A Boosting Tutorial

Rob Schapire Princeton University

www.cs.princeton.edu/~schapire

Example: "How May I Help You?"

[Gorin et al.]

- <u>goal:</u> automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)
 - yes I'd like to place a collect call long distance please (Collect)
 - operator I need to make a call but I need to bill it to my office (ThirdNumber)
 - yes I'd like to place a call on my master card please (CallingCard)
 - I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)

• <u>observation</u>:

- <u>easy</u> to find "rules of thumb" that are "often" correct
 - e.g.: "IF 'card' occurs in utterance THEN predict 'CallingCard' "
- <u>hard</u> to find <u>single</u> highly accurate prediction rule

The Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to 2nd subset of examples
- obtain 2nd rule of thumb
- repeat T times

Details

- how to <u>choose examples</u> on each round?
 - concentrate on "hardest" examples (those most often misclassified by previous rules of thumb)
- how to <u>combine</u> rules of thumb into single prediction rule?
 - take (weighted) majority vote of rules of thumb

Boosting

- <u>boosting</u> = general method of converting rough rules of thumb into highly accurate prediction rule
- <u>technically</u>:
 - <u>assume</u> given <u>"weak" learning algorithm</u> that can consistently find classifiers ("rules of thumb") at least slightly better than random, say, accuracy $\geq 55\%$ (in two-class setting)
 - given sufficient data, a <u>boosting algorithm</u> can <u>provably</u> construct single classifier with very high accuracy, say, 99%

Outline of Tutorial

- brief background
- basic algorithm and core theory
- other ways of understanding boosting
- experiments, applications and extensions

Brief Background

The Boosting Problem

- "strong" PAC algorithm
 - for any distribution
 - $\forall \epsilon > 0, \delta > 0$
 - given polynomially many random examples
 - finds classifier with error $\leq \epsilon$ with probability $\geq 1-\delta$
- "weak" PAC algorithm
 - same, but only for $\epsilon \geq \frac{1}{2} \gamma$
- [Kearns & Valiant '88]:
 - does weak learnability imply strong learnability?

Early Boosting Algorithms

- [Schapire '89]:
 - first provable boosting algorithm
 - call weak learner three times on three modified distributions
 - get slight boost in accuracy
 - apply recursively
- [Freund '90]:
 - "optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard '92]:
 - first experiments using boosting
 - limited by practical drawbacks

AdaBoost

- [Freund & Schapire '95]:
 - introduced "<u>AdaBoost</u>" algorithm
 - strong practical advantages over previous boosting algorithms

• experiments and applications using AdaBoost:

[Drucker & Cortes '96] [Jackson & Craven '96] [Freund & Schapire '96] [Quinlan '96] [Breiman '96] [Maclin & Opitz '97] [Bauer & Kohavi '97] [Schwenk & Bengio '98] [Schapire, Singer & Singhal '98] [Abney, Schapire & Singer '99] [Haruno, Shirai & Ooyama '99] [Cohen & Singer' 99] [Dietterich '00] [Schapire & Singer '00] [Collins '00] [Escudero, Màrquez & Rigau '00] [Iyer, Lewis, Schapire et al. '00] [Onoda, Rätsch & Müller '00] [Tieu & Viola '00] [Walker, Rambow & Rogati '01] [Rochery, Schapire, Rahim & Gupta '01] [Merler, Furlanello, Larcher & Sboner '01] [Di Fabbrizio, Dutton, Gupta et al. '02] [Qu, Adam, Yasui et al. '02] [Tur, Schapire & Hakkani-Tür '03] [Viola & Jones '04] [Middendorf, Kundaje, Wiggins et al. '04]

• <u>continuing development of theory and algorithms:</u>

[Breiman '98, '99] [Schapire, Freund, Bartlett & Lee '98] [Grove & Schuurmans '98] [Mason, Bartlett & Baxter '98] [Schapire & Singer '99] [Cohen & Singer '99] [Freund & Mason '99] [Domingo & Watanabe '99] [Mason, Baxter, Bartlett & Frean '99, '00] [Duffy & Helmbold '99, '02] [Freund & Mason '99] [Ridgeway, Madigan & Richardson '99] [Kivinen & Warmuth '99] [Friedman, Hastie & Tibshirani '00] [Rätsch, Onoda & Müller '00] [Rätsch, Warmuth, Mika et al. '00] [Allwein, Schapire & Singer '00] [Friedman '01]

