which shows the structure of the means in a three by three layout.

Table 2.20: The Two-Factor Model With Interactions

Row Column
1 2 3

1 µ µ+ β2 µ+ β3
2 µ+ α2 µ+ α2 + β2 + (αβ)22 µ+ α2 + β3 + (αβ)23
3 µ+ α3 µ+ α3 + β2 + (αβ)32 µ+ α3 + β3 + (αβ)33

Here µ is the expected response in the reference cell, just as before. The
main effects are now more specialized: αi is the effect of level i of the row
factor, compared to level one, when the column factor is at level one, and
βj is the effect of level j of the column factor, compared to level one, when
the row factor is at level one. The interaction term (αβ)ij is the additional
effect of level i of the row factor, compared to level one, when the column
factor is at level j rather than one. This term can also be interpreted as the
additional effect of level j of the column factor, compared to level one, when
the row factor is at level i rather than one.

The key feature of this model is that the effect of a factor now depends
on the levels of the other. For example the effect of level two of the row
factor, compared to level one, is α2 in the first column, α2 + (αβ)22 in the
second column, and α2 + (αβ)23 in the third column.

The resulting model is a special case of the general lineal model where
the model matrix X has a column of ones to represent the constant, a set of
R − 1 dummy variables representing the row effects, a set of C − 1 dummy
variables representing the column effects, and a set of (R−1)(C−1) dummy
variables representing the interactions.

The easiest way to calculate the interaction dummies is as products of
the row and column dummies. If ri takes the value one for observations
in row i and zero otherwise, and cj takes the value one for observations in
column j1 and zero otherwise, then the product ricj takes the value one for
observations that are in row i and column j, and is zero for all others.

In order to fit this model to the program effort data we need to introduce
one additional constraint because the cell corresponding to strong programs
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in low settings is empty. As a result, we cannot distinguish β3 from β3 +
(αβ)23. A simple solution is to set (αβ)23 = 0. This constraint is easily
implemented by dropping the corresponding dummy, which would be r2c3
in the above notation.

The final model has eight parameters: the constant, two setting effects,
two effort effects, and three (rather than four) interaction terms.

Table 2.21: Anova for Two-Factor Model with Interaction Effect
for CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting 1193.8 2 596.9 15.5
Effort|Setting 882.0 2 441.0 11.5
Interaction 113.6 3 37.9 1.0
Residual 460.8 12 38.4

Total 2650.2 19

Fitting the model gives a RSS of 460.8 on 12 d.f. Combining this result
with the anova for the additive model leads to the hierarchical anova in Table
2.21. The F -test for the interaction is one on three and 12 d.f. and is clearly
not significant. Thus, we have no evidence to contradict the assumption of
additivity. We conclude that the effect of effort is the same at all social
settings. Calculation and interpretation of the parameter estimates is left as
an exercise.

2.7.9 Factors or Variates?

In our analysis of CBR decline we treated social setting and family planning
effort as continuous variates with linear effects in Sections 2.4 and 2.5, and
as discrete factors in Sections 2.6 and 2.7.

The fundamental difference between the two approaches hinges on the
assumption of linearity. When we treat a predictor as a continuous vari-
ate we assume a linear effect. If the assumption is reasonable we attain a
parsimonious fit, but if it is not reasonable we are forced to introduce trans-
formations or higher-order polynomial terms, resulting in models which are
often harder to interpret.

A reasonable alternative in these cases is to model the predictor as a
discrete factor, an approach that allows arbitrary changes in the response
from one category to another. This approach has the advantage of a simpler
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and more direct interpretation, but by grouping the predictor into categories
we are not making full use of the information in the data.

In our example we found that social setting explained 45% of the vari-
ation in CBR declines when treated as a variate and 45% when treated as
a factor with three levels. Both approaches give the same result, suggesting
that the assumption of linearity of setting effects is reasonable.

On the other hand family planning effort explained 64% when treated as
a variate and 77% when treated as a factor with three levels. The difference
suggests that we might be better off grouping effort into three categories.
The reason, of course, is that the effect of effort is non-linear: CBR decline
changes little as we move from weak to moderate programs, but raises steeply
for strong programs.

2.8 Analysis of Covariance Models

We now consider models where some of the predictors are continuous vari-
ates and some are discrete factors. We continue to use the family planning
program data, but this time we treat social setting as a variate and program
effort as a factor.

2.8.1 The Data and Notation

Table 2.22 shows the effort data classified into three groups, corresponding
to weak (0–4), moderate (5–14) and strong (15+) programs. For each group
we list the values of social setting and CBR decline.

Table 2.22: Social Setting Scores and CBR Percent Declines
by Levels of Family Planning Effort

Family Planning Effort
Weak Moderate Strong

Setting Change Setting Change Setting Change

46 1 68 21 89 29
74 10 70 0 77 25
35 0 60 13 84 29
83 9 55 4 89 40
68 7 51 7 87 21
74 6 91 11 84 22
72 2 84 29
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As usual, we modify our notation to reflect the structure of the data.
Let k denote the number of groups, or levels of the discrete factor, ni the
number of observations in group i, yij the value of the response and xij the
value of the predictor for the j-th unit in the i-th group, with j = 1, . . . , ni
and i = 1, . . . , k.

