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Abstract. This paper is devoted to the study of the max K-armed ban-
dit problem, which consists in sequentially allocating resources in order
to detect extreme values. Our contribution is twofold. We first signifi-
cantly refine the analysis of the ExtremeHunter algorithm carried out
in Carpentier and Valko (2014), and next propose an alternative ap-
proach, showing that, remarkably, Extreme Bandits can be reduced to a
classical version of the bandit problem to a certain extent. Beyond the
formal analysis, these two approaches are compared through numerical
experiments.

1 Introduction

In a classical multi-armed bandit (MAB in abbreviated form) problem, the ob-
jective is to find a strategy/policy in order to sequentially explore and exploit
K sources of gain, referred to as arms, so as to maximize the expected cu-
mulative gain. Each arm k ∈ {1, . . . , K} is characterized by an unknown
probability distribution νk. At each round t ≥ 1, a strategy π picks an arm
It = π((I1, XI1,1), . . . , (It−1, XIt−1,t−1)) and receives a random reward XIt,t

sampled from distribution νIt . Whereas usual strategies aim at finding and ex-
ploiting the arm with highest expectation, the quantity of interest in many appli-
cations such as medicine, insurance or finance may not be the sum of the rewards,
but rather the extreme observations (even if it might mean replacing loss mini-
mization by gain maximization in the formulation of the practical problem). In
such situations, classical bandit algorithms can be significantly sub-optimal: the
”best” arm should not be defined as that with highest expectation, but as that
producing the maximal values. This setting, referred to as extreme bandits in
Carpentier and Valko (2014), was originally introduced by Cicirello and Smith
(2005) by the name of max K-armed bandit problem. In this framework, the goal
pursued is to obtain the highest possible reward during the first n ≥ 1 steps. For
a given arm k, we denote by

G(k)
n = max

1≤t≤n
Xk,t



the maximal value taken until round n ≥ 1 and assume that, in expectation,
there is a unique optimal arm

k∗ = arg max
1≤k≤K

E[G(k)
n ] .

The expected regret of a strategy π is here defined as

E[Rn] = E[G(k∗)
n ]− E[G(π)

n ], (1)

where G
(π)
n = max1≤t≤nXIt,t is the maximal value observed when implement-

ing strategy π. When the supports of the reward distributions (i.e. the νk’s)
are bounded, no-regret is expected provided that every arm can be sufficiently
explored, refer to Nishihara et al. (2016) (see also David and Shimkin (2016) for
a PAC approach). If infinitely many arms are possibly involved in the learning
strategy, the challenge is then to explore and exploit optimally the unknown
reservoir of arms, see Carpentier and Valko (2015). When the rewards are un-
bounded in contrast, the situation is quite different: the best arm is that for

which the maximum G
(k)
n tends to infinity faster than the others. In Nishi-

hara et al. (2016), it is shown that, for unbounded distributions, no policy can
achieve no-regret without restrictive assumptions on the distributions. In accor-
dance with the literature, we focus on a classical framework in extreme value
analysis. Namely, we assume that the reward distributions are heavy-tailed. Such
Pareto-like laws are widely used to model extremes in many applications, where
a conservative approach to risk assessment might be relevant (e.g. finance, envi-
ronmental risks). Like in Carpentier and Valko (2014), rewards are assumed to
be distributed as second order Pareto laws in the present article. For the sake
of completeness, we recall that a probability law with cdf F (x) belongs to the
(α, β, C,C ′)-second order Pareto family if, for every x ≥ 0,

|1− Cx−α − F (x)| ≤ C ′x−α(1+β) , (2)

where α, β, C and C ′ are strictly positive constants, see e.g. Resnick (2007). In
this context, Carpentier and Valko (2014) have proposed the ExtremeHunter
algorithm to solve the extreme bandit problem and provided a regret analysis.

The contribution of this paper is twofold. First, the regret analysis of the
ExtremeHunter algorithm is significantly improved, in a nearly optimal fash-
ion. This essentially relies on a new technical result of independent interest (see
Theorem 1 below), which provides a bound for the difference between the ex-
pectation of the maximum among independent realizations X1, . . . , XT of a
(α, β, C,C ′)-second order Pareto distribution, E[max1≤i≤T Xi] namely, and its
rough approximation (TC)1/αΓ (1− 1/α). As a by-product, we propose a more
simple Explore-Then-Commit strategy that offers the same theoretical guar-
antees as ExtremeHunter. Second, we explain how extreme bandit can be
reduced to a classical bandit problem to a certain extent. We show that a regret-
minimizing strategy such as Robust-UCB (see Bubeck et al. (2013)), applied
on correctly left-censored rewards, may also reach a very good performance. This



claim is supported by theoretical guarantees on the number of pulls of the best
arm k∗ and by numerical experiments both at the same time. From a practical
angle, the main drawback of this alternative approach consists in the fact that
its implementation requires some knowledge of the complexity of the problem
(i.e. of the gap between the first-order Pareto coefficients of the first and second
arms). In regard to its theoretical analysis, efficiency is proved for large horizons
only.