[Koltchinskii, Panchenko & Lozano '01] [Collins, Schapire & Singer '02] [Demiriz, Bennett & Shawe-Taylor '02] [Lebanon & Lafferty '02] [Wyner '02] [Rudin, Daubechies & Schapire '03] [Jiang '04] [Lugosi & Vayatis '04] [Zhang '04]

Basic Algorithm and Core Theory

A Formal Description of Boosting

- given training set $(x_1, y_1), \ldots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$
 - find weak classifier ("rule of thumb")

 $h_t: X \to \{-1, +1\}$

with small error ϵ_t on D_t :

 $\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$

• output final classifier H_{final}

AdaBoost

[with Freund]

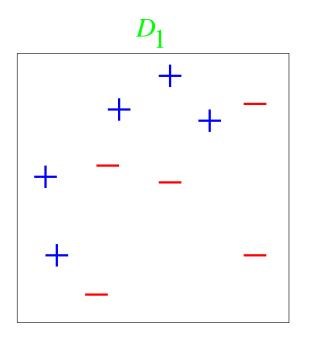
- <u>constructing</u> *D_t*:
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where $Z_t =$ normalization constant $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

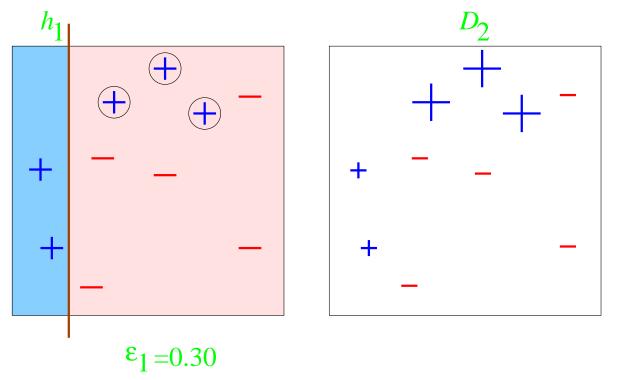
• final classifier:

•
$$H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_t h_t(x)\right)$$



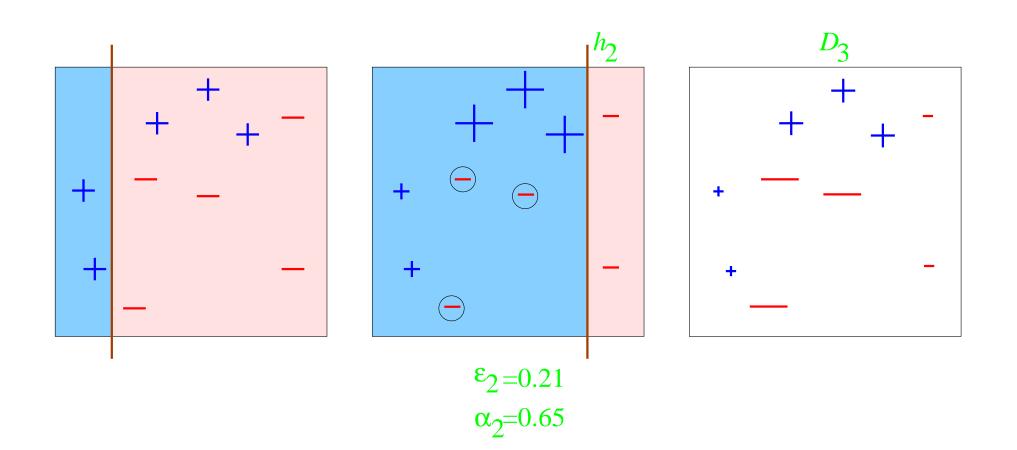
weak classifiers = vertical or horizontal half-planes