2.8.2 The Additive Model

We keep the random structure of our model, treating yij as a realization
of a random variable Yij ∼ N(µij , σ

2). To express the dependence of the
expected response µij on a discrete factor we have used an anova model of
the form µij = µ+αi, whereas to model the effect of a continuous predictor
we have used a regression model of the form µij = α + βxij . Combining
these two models we obtain the additive analysis of covariance model

µij = µ+ αi + βxij . (2.21)

This model defines a series of straight-line regressions, one for each level of
the discrete factor (you may want to peek at Figure 2.5). These lines have
different intercepts µ+ αi, but a common slope β, so they are parallel. The
common slope β represents the effects of the continuous variate at any level
of the factor, and the differences in intercept αi represent the effects of the
discrete factor at any given value of the covariate.

The model as defined in Equation 2.21 is not identified: we could add a
constant δ to each αi and subtract it from µ without changing any of the
expected values. To solve this problem we set α1 = 0, so µ becomes the
intercept for the reference cell, and αi becomes the difference in intercepts
between levels i and one of the factor.

The analysis of covariance model may be obtained as a special case of
the general linear model by letting the model matrix X have a column of
ones representing the constant, a set of k dummy variables representing the
levels of the discrete factor, and a column with the values of the contin-
uous variate. The model is not of full column rank because the dummies
add up to the constant, so we drop one of them, obtaining the reference
cell parametrization. Estimation and testing then follows form the general
results in Sections 2.2 and 2.3.

Table 2.23 shows the parameter estimates, standard errors and t-ratios
after fitting the model to the program effort data with setting as a variate
and effort as a factor with three levels.

The results show that each point in the social setting scale is associated
with a further 0.17 percentage points of CBR decline at any given level of
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Table 2.23: Parameter Estimates for Analysis of Covariance Model
of CBR Decline by Social Setting and Family Planning Effort

Parameter Symbol Estimate Std.Error t-ratio

Constant µ −5.954 7.166 −0.83
Effort moderate α2 4.144 3.191 1.30

strong α3 19.448 3.729 5.21
Setting (linear) β 0.1693 0.1056 1.60

effort. Countries with moderate and strong programs show additional CBR
declines of 19 and 4 percentage points, respectively, compared to countries
with weak programs at the same social setting.
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Figure 2.5: Analysis of Covariance Model for CBR Decline
by Social Setting Score and Level of Program Effort

Figure 2.5 depicts the analysis of covariance model in graphical form. We
have plotted CBR decline as a function of social setting using the letters w,
m and s for weak, moderate and strong programs, respectively. The figure
also shows the fitted lines for the three types of programs. The vertical
distances between the lines represent the effects of program effort at any
given social setting. The common slope represents the effect of setting at
any given level of effort.
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2.8.3 The Hierarchical Anova Table

Fitting the analysis of covariance model to our data gives a RSS of 525.7 on
16 d.f. (20 observations minus four parameters: the constant, two intercepts
and one slope). Combining this result with the RSS’s for the null model
and for the model of Section 2.4 with a linear effect of setting, leads to the
hierarchical analysis of variance shown in Table 2.24.

Table 2.24: Hierarchical Anova for Analysis of Covariance Model
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting (linear) 1201.1 1 1201.1 36.5
Effort|Setting 923.4 2 461.7 14.1
Residual 525.7 16 32.9

Total 2650.2 19

The most interesting statistic in this table is the F -test for the net effect
of program effort, which is 14.1 on two and 16 d.f. and is highly significant, so
we reject the hypothesis H0 : α2 = α3 = 0 of no program effects. Looking at
the t-ratios in Table 2.23 we see that the difference between strong and weak
programs is significant, while that between moderate and weak programs is
not, confirming our earlier conclusions. The difference between strong and
moderate programs, which is not shown in the table, is also significant.

From these results we can calculate proportions of variance explained in
the usual fashion. In this example setting explains 45.3% of the variation in
CBR declines and program effort explains an additional 34.5%, representing
63.7% of what remained unexplained, for a total of 80.1%. You should be
able to translate these numbers into simple, partial and multiple correlation
coefficients or ratios.

2.8.4 Gross and Net Effects

The estimated net effects of setting and effort based on the analysis of co-
variance model may be compared with the estimated gross effects based on
the simple linear regression model for setting and the one-way analysis of
variance model for effort. The results are presented in a format analogous
to multiple classification analysis in Table 2.25, where we have used the
reference cell method rather than the ‘usual’ restrictions.
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Table 2.25: Gross and Net Effects of Social Setting Score
and Level of Family Planning Effort on CBR Decline

Predictor Category
Effect

Gross Net

Setting (linear) 0.505 0.169
Effort Weak – –

Moderate 4.33 4.14
Strong 22.86 19.45

The effect of social setting is reduced substantially after adjusting for
program effort. On the other hand, the effects of program effort, measured
by comparing strong and moderate programs with weak ones, are hardly
changed after adjustment for social setting.

If interest centers on the effects of program effort, it may be instructive
to calculate CBR declines by categories of program effort unadjusted and
adjusted for linear effects of setting. To obtain adjusted means we use the
fitted model to predict CBR decline with program effort set at the observed
values but social setting set at the sample mean, which is 72.1 points. Thus,
we calculate expected CBR decline at level i of effort holding setting constant
at the mean as µ̂i = µ̂+ α̂i + β̂ 72.1. The results are shown in Table 2.26.