This paper is organized as follows. Section 2 presents the technical result
mentioned above, which next permits to carry out a refined regret analysis of
the ExtremeHunter algorithm in Section 3. In Section 4, the regret bound
thus obtained is proved to be nearly optimal: precisely, we establish a lower
bound under the assumption that the distributions are close enough to Pareto
distributions showing the regret bound is sharp in this situation. In Section 5, re-
duction of the extreme bandit problem to a classical bandit problem is explained
at length, and an algorithm resulting from this original view is then described.
Finally, we provide a preliminary numerical study that permits to compare the
two approaches from an experimental perspective. Due to space limitations, cer-
tain technical proofs are deferred to the Supplementary Material3.

2 Second-order Pareto distributions: approximation of
the expected maximum among i.i.d. realizations

In the extreme bandit problem, the key to controlling the behavior of explore-
exploit strategies is to approximate the expected payoff of a fixed arm k ∈
{1, . . . , K}. The main result of this section, stated in Theorem 1, provides such
control: it significantly improves upon the result originaly obtained by Carpentier
and Valko (2014) (see Theorem 1 therein). As shall be next shown in Section 3,
this refinement has substantial consequences on the regret bound.

In Carpentier and Valko (2014), the distance between the expected maximum
of independent realizations of a (α, β, C,C ′)-second order Pareto and the corre-
sponding expectation of a Fréchet distribution (TC)1/αΓ (1− 1/α) is controlled
as follows:∣∣∣∣E [ max

1≤i≤T
Xi

]
− (TC)1/αΓ (1− 1/α)

∣∣∣∣ ≤ 4D2C
1/α

T 1−1/α +
2C ′Dβ+1

Cβ+1−1/αT β−1/α

+ (2C ′T )
1

(1+β)α .

Notice that the leading term of this bound is (2C ′T )1/((1+β)α) as T → +∞.
Below, we state a sharper result where, remarkably, this (exploding) term dis-
appears, the contribution of the related component in the approximation error
decomposition being proved as (asymptotically) negligible in contrast.

Theorem 1. (Fréchet approximation bound) If X1, . . . , XT are i.i.d.
r.v.’s drawn from a (α, β, C,C ′)-second order Pareto distribution with α > 1

3 See the full-length paper: http://arxiv.org/abs/1707.08820.
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and T ≥ Q1, where Q1 is the constant depending only on α, β, C and C ′ given
in Eq. (3) below, then,∣∣∣∣E [ max

1≤i≤T
Xi

]
− (TC)1/αΓ (1− 1/α)

∣∣∣∣
≤ 4D2C

1/α

T 1−1/α +
2C ′Dβ+1

Cβ+1−1/αT β−1/α
+ 2(2C ′T )

1
(1+β)α e−HT

β
β+1

= o
T→∞

(T 1/α),

where H = C(2C ′)1/(α(1+β))/2. In particular, if β ≥ 1, we have:∣∣∣∣E [ max
1≤i≤T

Xi

]
− (TC)1/αΓ (1− 1/α)

∣∣∣∣ = o(1) as T → +∞.

We emphasize that the bound above shows that the distance of E[max1≤i≤T Xi]
to the Fréchet mean (TC)1/αΓ (1 − 1

α ) actually vanishes as T → ∞ as soon as
β ≥ 1, a property that shall be useful in Section 3 to study the behavior of
learning algorithms in the extreme bandit setting.

Proof. Assume that T ≥ Q1, where

Q1 =
1

2C ′
max

{
(2C ′/C)(1+β)/β , (8C)1+β

}
. (3)

As in the proof of Theorem 1 in Carpentier and Valko (2014), we consider the
quantity B = (2C ′T )1/((1+β)α) that serves as a cut-off between tail and bulk
behaviors. Observe that∣∣∣∣E [ max

1≤i≤T
Xi

]
− (TC)1/αΓ (1− 1/α)

∣∣∣∣ ≤∣∣∣∣∫ ∞
0

{
1− P

(
max
1≤i≤T

Xi ≤ x
)
− 1 + e−TCx

−α
}

dx

∣∣∣∣
≤

∣∣∣∣∣
∫ B

0

{
P
(

max
1≤i≤T

Xi ≤ x
)
− e−TCx

−α
}

dx

∣∣∣∣∣
+

∣∣∣∣∫ ∞
B

{
P
(

max
1≤i≤T

Xi ≤ x
)
− e−TCx

−α
}

dx

∣∣∣∣ .
For p ∈ {2, β + 1}, we set Dp = Γ (p − 1

α )/α. Equipped with this notation, we
may write∣∣∣∣∫ ∞

B

{
P
(

max
1≤i≤T

Xi ≤ x
)
− e−TCx

−α
}

dx

∣∣∣∣ ≤ 4D2C
1/α

T 1−1/α +
2C ′Dβ+1

Cβ+1−1/αT β−1/α
.