Round 1

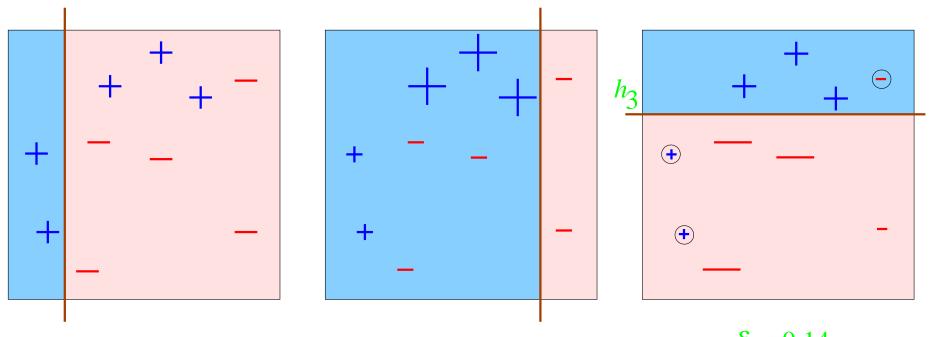


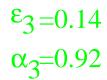
$$\alpha_1 = 0.42$$

Round 2

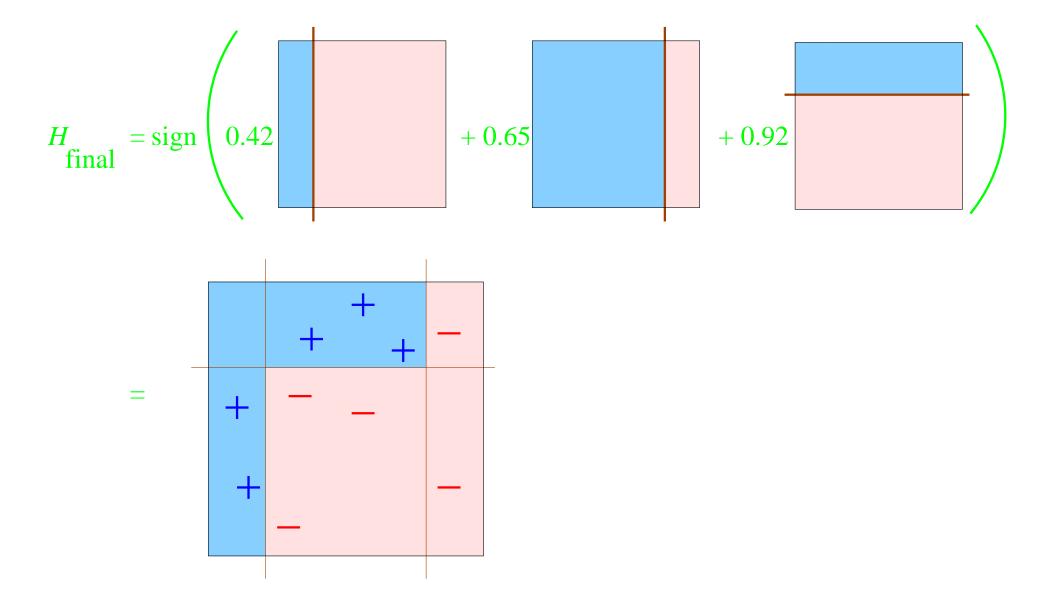


Round 3





Final Classifier



Analyzing the training error

• <u>Theorem</u>:

• write
$$\epsilon_t$$
 as $1/2 - \gamma_t$

• then

training error(H_{final}) $\leq \prod_{t} \left[2\sqrt{\epsilon_t(1-\epsilon_t)} \right]$ = $\prod_{t} \sqrt{1-4\gamma_t^2}$ $\leq \exp\left(-2\sum_{t} \gamma_t^2\right)$

- so: if $\forall t : \gamma_t \ge \gamma > 0$ then training $\operatorname{error}(H_{\text{final}}) \le e^{-2\gamma^2 T}$
- <u>AdaBoost is adaptive</u>:
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$

Proof

- let $f(x) = \sum_{t} \alpha_t h_t(x) \Rightarrow H_{\text{final}}(x) = \text{sign}(f(x))$
- <u>Step 1</u>: unwrapping recurrence:

$$D_{\text{final}}(i) = \frac{1}{m} \frac{\exp\left(-y_i \sum_{t} \alpha_t h_t(x_i)\right)}{\prod_{t} Z_t}$$
$$= \frac{1}{m} \frac{\exp\left(-y_i f(x_i)\right)}{\prod_{t} Z_t}$$

Proof (cont.)