Table 2.26: CBR Decline by Family Planning Effort
Before and After Linear Adjustment for Social Setting

Effort
CBR Decline

Unadjusted Adjusted

Weak 5.00 6.25
Moderate 9.33 10.40
Strong 27.86 25.70

Thus, countries with strong program show on average a 28% decline
in the CBR, but these countries tend to have high social settings. If we
adjusted linearly for this advantage, we would expect them to show only a
26% decline. Clearly, adjusting for social setting does not change things very
much.

Note that the analysis in this sections parallels the results in Section 2.7.
The only difference is the treatment of social setting as a discrete factor with
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three levels or as a continuous variate with a linear effect.

2.8.5 The Assumption of Parallelism

In order to test the assumption of equal slopes in the analysis of covariance
model we consider a more general model where

µij = (µ+ αi) + (β + γi)xij . (2.22)

In this formulation each of the k groups has its own intercept µ+αi and its
own slope β + γi.

As usual, this model is overparametrized and we introduce the reference
cell restrictions, setting α1 = γ1 = 0. As a result, µ is the constant and β
is the slope for the reference cell, αi and γi are the differences in intercept
and slope, respectively, between level i and level one of the discrete factor.
(An alternative is to drop µ and β, so that αi is the constant and γi is the
slope for group i. The reference cell method, however, extends more easily
to models with more than one discrete factor.)

The parameter αi may be interpreted as the effect of level i of the factor,
compared to level one, when the covariate is zero. (This value will not be of
interest if zero is not in the range of the data.) On the other hand, β is the
expected increase in the response per unit increment in the variate when the
factor is at level one. The parameter γi is the additional expected increase
in the response per unit increment in the variate when the factor is at level
i rather than one. Also, the product γix is the additional effect of level i of
the factor when the covariate has value x rather than zero.

Before fitting this model to the program effort data we take the pre-
caution of centering social setting by subtracting its mean. This simple
transformation simplifies interpretation of the intercepts, since a value of
zero represents the mean setting and is therefore definitely in the range of
the data. The resulting parameter estimates, standard errors and t-ratios
are shown in Table 2.27.

The effect of setting is practically the same for countries with weak and
moderate programs, but appears to be more pronounced in countries with
strong programs. Note that the slope is 0.18 for weak programs but increases
to 0.64 for strong programs. Equivalently, the effect of strong programs
compared to weak ones seems to be somewhat more pronounced at higher
levels of social setting. For example strong programs show 13 percentage
points more CBR decline than weak programs at average levels of setting,
but the difference increases to 18 percentage points if setting is 10 points
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Table 2.27: Parameter Estimates for Ancova Model with Different Slopes
for CBR Decline by Social Setting and Family Planning Effort

(Social setting centered around its mean)

Parameter Symbol Estimate Std.Error t-ratio

Constant µ 6.356 2.477 2.57
Effort moderate α2 3.584 3.662 0.98

strong α3 13.333 8.209 1.62
Setting (linear) β 0.1836 0.1397 1.31
Setting × moderate γ2 −0.0868 0.2326 −0.37

Effort strong γ3 0.4567 0.6039 0.46

above the mean. However, the t ratios suggest that none of these interactions
is significant.

To test the hypothesis of parallelism (or no interaction) we need to con-
sider the joint significance of the two coefficients representing differences in
slopes, i.e. we need to test H0 : γ2 = γ3 = 0. This is easily done comparing
the model of this subsection, which has a RSS of 497.1 on 14 d.f., with the
parallel lines model of the previous subsection, which had a RSS of 525.7 on
16 d.f. The calculations are set out in Table 2.28.

Table 2.28: Hierarchical Anova for Model with Different Slopes
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting (linear) 1201.1 1 1201.1 33.8
Effort ( intercepts) 923.4 2 461.7 13.0
Setting × Effort (slopes) 28.6 2 14.3 0.4
Residual 497.1 14 35.5
Total 2650.2 19

The test for parallelism gives an F -ratio of 0.4 on two and 14 d.f., and
is clearly not significant. We therefore accept the hypothesis of parallelism
and conclude that we have no evidence of an interaction between program
effort and social setting.
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2.9 Regression Diagnostics

The process of statistical modeling involves three distinct stages: formulating
a model, fitting the model to data, and checking the model. Often, the third
stage suggests a reformulation of the model that leads to a repetition of the
entire cycle and, one hopes, an improved model. In this section we discuss
techniques that can be used to check the model.

2.9.1 Fitted Values and Residuals

The raw materials of model checking are the residuals ri defined as the
differences between observed and fitted values

ri = yi − ŷi, (2.23)

where yi is the observed response and ŷi = x′iβ̂ is the fitted value for the
i-th unit.

The fitted values may be written in matrix notation as ŷ = Xβ̂. Using
Equation 2.7 for the m.l.e. of β, we can write the fitted values as ŷ = Hy
where

H = X(X′X)−1X′.

The matrix H is called the hat matrix because it maps y into y-hat. From
these results one can show that the fitted values have mean E(ŷ) = µ and
variance-covariance matrix var(ŷ) = Hσ2.

The residuals may be written in matrix notation as r = y− ŷ, where y
is the vector of responses and ŷ is the vector of fitted values. Since ŷ = Hy,
we can write the raw residuals as r = (I −H)y. It is then a simple matter
to verify that under the usual second-order assumptions, the residuals have
expected value 0 and variance-covariance matrix var(r) = (I − H)σ2. In
particular, the variance of the i-th residual is

var(ri) = (1− hii)σ2, (2.24)

where hii is the i-th diagonal element of the hat matrix.