Instead of loosely bounding the bulk term by B, we write∣∣∣∣∣
∫ B

0

{
P
(

max
1≤i≤T

Xi ≤ x
)
− e−TCx

−α
}

dx

∣∣∣∣∣ ≤ B P (X1 ≤ B)
T

+

∫ B

0

e−TCx
−α

dx .

(4)



First, using (2) and the inequality C ′B−(1+β)α ≤ CB−α/2 (a direct consequence
of Eq. (3)), we obtain

P(X1 ≤ B)T ≤
(

1− CB−α + C ′B−(1+β)α
)T

≤
(

1− 1

2
CB−α

)T
≤ e− 1

2TCB
−α

= e−HT
β/(β+1)

.

Second, the integral in Eq. (4) can be bounded as follows:∫ B

0

e−TCx
−α

dx ≤ Be−TCB
−α

= (2C ′T )1/((1+β)α)e−2HT
β/(β+1)

.

This concludes the proof.

3 The ExtremeHunter and ExtremeETC algorithms

In this section, the tighter control provided by Theorem 1 is used in order to
refine the analysis of the ExtremeHunter algorithm (Algorithm 1) carried
out in Carpentier and Valko (2014). This theoretical analysis is also shown to be
valid for ExtemeETC, a novel algorithm we next propose, that greatly improves
upon ExtremeHunter, regarding computational efficiency.

3.1 Further Notations and Preliminaries

Throughout the paper, the indicator function of any event E is denoted by 1{E}
and Ē means the complementary event of E . We assume that the reward related
to each arm k ∈ {1, . . . , K} is drawn from a (αk, βk, Ck, C

′)-second order Pareto
distribution. Sorting the tail indices by increasing order of magnitude, we use
the classical notation for order statistics: α(1) ≤ · · · ≤ α(K). We assume that
α(1) > 1, so that the random rewards have finite expectations, and suppose
that the strict inequality α(1) < α(2) holds true. We also denote by Tk,t the
number of times the arm k is pulled up to time t. For 1 ≤ k ≤ K and i ≥ 1, the
r.v. X̃k,i is the reward obtained at the i-th draw of arm k if i ≤ Tk,n or a new
r.v. drawn from νk independent from the other r.v.’s otherwise.

We start with a preliminary lemma supporting the intuition that the tail
index α fully governs the extreme bandit problem. It will allow to show next
that the algorithm picks the right arm after the exploration phase, see Lemma 2.

Lemma 1. (Optimal arm) For n larger than some constant Q4 depending
only on (αk, βk, Ck)1≤k≤K and C ′, the optimal arm for the extreme bandit prob-
lem is given by:

k∗ = arg min
1≤k≤K

αk = arg max
1≤k≤K

Vk, (5)

where Vk = (nCk)1/αkΓ (1− 1/αk).



Proof. We first prove the first equality. It follows from Theorem 1 that there
exists a constant Q2, depending only on {(αk, βk, Ck)}1≤k≤K and C ′, such that

for any arm k ∈ {1, . . . , K}, |E[G
(k)
n ] − Vk| ≤ Vk/2. Then for k 6= k∗ we

have, for all n > Q2, Vk/2 ≤ E[G
(k)
n ] ≤ E[G

(k∗)
n ] ≤ 3Vk∗/2. Recalling that Vk

is proportional to n1/αk , it follows that αk∗ = min1≤k≤K αk. Now consider the
following quantity:

Q3 = max
k 6=k∗

[
2C

1/αk
k Γ (1− 1/αk)

C
1/αk∗
k∗ Γ (1− 1/αk∗)

]1/(1/αk∗−1/αk)
. (6)

For n > Q4 = max(Q2, Q3), we have Vk∗ > 2Vk for any suboptimal arm k 6= k∗,
which proves the second equality.

From now on, we assume that n is large enough for Lemma 1 to apply.

3.2 The ExtremeHunter algorithm (Carpentier and Valko, 2014)

Before developing a novel analysis of the extreme bandit problem in Section 3.2
(see Theorem 2), we recall the main features of ExtremeHunter, and in par-
ticular the estimators and confidence intervals involved in the indices of this
optimistic policy.