- <u>Step 2</u>: training $\operatorname{error}(H_{\text{final}}) \leq \prod_{t} Z_{t}$
- Proof:

training error(
$$H_{\text{final}}$$
) = $\frac{1}{m} \sum_{i} \begin{cases} 1 \text{ if } y_i \neq H_{\text{final}}(x_i) \\ 0 \text{ else} \end{cases}$
= $\frac{1}{m} \sum_{i} \begin{cases} 1 \text{ if } y_i f(x_i) \leq 0 \\ 0 \text{ else} \end{cases}$
 $\leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i))$
= $\sum_{i} D_{\text{final}}(i) \prod_{t} Z_t$
= $\prod_{t} Z_t$

Proof (cont.)

- <u>Step 3</u>: $Z_t = 2\sqrt{\epsilon_t(1 \epsilon_t)}$
- Proof:

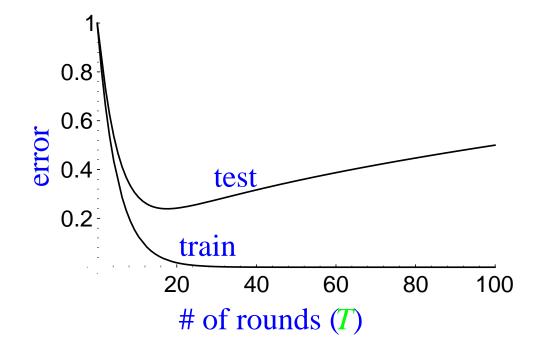
$$Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

=
$$\sum_{i:y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i) e^{-\alpha_t}$$

=
$$\epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t}$$

=
$$2\sqrt{\epsilon_t(1 - \epsilon_t)}$$

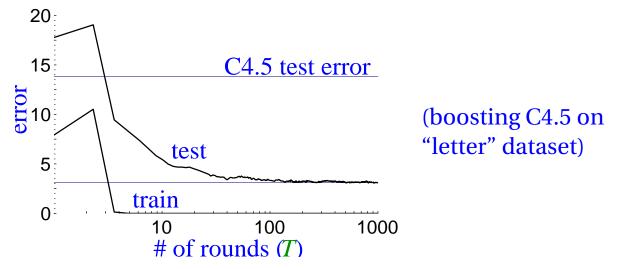
How Will Test Error Behave? (A First Guess)



expect:

- training error to continue to drop (or reach zero)
- test error to increase when H_{final} becomes "too complex"
 - "Occam's razor"
 - <u>overfitting</u>
 - hard to know when to stop training

Actual Typical Run



- test error does <u>not</u> increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

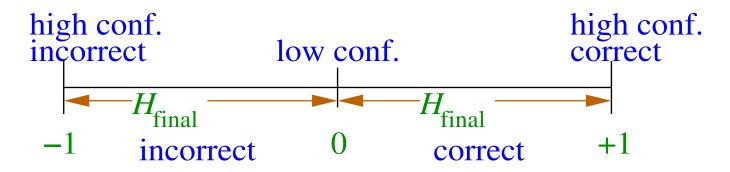
	# rounds		
	5	100	1000
train error	0.0	0.0	0.0
test error	8.4	3.3	3.1

• Occam's razor <u>wrongly</u> predicts "simpler" rule is better

A Better Story: Theory of Margins

[with Freund, Bartlett & Lee]

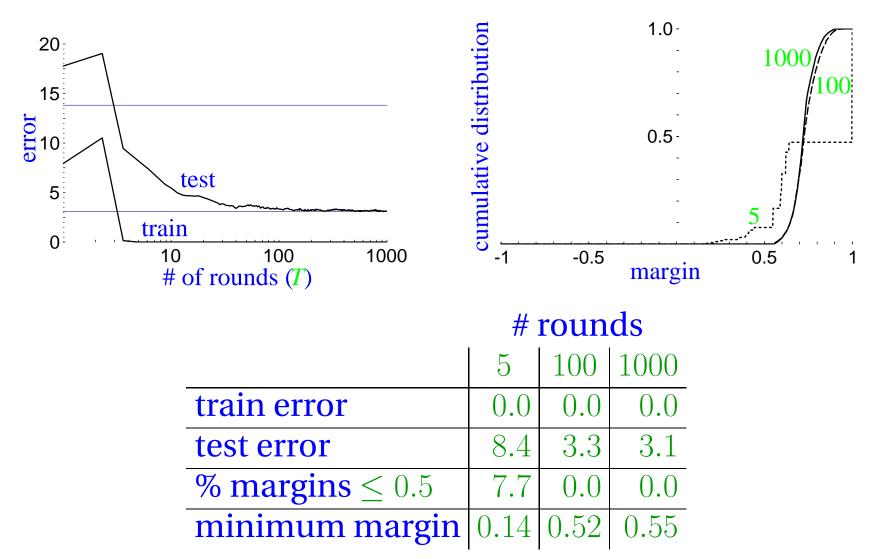
- <u>key idea</u>:
 - training error only measures whether classifications are right or wrong
 - should also consider <u>confidence</u> of classifications
- recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by <u>margin</u> = strength of the vote
 - = (fraction voting correctly) (fraction voting incorrectly)