This result shows that the residuals may have different variances even
when the original observations all have the same variance σ2, because the
precision of the fitted values depends on the pattern of covariate values.

For models with a constant it can be shown that the value of hii is always
between 1/n and 1/r, where n is the total number of observations and r is
the number of replicates of the i-th observation (the number of units with
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the same covariate values as the i-th unit). In simple linear regression with
a constant and a predictor x we have

hii = 1/n+
(xi − x̄)2∑
j(xj − x̄)2

,

so that hii has a minimum of 1/n at the mean of x. Thus, the variance
of the fitted values is smallest for observations near the mean and increases
towards the extremes, as you might have expected. Perhaps less intuitively,
this implies that the variance of the residuals is greatest near the mean and
decreases as one moves towards either extreme.

Table 2.29 shows raw residuals (and other quantities to be discussed
below) for the covariance analysis model fitted to the program effort data.
Note that the model underestimates the decline of fertility in both Cuba and
the Dominican Republic by a little bit more than eleven percentage points.
At the other end of the scale, the model overestimates fertility change in
Ecuador by ten percentage points.

2.9.2 Standardized Residuals

When we compare residuals for different observations we should take into
account the fact that their variances may differ. A simple way to allow for
this fact is to divide the raw residual by an estimate of its standard deviation,
calculating the standardized (or internally studentized) residual

si =
ri√

1− hiiσ̂
, (2.25)

where σ̂ is the estimate of the standard deviation based on the residual sum
of squares.

Standardized residuals are useful in detecting anomalous observations or
outliers. In general, any observation with a standardized residual greater
than two in absolute value should be considered worthy of further scrutiny
although, as we shall see below, such observations are not necessarily outliers.

Returning to Table 2.29, we see that the residuals for both Cuba and the
Dominican Republic exceed two in absolute value, whereas the residual for
Ecuador does not. Standardizing the residuals helps assess their magnitude
relative to the precision of the estimated regression.

2.9.3 Jack-knifed Residuals

One difficulty with standardized residuals is that they depend on an estimate
of the standard deviation that may itself be affected by outliers, which may
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Table 2.29: Regression Diagnostics for Analysis of Covariance Model
of CBR Decline by Social Setting and Program Effort

Country
Residual Leverage Cook’s

ri si ti hii Di

Bolivia −0.83 −0.17 −0.16 0.262 0.0025
Brazil 3.43 0.66 0.65 0.172 0.0225
Chile 0.44 0.08 0.08 0.149 0.0003
Colombia −1.53 −0.29 −0.28 0.164 0.0042
Costa Rica 1.29 0.24 0.24 0.143 0.0025
Cuba 11.44 2.16 2.49 0.149 0.2043
Dominican Rep. 11.30 2.16 2.49 0.168 0.2363
Ecuador −10.04 −1.93 −2.13 0.173 0.1932
El Salvador 4.65 0.90 0.89 0.178 0.0435
Guatemala −3.50 −0.69 −0.67 0.206 0.0306
Haiti 0.03 0.01 0.01 0.442 0.0000
Honduras 0.18 0.04 0.03 0.241 0.0001
Jamaica −7.22 −1.36 −1.40 0.144 0.0782
Mexico 0.90 0.18 0.18 0.256 0.0029
Nicaragua 1.44 0.27 0.26 0.147 0.0032
Panama −5.71 −1.08 −1.08 0.143 0.0484
Paraguay −0.57 −0.11 −0.11 0.172 0.0006
Peru −4.40 −0.84 −0.83 0.166 0.0352
Trinidad-Tobago 1.29 0.24 0.24 0.143 0.0025
Venezuela −2.59 −0.58 −0.56 0.381 0.0510

thereby escape detection.

A solution to this problem is to standardize the i-th residual using an
estimate of the error variance obtained by omitting the i-th observation. The
result is the so-called jack-knifed (or externally studentized, or sometimes
just studentized) residual

ti =
ri√

1− hiiσ̂(i)
, (2.26)

where σ̂(i) denotes the estimate of the standard deviation obtained by fitting
the model without the i-th observation, and is based on a RSS with n−p−1
d.f. Note that the fitted value and the hat matrix are still based on the
model with all observations.
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You may wonder what would happen if we omitted the i-th observation
not just for purposes of standardizing the residual, but also when estimating
the residual itself. Let β̂(i) denote the estimate of the regression coefficients
obtained by omitting the i-th observation. We can combine this estimate
with the covariate values of the i-th observation to calculate a predicted
response ŷ(i) = x′iβ̂(i) based on the rest of the data. The difference between
observed and predicted responses is sometimes called a predictive residual

yi − ŷ(i).

Consider now standardizing this residual, dividing by an estimate of its
standard deviation. Since the i-th unit was not included in the regression,
yi and ŷ(i) are independent. The variance of the predictive residual is

var(yi − ŷ(i)) = (1 + x′i(X
′
(i)X(i))

−1xi)σ
2,

where X(i) is the model matrix without the i-th row. This variance is es-
timated replacing the unknown σ2 by σ̂2(i), the estimate based on the RSS
of the model omitting the i-th observation. We are now in a position to
calculate a standardized predictive residual

ti =
yi − ŷ(i)√

v̂ar(yi − ŷ(i))
. (2.27)

The result turns out to be exactly the same as the jack-knifed residual in
Equation 2.26 and provides an alternative characterization of this statistic.