Algorithm 1 ExtremeHunter (Carpentier and Valko, 2014)

1: Input: K: number of arms, n: time horizon, b > 0 such that b ≤ min1≤k≤K βk, N :
minimum number of pulls of each arm (Eq. (9)).

2: Initialize: Pull each arm N times.
3: for k = 1, . . . ,K do
4: Compute estimators ĥk,KN = h̃k(N) (Eq. (8)) and Ĉk,KN = C̃k(N) (Eq. (7))
5: Compute index Bk,KN (Eq. (12))
6: end for
7: Pull arm IKN+1 = arg max1≤k≤K Bk,KN
8: for t = KN + 2, . . . , n do
9: Update estimators ĥIt−1,t−1 and ĈIt−1,t−1

10: Update index BIt−1,t−1

11: Pull arm It = arg max1≤k≤K Bk,t−1

12: end for

Theorem 1 states that for any arm k ∈ {1, . . . , K}, E[G
(k)
n ] ≈ (Ckn)1/αkΓ (1−

1/αk). Consequently, the optimal strategy in hindsight always pulls the arm
k∗ = arg max1≤k≤K{(nCk)1/αkΓ (1 − 1/αk)}. At each round and for each arm
k ∈ {1, . . . , K}, ExtremeHunter algorithm (Carpentier and Valko, 2014)
estimates the coefficients αk and Ck (but not βk, see Remark 2 in Carpen-
tier and Valko (2014)). The corresponding confidence intervals are detailed be-
low. Then, following the optimism-in-the-face-of-uncertainty principle (see (Auer



et al., 2002) and references therein), the strategy plays the arm maximizing an
optimistic plug-in estimate of (Ckn)1/αkΓ (1−1/αk). To that purpose, Theorem
3.8 in Carpentier and Kim (2014) and Theorem 2 in Carpentier et al. (2014)

provide estimators α̃k(T ) and C̃k(T ) for αk and Ck respectively, after T draws
of arm k. Precisely, the estimate α̃k(T ) is given by

α̃k(T ) = log

( ∑T
t=1 1{Xt > er}∑T
t=1 1{Xt > er+1}

)
,

where r is chosen in an adaptive fashion based on Lepski’s method, see (Lepskĭı,
1990), while the estimator of Ck considered is

C̃k(T ) = T−2b/(2b+1)
T∑
i=1

1{X̃k,i ≥ T h̃k(T )/(2b+1)}, (7)

where
h̃k(T ) = min(1/α̃k(T ), 1) . (8)

The authors also provide finite sample error bounds for T ≥ N , where

N = A0(log n)2(2b+1)/b, (9)

with b a known lower bound on the βk’s (b ≤ min1≤k≤K βk), and A0 a con-
stant depending only on (αk, βk, Ck)1≤k≤K and C ′. These error bounds naturally
define confidence intervals of respective widths Λ1 and Λ2 at level δ0 defined by

δ0 = n−ρ, where ρ =
2αk∗

αk∗ − 1
. (10)

More precisely, we have

P
(∣∣∣∣ 1

αk
− h̃k(T )

∣∣∣∣ ≤ Λ1(T ),
∣∣∣Ck − C̃k(T )

∣∣∣ ≤ Λ2(T )

)
≥ 1− 2δ0, (11)

where

Λ1(T ) = D
√

log(1/δ0)T−b/(2b+1) and Λ2(T ) = E
√

log(T/δ0) log(T )T−b/(2b+1),

denoting by D and E some constants depending only on (αk, βk, Ck)1≤k≤K and

C ′. When Tk,t ≥ N , denote by ĥk,t = h̃k(Tk,t) and Ĉk,t = C̃k(Tk,t) the estimators
based on the Tk,t observations for simplicity. ExtremeHunter’s index Bk,t for

arm k at time t, the optimistic proxy for E[G
(k)
n ], can be then written as

Bk,t = Γ̃
(

1− ĥk,t − Λ1(Tk,t)
)((

Ĉk,t + Λ2(Tk,t)
)
n
)ĥk,t+Λ1(Tk,t)

, (12)

where Γ̃ (x) = Γ (x) if x > 0 and +∞ otherwise.

On computational complexity. Notice that after the initialization phase, at
each time t > KN , ExtremeHunter computes estimators ĥIt,t and ĈIt,t, each
having a time complexity linear with the number of samples TIt,t pulled from
arm It up to time t. Summing on the rounds reveals that ExtremeHunter’s
time complexity is quadratic with the time horizon n.