Empirical Evidence: The Margin Distribution

• margin distribution

= cumulative distribution of margins of training examples



Theoretical Evidence: Analyzing Boosting Using Margins

- Theorem: <u>large margins ⇒ better bound</u> on generalization error (independent of number of rounds)
 - <u>proof idea</u>: if all margins are large, then can <u>approximate</u> final classifier by a much <u>smaller</u> classifier (just as polls can predict not-too-close election)
- Theorem: <u>boosting tends to increase margins</u> of training examples (given weak learning assumption)
 - proof idea: similar to training error proof
- **SO:**

although final classifier is getting <u>larger</u>, <u>margins</u> are likely to be <u>increasing</u>, so final classifier actually getting close to a <u>simpler</u> classifier, driving <u>down</u> the test error

More Technically...

• with high probability, $\forall \theta > 0$:

generalization error $\leq \hat{\Pr}[\operatorname{margin} \leq \theta] + \tilde{O}\left(\frac{\sqrt{d/m}}{\theta}\right)$

where

- m = # training examples
- d = "complexity" of weak classifiers
- $\hat{\Pr}[\operatorname{margin} \le \theta] \to 0$ exponentially fast (in T) if $\gamma_t > \theta$ ($\forall t$)

Other Ways of Understanding AdaBoost

Game Theory

• <u>game</u> defined by matrix **M**:

	Rock	Paper	Scissors
Rock	1/2	1	0
Paper	0	1/2	1
Scissors	1	0	1/2

- <u>row player</u> chooses row i
- <u>column player</u> chooses column *j* (simultaneously)
- row player's goal: minimize loss $\mathbf{M}(i, j)$
- usually allow <u>randomized</u> play:
 - players choose <u>distributions</u> P and Q over rows and columns
- learner's (expected) loss

$$= \sum_{i,j} \mathbf{P}(i) \mathbf{M}(i,j) \mathbf{Q}(j)$$
$$= \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \equiv \mathbf{M}(\mathbf{P},\mathbf{Q})$$

The Minmax Theorem

• von Neumann's minmax theorem:

$$\min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) = \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$
$$= v$$
$$= "value" of game M$$

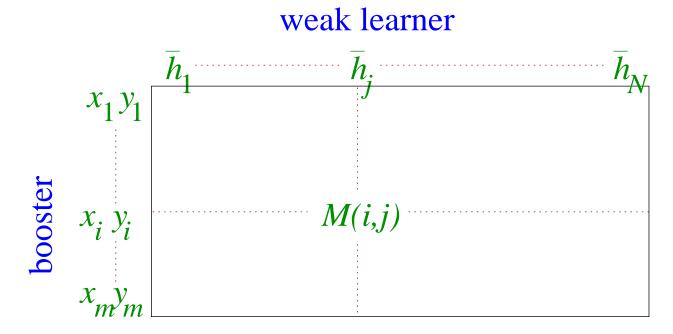
• <u>in words</u>:

- $v = \min \max \max$
 - row player has strategy \mathbf{P}^* such that \forall column strategy \mathbf{Q} loss $\mathbf{M}(\mathbf{P}^*, \mathbf{Q}) \leq v$
- $v = \max \min \text{means}$:
 - this is <u>optimal</u> in sense that column player has strategy Q* such that ∀ row strategy P loss M(P, Q*) ≥ v

The Boosting Game

- let $\{\overline{h}_1, \ldots, \overline{h}_N\}$ = space of <u>all</u> weak classifiers
- row player \leftrightarrow booster
- column player \leftrightarrow weak learner
- matrix M:
 - row \leftrightarrow example (x_i, y_i)
 - column \leftrightarrow weak classifier \overline{h}

•
$$\mathbf{M}(i,j) = \begin{cases} 1 & \text{if } y_i = h_j(x_i) \\ 0 & \text{else} \end{cases}$$