At first sight it might appear that jack-knifed residuals require a lot of
calculation, as we would need to fit the model omitting each observation in
turn. It turns out, however, that there are simple updating formulas that
allow direct calculation of regression coefficients and RSS’s after omitting
one observation (see Weisberg, 1985, p. 293). These formulas can be used to
show that the jack-knifed residual ti is a simple function of the standardized
residual si

ti = si

√
n− p− 1

n− p− s2i
.

Note that ti is a monotonic function of si, so ranking observations by their
standardized residuals is equivalent to ordering them by their jack-knifed
residuals.

The jack-knifed residuals on Table 2.29 make Cuba and the D.R. stand
out more clearly, and suggest that Ecuador may also be an outlier.
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2.9.4 A Test For Outliers

The jack-knifed residual can also be motivated as a formal test for outliers.
Suppose we start from the model µi = x′iβ and add a dummy variable to
allow a location shift for the i-th observation, leading to the model

µi = x′iβ + γzi,

where zi is a dummy variable that takes the value one for the i-th observation
and zero otherwise. In this model γ represents the extent to which the i-th
response differs from what would be expected on the basis of its covariate
values xi and the regression coefficients β. A formal test of the hypothesis

H0 : γ = 0

can therefore be interpreted as a test that the i-th observation follows the
same model as the rest of the data (i.e. is not an outlier).

The Wald test for this hypothesis would divide the estimate of γ by its
standard error. Remarkably, the resulting t-ratio,

ti =
γ̂√

var(γ̂)

on n− p− 1 d.f., is none other than the jack-knifed residual.
This result should not be surprising in light of the previous developments.

By letting the i-th observation have its own parameter γ, we are in effect
estimating β from the rest of the data. The estimate of γ measures the
difference between the response and what would be expected from the rest
of the data, and coincides with the predictive residual.

In interpreting the jack-knifed residual as a test for outliers one should
be careful with levels of significance. If the suspect observation had been
picked in advance then the test would be valid. If the suspect observation
has been selected after looking at the data, however, the nominal significance
level is not valid, because we have implicitly conducted more than one test.
Note that if you conduct a series of tests at the 5% level, you would expect
one in twenty to be significant by chance alone.

A very simple procedure to control the overall significance level when
you plan to conduct k tests is to use a significance level of α/k for each
one. A basic result in probability theory known as the Bonferroni inequality
guarantees that the overall significance level will not exceed α. Unfortu-
nately, the procedure is conservative, and the true significance level could be
considerably less than α.
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For the program effort data the jack-knifed residuals have 20−4−1 = 15
d.f. To allow for the fact that we are testing 20 of them, we should use a
significance level of 0.05/20 = 0.0025 instead of 0.05. The corresponding two-
sided critical value of the Student’s t distribution is t.99875,15 = 3.62, which
is substantially higher than the standard critical value t.975,15 = 2.13. The
residuals for Cuba, the D.R. and Ecuador do not exceed this more stringent
criterion, so we have no evidence that these countries depart systematically
from the model.

2.9.5 Influence and Leverage

Let us return for a moment to the diagonal elements of the hat matrix. Note
from Equation 2.24 that the variance of the residual is the product of 1−hii
and σ2. As hii approaches one the variance of the residual approaches zero,
indicating that the fitted value ŷi is forced to come close to the observed value
yi. In view of this result, the quantity hii has been called the leverage or
potential influence of the i-th observation. Observations with high leverage
require special attention, as the fit may be overly dependent upon them.

An observation is usually considered to have high leverage if hii exceeds
2p/n, where p is the number of predictors, including the constant, and n is
the number of observations. This tolerance is not entirely arbitrary. The
trace or sum of diagonal elements of H is p, and thus the average leverage
is p/n. An observation is influential if it has more than twice the mean
leverage.

Table 2.29 shows leverage values for the analysis of covariance model
fitted to the program effort data. With 20 observations and four parameters,
we would consider values of hii exceeding 0.4 as indicative of high leverage.
The only country that exceeds this tolerance is Haiti, but Venezuela comes
close. Haiti has high leverage because it is found rather isolated at the low
end of the social setting scale. Venezuela is rather unique in having high
social setting but only moderate program effort.

2.9.6 Actual Influence and Cook’s Distance

Potential influence is not the same as actual influence, since it is always
possible that the fitted value ŷi would have come close to the observed value
yi anyway. Cook proposed a measure of influence based on the extent to
which parameter estimates would change if one omitted the i-th observation.
We define Cook’s Distance as the standardized difference between β̂(i), the

estimate obtained by omitting the i-th observation, and β̂, the estimate
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obtained using all the data

Di = (β̂(i) − β̂)′ v̂ar−1(β̂)(β̂(i) − β̂)/p. (2.28)

It can be shown that Cook’s distance is also the Euclidian distance (or
sum of squared differences) between the fitted values ŷ(i) obtained by omit-
ting the i-th observation and the fitted values ŷ based on all the data, so
that

Di =
n∑
j=1

(ŷ(i)j − ŷj)2/(pσ̂2). (2.29)

This result follows readily from Equation 2.28 if you note that var−1(β̂) =
X′X/σ2 and ŷ(i) = Xβ̂(i).

It would appear from this definition that calculation of Cook’s distance
requires a lot of work, but the regression updating formulas mentioned earlier
simplify the task considerably. In fact, Di turns out to be a simple function
of the standardized residual si and the leverage hii,

Di = s2i
hii

(1− hii)p
.