3.3 ExtremeETC: a computationally appealing alternative

In order to reduce the restrictive time complexity discussed previously, we now
propose the ExtremeETC algorithm, an Explore-Then-Commit version of Ex-
tremeHunter, which offers similar theoretical guarantees.

Algorithm 2 ExtremeETC

1: Input: K: number of arms, n: time horizon, b > 0 such that b ≤ min1≤k≤K βk, N :
minimum number of pulls of each arm (Eq. (9)).

2: Initialize: Pull each arm N times.
3: for k = 1, . . . ,K do
4: Compute estimators ĥk,KN = h̃k(N) (Eq. (8)) and Ĉk,KN = C̃k(N) (Eq. (7))
5: Compute index Bk,KN (Eq. (12))
6: end for
7: Set Iwinner = arg max1≤k≤K Bk,KN
8: for t = KN + 1, . . . , n do
9: Pull arm Iwinner

10: end for

After the initialization phase, the winner arm, which has maximal index
Bk,KN , is fixed and is pulled in all remaining rounds. Then ExtremeETC’s

time complexity, due to the computation of ĥk,KN and Ĉk,KN only, is O (KN) =
O
(
(log n)2(2b+1)/b

)
, which is considerably faster than quadratic time achieved

by ExtremeHunter. For clarity, Table 1 summarizes time and memory com-
plexities of both algorithms.

Complexity ExtremeETC ExtremeHunter

Time O
(
(logn)

2(2b+1)
b

)
O(n2)

Memory O
(
(logn)

2(2b+1)
b

)
O(n)

Table 1: Time and memory complexities required for estimating (αk, Ck)1≤k≤K
in ExtremeETC and ExtremeHunter.

Due to the significant gain of computational time, we used the ExtremeETC
algorithm in our simulation study (Section 6) rather than ExtremeHunter.

Controlling the number of suboptimal rounds. We introduce a high prob-
ability event that corresponds to the favorable situation where, at each round, all
coefficients (1/αk, Ck)1≤k≤K simultaneously belong to the confidence intervals
recalled in the previous subsection.



Definition 1. The event ξ1 is the event on which the bounds∣∣∣∣ 1

αk
− h̃k(T )

∣∣∣∣ ≤ Λ1(T ) and
∣∣∣Ck − C̃k(T )

∣∣∣ ≤ Λ2(T )

hold true for any 1 ≤ k ≤ K and N ≤ T ≤ n.

The union bound combined with (11) yields

P(ξ1) ≥ 1− 2Knδ0. (13)

Lemma 2. For n > Q5, where Q5 is the constant defined in (15), ExtremeETC
and ExtremeHunter always pull the optimal arm after the initialization phase
on the event ξ1. Hence, for any suboptimal arm k 6= k∗, we have on ξ1:

Tk,n = N and thus Tk∗,n = n− (K − 1)N.

Proof. Here we place ourselves on the event ξ1. For any arm 1 ≤ k ≤ K, Lemma
1 in Carpentier and Valko (2014) provides lower and upper bounds for Bk,t when
Tk,t ≥ N

Vk ≤ Bk,t ≤ Vk
(

1 + F log n
√

log(n/δ0)T
−b/(2b+1)
k,t

)
, (14)

where F is a constant which depends only on (αk, βk, Ck)1≤k≤K and C’. Intro-
duce the horizon Q5, which depends on (αk, βk, Ck)1≤k≤K and C’

Q5 = max

(
e

(
F
√
1+ρA

−b/(2b+1)
0

)2

, Q4

)
. (15)

Then the following Lemma 3, proved in Appendix A, tells us that for n large
enough, the exploration made during the initialization phase is enough to find
the optimal arm, with high probability.

Lemma 3. If n > Q5, we have under the event ξ1 that for any suboptimal arm
k 6= k∗ and any time t > KN that Bk,t < Bk∗,t .

Hence the optimal arm is pulled at any time t > KN .

The following result immediately follows from Lemma 2.

Corollary 1. For n larger than some constant depending only on (αk, βk, Ck)1≤k≤K
and C ′ we have under ξ1

Tk∗,n ≥ n/2.

Upper bounding the expected extreme regret. The upper bound on the
expected extreme regret stated in the theorem below improves upon that given
in Carpentier and Valko (2014) for ExtremeHunter. It is also valid for Ex-
tremeETC.



Theorem 2. For ExtremeETC and ExtremeHunter, the expected extreme
regret is upper bounded as follows

E[Rn] = O
(

(log n)2(2b+1)/bn−(1−1/αk∗ ) + n−(b−1/αk∗ )
)
,

as n→ +∞. If b ≥ 1, we have in particular E[Rn] = o(1) as n→ +∞.