Boosting and the Minmax Theorem

• <u>if</u>:

• \forall distributions over examples $\exists h \text{ with accuracy} \geq \frac{1}{2} - \gamma$

• <u>then</u>:

- $\min_{\mathbf{P}} \max_{h} \mathbf{M}(\mathbf{P}, h) \geq \frac{1}{2} \gamma$
- by <u>minmax theorem</u>:
 - $\max_{\mathbf{Q}} \min_{i} \mathbf{M}(i, \mathbf{Q}) \ge \frac{1}{2} \gamma > \frac{1}{2}$

• <u>which means</u>:

- \exists weighted majority of classifiers which correctly classifies <u>all</u> examples with <u>positive margin</u> (2 γ)
- optimal margin \leftrightarrow "value" of game

AdaBoost and Game Theory

[Freund & Schapire]

- AdaBoost is special case of general algorithm for solving games through repeated play
- can show
 - distribution over examples converges to (approximate) minmax strategy for boosting game
 - weights on weak classifiers converge to (approximate) maxmin strategy
- different instantiation of game-playing algorithm gives on-line learning algorithms (such as weighted majority algorithm)

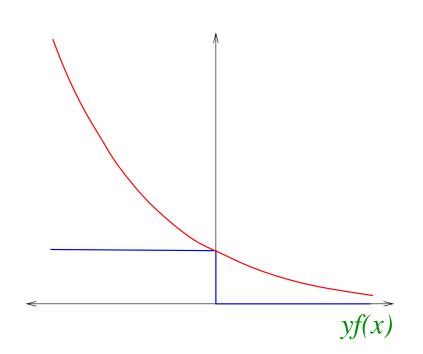
AdaBoost and Exponential Loss

- many (most?) learning algorithms minimize a "loss" function
 - e.g. least squares regression
- training error proof shows AdaBoost actually minimizes

$$\prod_{t} Z_{t} = \frac{1}{m} \sum_{i} \exp(-y_{i} f(x_{i}))$$

where $f(x) = \sum_{t} \alpha_{t} h_{t}(x)$

- \bullet on each round, AdaBoost greedily chooses α_t and h_t to minimize loss
- exponential loss is an upper bound on 0-1 (classification) loss
- AdaBoost <u>provably</u> minimizes exponential loss



Coordinate Descent

[Breiman]

- $\{\overline{h}_1, \ldots, \overline{h}_N\}$ = space of <u>all</u> weak classifiers
- want to find $\lambda_1, \ldots, \lambda_N$ to minimize

$$L(\lambda_1, \dots, \lambda_N) = \sum_i \exp\left(-y_i \sum_j \lambda_j \overline{h}_j(x_i)\right)$$

- AdaBoost is actually doing <u>coordinate descent</u> on this optimization problem:
 - initially, all $\lambda_j = 0$
 - each round: choose one coordinate λ_j (corresponding to h_t) and update (increment by α_t)
 - choose update causing biggest decrease in loss
- powerful technique for minimizing over huge space of functions

Functional Gradient Descent

[Friedman] [Mason et al.]

• want to minimize

$$L(f) = L(f(x_1), \dots, f(x_m)) = \sum_i \exp(-y_i f(x_i))$$

- say have current estimate \overline{f} and want to improve
- to do gradient descent, would like update

$$\overline{f} \leftarrow \overline{f} - \eta \nabla_f L(\overline{f})$$

- but update restricted in class of weak classifiers
- so choose h_t "closest" to $\nabla_f L(\overline{f})$
- equivalent to AdaBoost

Benefits of Model Fitting View

- immediate generalization to other loss functions
 - e.g. squared error for regression
 - e.g. logistic regression (by only changing one line of AdaBoost)
- sensible approach for converting output of boosting into conditional probability estimates
- <u>caveat</u>: wrong to view AdaBoost as <u>just</u> an algorithm for minimizing exponential loss
 - other algorithms for minimizing same loss will (provably) give very poor performance
 - thus, this loss function cannot explain why AdaBoost "works"

Estimating Conditional Probabilities

[Friedman, Hastie & Tibshirani]