Thus, Cook’s distance Di combines residuals and leverages in a single mea-
sure of influence.

Values of Di near one are usually considered indicative of excessive influ-
ence. To provide some motivation for this rule of thumb, note from Equation
2.28 that Cook’s distance has the form W/p, where W is formally identical
to the Wald statistic that one would use to test H0: β = β0 if one hypothe-
sized the value β̂(i). Recalling that W/p has an F distribution, we see that
Cook’s distance is equivalent to the F statistic for testing this hypothesis. A
value of one is close to the median of the F distribution for a large range of
values of the d.f. An observation has excessive influence if deleting it would
move this F statistic from zero to the median, which is equivalent to moving
the point estimate to the edge of a 50% confidence region. In such cases it
may be wise to repeat the analysis without the influential observation and
examine which estimates change as a result.

Table 2.29 shows Cook’s distance for the analysis of covariance model
fitted to the program effort data. The D.R., Cuba and Ecuador have the
largest indices, but none of them is close to one. To investigate the exact
nature of the D.R.’s influence, I fitted the model excluding this country.
The main result is that the parameter representing the difference between
moderate and weak programs is reduced from 4.14 to 1.89. Thus, a large part
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of the evidence pointing to a difference between moderate and weak programs
comes from the D.R., which happens to be a country with substantial fertility
decline and only moderate program effort. Note that the difference was not
significant anyway, so no conclusions would be affected.

Note also from Table 2.29 that Haiti, which had high leverage or potential
influence, turned out to have no actual influence on the fit. Omitting this
country would not alter the parameter estimates at all.

2.9.7 Residual Plots

One of the most useful diagnostic tools available to the analyst is the resid-
ual plot, a simple scatterplot of the residuals ri versus the fitted values ŷi.
Alternatively, one may plot the standardized residuals si or the jack-knifed
residuals ti versus the fitted values. In all three cases we expect basically
a rectangular cloud with no discernible trend or pattern. Figure 2.6 shows
a plot of jack-knifed residuals for the analysis of covariance model fitted to
the program effort data. Some of the symptoms that you should be alert for
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Figure 2.6: Residual Plot for Analysis of Covariance Model
of CBR Decline by Social Setting and Program Effort

when inspecting residual plots include the following:

• Any trend in the plot, such as a tendency for negative residuals at
small ŷi and positive residuals at large ŷi. Such a trend would indicate
non-linearities in the data. Possible remedies include transforming the
response or introducing polynomial terms on the predictors.
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• Non-constant spread of the residuals, such as a tendency for more
clustered residuals for small ŷi and more dispersed residuals for large
ŷi. This type of symptom results in a cloud shaped like a megaphone,
and indicates heteroscedasticity or non-constant variance. The usual
remedy is a transformation of the response.

For examples of residual plots see Weisberg (1985) or Draper and Smith (1966).

2.9.8 The Q-Q Plot

A second type of diagnostic aid is the probability plot, a graph of the residu-
als versus the expected order statistics of the standard normal distribution.
This graph is also called a Q-Q Plot because it plots quantiles of the data
versus quantiles of a distribution. The Q-Q plot may be constructed using
raw, standardized or jack-knifed residuals, although I recommend the latter.

The first step in constructing a Q-Q plot is to order the residuals from
smallest to largest, so r(i) is the i-th smallest residual. The quantity r(i) is
called an order statistic. The smallest value is the first order statistic and
the largest out of n is the n-th order statistic.

The next step is to imagine taking a sample of size n from a standard
normal distribution and calculating the order statistics, say z(i). The ex-
pected values of these order statistics are sometimes called rankits. A useful
approximation to the i-th rankit in a sample of size n is given by

E(z(i)) ≈ Φ−1[(i− 3/8)/(n+ 1/4)]

where Φ−1 denotes the inverse of the standard normal distribution function.
An alternative approximation proposed by Filliben (1975) uses Φ−1[(i −
0.3175)/(n+0.365)] except for the first and last rankits, which are estimated
as Φ−1(1 − 0.51/n) and Φ−1(0.51/n), respectively. The two approximations
give very similar results.

If the observations come from a normal distribution we would expect the
observed order statistics to be reasonably close to the rankits or expected
order statistics. In particular, if we plot the order statistics versus the rankits
we should get approximately a straight line.

Figure 2.7 shows a Q-Q plot of the jack-knifed residuals from the anal-
ysis of covariance model fitted to the program effort data. The plot comes
very close to a straight line, except possibly for the upper tail, where we
find a couple of residuals somewhat larger than expected. In general, Q-Q
plots showing curvature indicate skew distributions, with downward concav-
ity corresponding to negative skewness (long tail to the left) and upward



58 CHAPTER 2. LINEAR MODELS FOR CONTINUOUS DATA

•

•
•

• • •
• • • • • • • • • •

•
•

• •

Quantiles of standard normal

Q
ua

nt
ile

s 
of

 ja
ck

-k
ni

fe
d 

re
si

du
al

s

-1 0 1

-2
-1

0
1

2

Figure 2.7: Q-Q Plot of Residuals From Analysis of Covariance Model
of CBR Decline by Social Setting and Program Effort

concavity indicating positive skewness. On the other hand, S-shaped Q-Q
plots indicate heavy tails, or an excess of extreme values, relative to the
normal distribution.