The proof of Theorem 2 is deferred to Appendix A. It closely follows that
of Theorem 2 in Carpentier and Valko (2014), the main difference being that
their concentration bound (Theorem 1 therein) can be replaced by our tighter
bound (see Theorem 1 in the present paper). Recall that in Theorem 2 in Car-
pentier and Valko (2014), the upper bound on the expected extreme regret for
ExtremeHunter goes to infinity when n→ +∞:

E[Rn] = O
(
n

1
(1+b)αk∗

)
. (16)

In contrast, in Theorem 2 when b ≥ 1, the upper bound obtained vanishes
when n→ +∞. In the case b < 1, the upper bound still improves upon Eq. (16)

by a factor n(αk∗b(b+1)−b)/((b+1)αk∗ ) > nb
2/(2αk∗ ).

4 Lower bound on the expected extreme regret

In this section we prove a lower bound on the expected extreme regret for
ExtremeETC and ExtremeHunter in specific cases. We assume now that
α(2) > 2α2

k∗/(αk∗ − 1) and we start with a preliminary result on second order
Pareto distributions, proved in Appendix A.

Lemma 4. If X is a r.v. drawn from a (α, β, C,C ′)-second order Pareto distri-
bution and r is a strictly positive constant, the distribution of the r.v. Xr is a
(α/r, β, C,C ′)-second order Pareto.

In order to prove the lower bound on the expected extreme regret, we first
establish that the event corresponding to the situation where the highest reward
obtained by ExtremeETC and ExtremeHunter comes from the optimal arm
k∗ occurs with overwhelming probability. Precisely, we denote by ξ2 the event
such that the bound

max
k 6=k∗

max
1≤i≤N

X̃k,i ≤ max
1≤i≤n−(K−1)N

X̃k∗,i.

holds true. The following lemma, proved in Appendix A, provides a control of
its probability of occurence.

Lemma 5. For n larger than some constant depending only on (αk, βk, Ck)1≤k≤K
and C ′, the following assertions hold true.

(i) We have:
P(ξ2) ≥ 1−Kδ0,

where δ0 is given in Eq. (10).



(ii) Under the event ξ0 = ξ1 ∩ ξ2, the maximum reward obtained by Ex-
tremeETC and ExtremeHunter comes from the optimal arm:

max
1≤t≤n

XIt,t = max
1≤i≤n−(K−1)N

X̃k∗,i.

The following lower bound shows that the upper bound (Theorem 2) is ac-
tually tight in the case b ≥ 1.

Theorem 3. If b ≥ 1 and α(2) > 2α2
k∗/(αk∗ − 1), the expected extreme regret of

ExtremeETC and ExtremeHunter are lower bounded as follows

E[Rn] = Ω
(

(log n)2(2b+1)/bn−(1−1/αk∗ )
)
.

Proof. Here, π refers to either ExtremeETC or else ExtremeHunter. In

order to bound from below E[Rn] = E[G
(k∗)
n ]− E[G

(π)
n ], we start with bounding

E[G
(π)
n ] as follows

E
[
G(π)
n

]
= E

[
max
1≤t≤n

XIt,t

]
= E

[
max
1≤t≤n

XIt,t1{ξ0}
]

+ E
[

max
1≤t≤n

XIt,t1{ξ̄0}
]

≤ P(ξ0)E
[

max
1≤t≤n

XIt,t

∣∣∣ ξ0]+

K∑
k=1

E
[

max
1≤i≤Tk,n

X̃k,i1{ξ̄0}
]
, (17)

where X̃k,i has been defined in Section 3.1. From (ii) in Lemma 5, we have

E
[

max
1≤t≤n

XIt,t

∣∣∣ ξ0] = E
[

max
1≤i≤n−(K−1)N

X̃k∗,i

∣∣∣ ξ0] . (18)

In addition, in the sum of expectations on the right-hand-side of Eq. (17), Tk,n
may be roughly bounded from above by n. A straightforward application of
Hölder inequality yields

K∑
k=1

E
[

max
1≤i≤Tk,n

X̃k,i1{ξ̄0}
]
≤

K∑
k=1

(
E
[

max
1≤i≤n

X̃
αk∗+1

2

k,i

]) 2
αk∗+1

P
(
ξ̄0
)αk∗−1

αk∗+1 .