- often want to estimate <u>probability</u> that y = +1 given x
- AdaBoost minimizes (empirical version of):

$$E_{x,y}\left[e^{-yf(x)}\right] = E_x\left[P\left[y = +1|x\right]e^{-f(x)} + P\left[y = -1|x\right]e^{-f(x)}\right]$$

where x, y random from true distribution

• over all f, minimized when

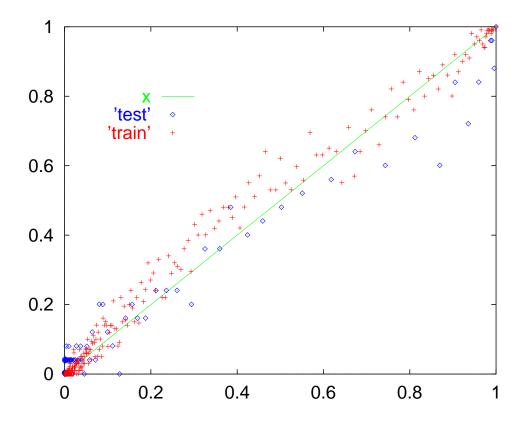
$$f(x) = \frac{1}{2} \cdot \ln\left(\frac{\mathbf{P}\left[y = +1|x\right]}{\mathbf{P}\left[y = -1|x\right]}\right)$$

or

$$P[y = +1|x] = \frac{1}{1 + e^{-2f(x)}}$$

 so, to convert *f* output by AdaBoost to probability estimate, use same formula

Calibration Curve



- order examples by *f* value output by AdaBoost
- break into bins of size r
- for each bin, plot a point:
 - *x*-value: average estimated probability of examples in bin
 - *y*-value: actual fraction of positive examples in bin

Other Ways to Think about AdaBoost

- dynamical systems
- statistical consistency
- maximum entropy

Experiments, Applications and Extensions

Practical Advantages of AdaBoost

- <u>fast</u>
- simple and easy to program
- <u>no parameters</u> to tune (except *T*)
- <u>flexible</u> can combine with <u>any</u> learning algorithm
- <u>no prior knowledge</u> needed about weak learner
- <u>provably effective</u>, provided can consistently find rough rules of thumb
 - \rightarrow shift in mind set goal now is merely to find classifiers barely better than random guessing
- <u>versatile</u>
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

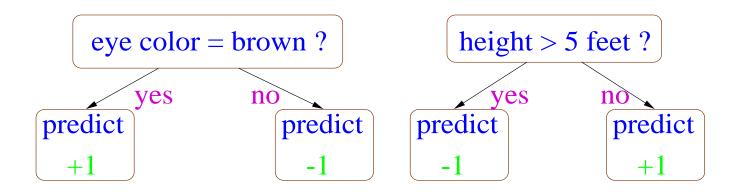
Caveats

- performance of AdaBoost depends on <u>data</u> and <u>weak learner</u>
- consistent with theory, AdaBoost can <u>fail</u> if
 - weak classifiers too complex
 - \rightarrow overfitting
 - weak classifiers too weak ($\gamma_t \rightarrow 0$ too quickly)
 - \rightarrow underfitting
 - \rightarrow low margins \rightarrow overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise

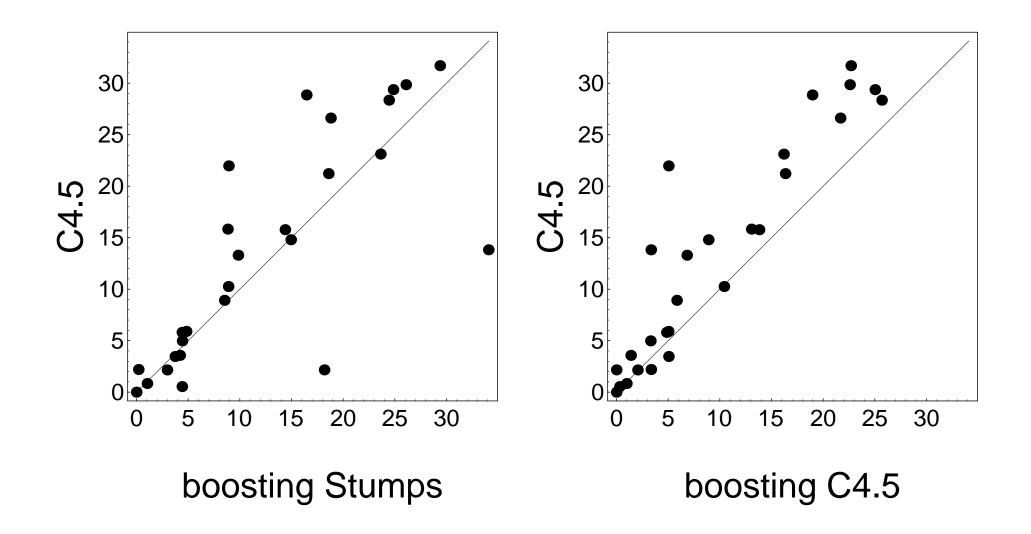
UCI Experiments

[with Freund]