Filliben (1975) has proposed a test of normality based on the linear
correlation between the observed order statistics and the rankits and has
published a table of critical values. The 5% points of the distribution of
r for n = 10(10)100 are shown below. You would reject the hypothesis of
normality if the correlation is less than the critical value. Note than to
accept normality we require a very high correlation coefficient.

n 10 20 30 40 50 60 70 80 90 100
r .917 .950 .964 .972 .977 .980 .982 .984 .985 .987

The Filliben test is closely related to the Shapiro-Francia approximation to
the Shapiro-Wilk test of normality. These tests are often used with stan-
dardized or jack-knifed residuals, although the fact that the residuals are
correlated affects the significance levels to an unknown extent. For the pro-
gram effort data in Figure 2.7 the Filliben correlation is a respectable 0.966.
Since this value exceeds the critical value of 0.950 for 20 observations, we
conclude that we have no evidence against the assumption of normally dis-
tributed residuals.
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2.10 Transforming the Data

We now consider what to do if the regression diagnostics discussed in the
previous section indicate that the model is not adequate. The usual solutions
involve transforming the response, transforming the predictors, or both.

2.10.1 Transforming the Response

The response is often transformed to achieve linearity and homoscedasticity
or constant variance. Examples of variance stabilizing transformations are
the square root, which tends to work well for counts, and the arc-sine trans-
formation, which is often appropriate when the response is a proportion.
These two solutions have fallen out of fashion as generalized linear models
designed specifically to deal with counts and proportions have increased in
popularity. My recommendation in these two cases is to abandon the linear
model in favor of better alternatives such as Poisson regression and logistic
regression.

Transformations to achieve linearity, or linearizing transformations, are
still useful. The most popular of them is the logarithm, which is specially
useful when one expects effects to be proportional to the response. To fix
ideas consider a model with a single predictor x, and suppose the response
is expected to increase 100ρ percent for each point of increase in x. Suppose
further that the error term, denoted U , is multiplicative. The model can
then be written as

Y = γ(1 + ρ)xU.

Taking logs on both sides of the equation, we obtain a linear model for the
transformed response

log Y = α+ βx+ ε,

where the constant is α = log γ, the slope is β = log(1 + ρ) and the error
term is ε = logU . The usual assumption of normal errors is equivalent to
assuming that U has a log-normal distribution. In this example taking logs
has transformed a relatively complicated multiplicative model to a familiar
linear form.

This development shows, incidentally, how to interpret the slope in a
linear regression model when the response is in the log scale. Solving for ρ
in terms of β, we see that a unit increase in x is associated with an increase
of 100(eβ − 1) percent in y. If β is small, eβ − 1 ≈ β, so the coefficient can
be interpreted directly as a relative effect. For |β| < 0.10 the absolute error
of the approximation is less than 0.005 or half a percentage point. Thus, a
coefficient of 0.10 can be interpreted as a 10% effect on the response.
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A general problem with transformations is that the two aims of achieving
linearity and constant variance may be in conflict. In generalized linear
models the two aims are separated more clearly, as we will see later in the
sequel.

2.10.2 Box-Cox Transformations

Box and Cox (1964) have proposed a family of transformations that can
be used with non-negative responses and which includes as special cases all
the transformations in common use, including reciprocals, logarithms and
square roots.

The basic idea is to work with the power transformation

y(λ) =

{
yλ−1
λ λ 6= 0

log(y) λ = 0

and assume that y(λ) follows a normal linear model with parameters β and
σ2 for some value of λ. Note that this transformation is essentially yλ for
λ 6= 0 and log(y) for λ = 0, but has been scaled to be continuous at λ = 0.
Useful values of λ are often found to be in the range (−2, 2). Except for
scaling factors, -1 is the reciprocal, 0 is the logarithm, 1/2 is the square
root, 1 is the identity and 2 is the square.

Given a value of λ, we can estimate the linear model parameters β and
σ2 as usual, except that we work with the transformed response y(λ) instead
of y. To select an appropriate transformation we need to try values of λ in a
suitable range. Unfortunately, the resulting models cannot be compared in
terms of their residual sums of squares because these are in different units.
We therefore use a likelihood criterion.

Starting from the normal distribution of the transformed response y(λ),
we can change variables to obtain the distribution of y. The resulting log-
likelihood is

logL(β, σ2, λ) = −n
2

log(2πσ2)− 1

2

∑
(y

(λ)
i − µi)

2/σ2 + (λ− 1)
∑

log(yi),

where the last term comes from the Jacobian of the transformation, which
has derivative yλ−1 for all λ. The other two terms are the usual normal
likelihood, showing that we can estimate β and σ2 for any fixed value of
λ by regressing the transformed response y(λ) on the x’s. Substituting the
m.l.e.’s of β and σ2 we obtain the concentrated or profile log-likelihood

logL(λ) = c− n

2
log RSS(y(λ)) + (λ− 1)

∑
log(yi),
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where c = n
2 log(2π/n)− n

2 is a constant not involving λ.
Calculation of the profile log-likelihood can be simplified slightly by work-

ing with the alternative transformation

z(λ) =

{
yλ−1
λỹλ−1 λ 6= 0

log(y)ỹ λ = 0,

where ỹ is the geometric mean of the original response, best calculated as
ỹ = exp(

∑
log(yi)/n). The profile log-likelihood can then be written as

logL(λ) = c− n

2
log RSS(z(λ)), (2.30)

where RSS(z(λ)) is the RSS after regressing z(λ) on the x’s. Using this alter-
native transformation the models for different values of λ can be compared
directly in terms of their RSS’s.