(19)
From (i) in Lemma 5 and Eq. (13), we have P(ξ̄0) ≤ K(2n+1)δ0. By virtue of

Lemma 4, the r.v. X̃
(αk∗+1)/2
k,i follows a (2αk/(αk∗ + 1), βk, Ck, C

′)-second order
Pareto distribution. Then, applying Theorem 1 to the right-hand side of (19)
and using the identity (18), the upper bound (17) becomes

E
[
G(π)
n

]
≤ E

[
max

1≤i≤n−(K−1)N
X̃k∗,i1{ξ0}

]
+

K∑
k=1

(
(nCk)

αk∗+1

2αk Γ

(
1− αk∗ + 1

2αk

)
+ o

(
n
αk∗+1

2αk

)) 2
αk∗+1

(K(2n+ 1)δ0)
αk∗−1

αk∗+1

≤ E
[

max
1≤i≤n−(K−1)N

X̃k∗,i

]
+O

(
n−(1−1/αk∗ )

)
, (20)



where the last inequality comes from the definition of δ0. Combining Theorem 1
and (20) we finally obtain the desired lower bound

E[Rn] = E
[
G(k∗)
n

]
− E

[
G(π)
n

]
≥ Γ (1− 1/αk∗)C

1/αk∗
k∗

(
n1/αk∗ − (n− (K − 1)N)1/αk∗

)
+O

(
n−(1−1/αk∗ )

)
=
Γ (1− 1/αk∗)C

1/αk∗
k∗

αk∗
(K − 1)Nn−(1−1/αk∗ ) +O

(
n−(1−1/αk∗ )

)
,

where we used a Taylor expansion of x 7→ (1+x)1/αk∗ at zero for the last equality.

5 A reduction to classical bandits

The goal of this section is to render explicit the connections between the max
K-armed bandit considered in the present paper and a particular instance of the
classical Multi-Armed Bandit (MAB) problem.

5.1 MAB setting for extreme rewards

In a situation where only the large rewards matter, an alternative to the max
k-armed problem would be to consider the expected cumulative sum of the most
‘extreme’ rewards, that is, those which exceeds a given high threshold u. For
k ∈ {1, . . . , K} and t ∈ {1, . . . , n}, we denote by Yk,t these new rewards

Yk,t = Xk,t1{Xk,t > u} .

In this context, the classical MAB problem consists in maximizing the expected
cumulative gain

E
[
GMAB

]
= E

[
n∑
t=1

YIt,t

]
.

It turns out that for a high enough threshold u, the unique optimal arm for
this MAB problem, arg max1≤k≤K E[Yk,1], is also the optimal arm k∗ for the
max k-armed problem. We still assume second order Pareto distributions for the
random variables Xk,t and that all the hypothesis listed in Section 3.1 hold true.
The rewards {Yk,t}1≤k≤K,1≤t≤T are also heavy-tailed so that it is legitimate to
attack this MAB problem with the Robust UCB algorithm (Bubeck et al.,
2013), which assumes that the rewards have finite moments of order 1 + ε

max
1≤k≤K

E
[
|Yk,1|1+ε

]
≤ v , (21)

where ε ∈ (0, 1] and v > 0 are known constants. Given our second order Pareto
assumptions, it follows that Eq. (21) holds with 1 + ε < α(1). Even if the knowl-
edge of such constants ε and v is a strong assumption, it is still fair to com-
pare Robust UCB to ExtremeETC/Hunter, which also has strong require-
ments. Indeed, ExtremeETC/Hunter assumes that b and n are known and



verify conditions depending on unknown problem parameters (e.g. n ≥ Q1, see
Eq. (3)).

The following Lemma, whose the proof is postponed to Appendix A, ensures
that the two bandit problems are equivalent for high thresholds.

Lemma 6.

If u > max

(
1,

(
2C ′

min1≤k≤K Ck

) 1
min1≤k≤K βk

,

(
3 max1≤k≤K Ck
min1≤k≤K Ck

) 1
α(2)−α(1)

)
,

(22)
then the unique best arm for the MAB problem is arg min1≤k≤K αk = k∗.

Remark 1. Tuning the threshold u based on the data is a difficult question,
outside our scope. A standard practice is to monitor a relevant output (e.g.
estimate of α) as a function of the threshold u and to pick the latter as low
as possible in the stability region of the output. This is related to the Lepski’s
method, see e.g. Boucheron and Thomas (2015), Carpentier and Kim (2014),
Hall and Welsh (1985).

5.2 Robust UCB algorithm (Bubeck et al., 2013)

For the sake of completeness, we recall below the main feature of Robust UCB
and make explicit its theoretical guarantees in our setting. The bound stated in
the following proposition is a direct consequence of the regret analysis conducted
by Bubeck et al. (2013).

Proposition 1. Applying the Robust UCB algorithm of (Bubeck et al., 2013)
to our MAB problem, the expected number of times we pull any suboptimal arm
k 6= k∗ is upper bounded as follows

E[Tk,n] = O (log n) .