In practice we evaluate this profile log-likelihood for a range of possible
values of λ. Rather than selecting the exact maximum, one often rounds to
a value such as −1, 0, 1/2, 1 or 2, particularly if the profile log-likelihood is
relatively flat around the maximum.

More formally, let λ̂ denote the value that maximizes the profile likeli-
hood. We can test the hypothesis H0: λ = λ0 for any fixed value λ0 by
calculating the likelihood ratio criterion

χ2 = 2(logL(λ̂)− logL(λ0)),

which has approximately in large samples a chi-squared distribution with one
d.f. We can also define a likelihood-based confidence interval for λ as the set
of values that would be a accepted by the above test, i.e. the set of values for
which twice the log-likelihood is within χ2

1−α,1 of twice the maximum log-
likelihood. Identifying these values requires a numerical search procedure.

Box-Cox transformations are designed for non-negative responses, but
can be applied to data that have occassional zero or negative values by
adding a constant α to the response before applying the power transforma-
tion. Although α could be estimated, in practice one often uses a small value
such as a half or one (depending, obviously, on the scale of the response).

Let us apply this procedure to the program effort data. Since two coun-
tries show no decline in the CBR, we add 0.5 to all responses before trans-
forming them. Figure 2.8 shows the profile log-likelihood as a function of λ
for values in the range (−1, 2). Note that λ = 1 is not a bad choice, indi-
cating that the model in the original scale is reasonable. A slightly better
choice appears to be λ = 0.5, which is equivalent to using

√
y + 0.5 as the
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Figure 2.8: Profile Log-likelihood for Box-Cox Transformations
for Ancova Model of CBR Decline by Setting and Effort

response. Fitting this model leads to small changes in the significance of the
coefficients of setting and strong programs, but does not materially alter any
of the conclusions.

More formally, we note that the profile log-likelihood for λ = 1 is −61.07.
The maximum is attained at λ = 0.67 and is −59.25. Twice the difference
between these values gives a chi-squared statistic of 3.65 on one degree of
freedom, which is below the 5% critical value of 3.84. Thus, there is no
evidence that we need to transform the response. A more detailed search
shows that a 95% confidence interval for λ goes from 0.34 to 1.01. The
horizontal line in Figure 2.8, at a height of -61.17, identifies the limits of the
likelihood-based confidence interval.

2.10.3 The Atkinson Score

The Box-Cox procedure requires fitting a series of linear models, one for each
trial value of λ. Atkinson (1985) has proposed a simpler procedure that gives
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a quick indication of whether a transformation of the response is required
at all. In practical terms, this technique involves adding to the model an
auxiliary variable a defined as

ai = yi (log(yi/ỹ)− 1), (2.31)

where ỹ is the geometric mean of y, as in the previous subsection. Let
γ denote the coefficient of a in the expanded model. If the estimate of γ
is significant, then a Box-Cox transformation is indicated. A preliminary
estimate of the value of λ is 1− γ̂.

To see why this procedure works suppose the true model is

z(λ) = Xβ + ε,

where we have used the scale-independent version of the Box-Cox trans-
formation. Expanding the left-hand-side using a first-order Taylor series
approximation around λ = 1 gives

z(λ) ≈ z(1) + (λ− 1)
dz(λ)

dλ

∣∣∣∣∣
λ=1

.

The derivative evaluated at λ = 1 is a+log ỹ+1, where a is given by Equation
2.31. The second term does not depend on λ, so it can be absorbed into the
constant. Note also that z(1) = y−1. Using these results we can rewrite the
model as

y ≈ Xβ + (1− λ)a + ε.

Thus, to a first-order approximation the coefficient of the ancillary variable
is 1− λ.

For the program effort data, adding the auxiliary variable a (calculated
using CBR+1/2 to avoid taking the logarithm of zero) to the analysis of
covariance model gives a coefficient of 0.59, suggesting a Box-Cox transfor-
mation with λ = 0.41. This value is reasonably close to the square root trans-
formation suggested by the profile log-likelihood. The associated t-statistic
is significant at the two percent level, but the more precise likelihood ra-
tio criterion of the previous section, though borderline, was not significant.
In conclusion, we do not have strong evidence of a need to transform the
response.

2.10.4 Transforming the Predictors

The Atkinson procedure is similar in spirit to a procedure first suggested by
Box and Tidwell (1962) to check whether one of the predictors needs to be
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transformed. Specifically, to test whether one should use a transformation
xλ of a continuous predictor x, these authors suggest adding the auxiliary
covariate

ai = xi log(xi)

to a model that already has x.
Let γ̂ denote the estimated coefficient of the auxiliary variate x log(x) in

the expanded model. This coefficient can be tested using the usual t statistic
with n− p d.f. If the test is significant, it indicates a need to transform the
predictor. A preliminary estimate of the appropriate transformation is given
by λ̂ = γ̂/β̂+1, where β̂ is the estimated coefficient of x in the original model
with x but not x log(x).

We can apply this technique to the program effort data by calculating a
new variable equal to the product of setting and its logarithm, and adding
it to the covariance analysis model with setting and effort. The estimated
coefficient is -0.030 with a standard error of 0.728, so there is no need to
transform setting. Note, incidentally, that the effect of setting is not signifi-
cant in this model.