Proof. See proof of Proposition 1 in Bubeck et al. (2013).

Hence, in expectation, Robust UCB pulls fewer times suboptimal arms than
ExtremeETC/Hunter. Indeed with ExtremeETC/Hunter, Tk,n ≥ N =
Θ((log n)2(2b+1)/b).

Remark 2. Proposition 1 may be an indication that the Robust UCB approach
performs better than ExtremeETC/Hunter. Nevertheless, guarantees on its
expected extreme regret require sharp concentration bounds on Tk,n (k 6= k∗),
which is out of the scope of this paper and left for future work.



Algorithm 3 Robust UCB with truncated mean estimator (Bubeck et al.,
2013)

1: Input: u > 0 s.t. Eq. (22), ε ∈ (0, 1] and v > 0 s.t. Eq. (21).
2: Initialize: Pull each arm once.
3: for t ≥ K + 1 do
4: for k = 1, . . . ,K do
5: Update truncated mean estimator

µ̂k ← 1
Tk,t−1

∑t−1
s=1 Yk,s1

{
Is = k, Yk,s ≤

( vTk,s
log(t2)

) 1
1+ε

}
6: Update index

Bk ← µ̂k + 4v1/(1+ε)
(

log t2

Tk,t−1

)ε/(1+ε)
7: end for
8: Play arm It = arg max1≤k≤K Bk
9: end for

6 Numerical experiments

In order to illustrate some aspects of the theoretical results presented previously,
we consider a time horizon n = 105 with K = 3 arms and exact Pareto distri-
butions with parameters given in Table 2. Here, the optimal arm is the second
one (incidentally, the distribution with highest mean is the first one).

Arms
k = 1 k∗ = 2 k = 3

αk 15 1.5 10
Ck 108 1 105

E [Xk,1] 3.7 3 3.5
E [max1≤t≤nXk,t] 7.7 5.8 · 103 11

Table 2: Pareto distributions used in the experiments.

We have implemented Robust UCB with parameters ε = 0.4, which satisfies
1+ε < α2 = 1.5, v achieving the equality in Eq. (21) (ideal case) and a threshold
u equal to the lower bound in Eq. (22) plus 1 to respect the strict inequality.
ExtremeETC is runned with b = 1 < +∞ = min1≤k≤K βk. In this setting,
the most restrictive condition on the time horizon, n > KN ≈ 7000 (given by
Eq. (9)), is checked, which places us in the validity framework of ExtremeETC.
The resulting strategies are compared to each other and to the random strategy
pulling each arm uniformly at random, but not to Threshold Ascent algo-
rithm (Streeter and Smith, 2006) which is designed only for bounded rewards.
Precisely, 1000 simulations have been run and Figure 1 depicts the extreme re-
gret (1) in each setting averaged over these 1000 trajectories. These experiments
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Fig. 1: Averaged extreme regret (over 1000 independent simulations) for Ex-
tremeETC, Robust UCB and a uniformly random strategy. Fig. 1b is the
log-log scaled counterpart of Fig. 1a with linear regressions computed over
t = 5 · 104, . . . , 105.

empirically support the theoretical bounds in Theorem 2: the expected extreme
regret of ExtremeETC converges to zero for large horizons. On the log-log
scale (Fig. 1b), ExtremeETC’s extreme regret starts linearly decreasing after
the initialization phase, at n > KN ≈ 7000, which is consistent with Lemma 2.
The corresponding linear regression reveals a slope ≈ −0.333 (with a coefficient
of determination R2 ≈ 0.97), which confirms Theorem 2 and Theorem 3 yielding
the theoretical slope −(1− 1/αk∗) = −1/3.

7 Conclusion

This paper brings two main contributions. It first provides a refined regret bound
analysis of the performance of the ExtremeHunter algorithm in the context
of the max K-armed bandit problem that significantly improves upon the results
obtained in the seminal contribution Carpentier and Valko (2014), also proved to
be valid for ExtremeETC, a computationally appealing alternative we intro-
duce. In particular, the obtained upper bound on the regret converges to zero for
large horizons and is shown to be tight when the tail of the rewards is sufficiently
close to a Pareto tail (second order parameter b ≥ 1). On the other hand, this
paper offers a novel view of this approach, interpreted here as a specific version
of a classical solution (Robust UCB) of the MAB problem, in the situation when
only very large rewards matter.

Based on these encouraging results, several lines of further research can be
sketched. In particular, future work will investigate to which extent the lower
bound established for ExtremeETC/Hunter holds true for any strategy with
exploration stage of the same duration, and whether improved performance is
achievable with alternative stopping criteria for the exploration stage.
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