- tested AdaBoost on UCI benchmarks
- used:
 - <u>C4.5</u> (Quinlan's decision tree algorithm)
 - "<u>decision stumps</u>": very simple rules of thumb that test on single attributes



UCI Results



Multiclass Problems

[with Freund]

- say $y \in Y = \{1, ..., k\}$
- direct approach (AdaBoost.M1):

$$h_t: X \to Y$$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$H_{\text{final}}(x) = \arg \max_{y \in Y} \sum_{t:h_t(x)=y} \alpha_t$$

can prove come bound on error if
$$\forall t \in \mathbb{Z}$$
 1/2

- can prove same bound on error $\underline{II} \forall t : \epsilon_t \leq 1/2$ • in practice, not usually a problem for "strong" weak
 - learners (e.g., C4.5)
 - significant problem for "weak" weak learners (e.g., decision stumps)
- instead, reduce to binary

<u>Reducing Multiclass to Binary</u>

[with Singer]

- say possible labels are $\{a, b, c, d, e\}$
- each training example replaced by five {-1,+1}-labeled examples:

$$x \ , \ c \ \rightarrow \begin{cases} (x,a) \ , \ -1 \\ (x,b) \ , \ -1 \\ (x,c) \ , \ +1 \\ (x,d) \ , \ -1 \\ (x,e) \ , \ -1 \end{cases}$$

• predict with label receiving most (weighted) votes

AdaBoost.MH

• can prove:

training error
$$(H_{\text{final}}) \leq \frac{k}{2} \cdot \prod Z_t$$

- reflects fact that small number of errors in binary predictors can cause overall prediction to be incorrect
- extends immediately to <u>multi-label</u> case (more than one correct label per example)

Using Output Codes

[with Allwein & Singer]

• alternative: choose "code word" for each label

	π_1	π_2	π_3	π_4
a		+		+
b	—	+	+	
С	+			+
d	+		+	+
e		+		

• each training example mapped to one example per column

$$x , c \rightarrow \begin{cases} (x, \pi_1) , +1 \\ (x, \pi_2) , -1 \\ (x, \pi_3) , -1 \\ (x, \pi_4) , +1 \end{cases}$$

- to classify new example *x*:
 - evaluate classifier on $(x, \pi_1), \ldots, (x, \pi_4)$
 - choose label "most consistent" with results

Output Codes (cont.)

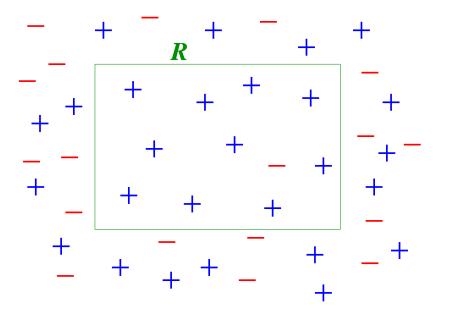
- training error bounds <u>independent</u> of # of classes
- overall prediction robust to large number of errors in binary predictors
- <u>but</u>: binary problems may be harder

Ranking Problems

[with Freund, Iyer & Singer]

- other problems can also be handled by reducing to binary
- e.g.: want to learn to <u>rank</u> objects (say, movies) from examples
- can reduce to multiple binary questions of form: *"is or is not object A preferred to object B?"*
- now apply (binary) AdaBoost

Problem with "Hard" Predictions



• ideally, want weak classifier that says:

$$h(x) = \begin{cases} +1 & \text{if } x \in R \\ \text{``don't know''} else \end{cases}$$

- problem: cannot express using "hard" predictions
- if must predict ±1 outside *R*, will introduce many "bad" predictions
 - need to "clean up" on later rounds
- dramatically increases time to convergence

Confidence-rated Predictions

[with Singer]

- useful to allow weak classifiers to assign <u>confidences</u> to predictions
- formally, allow $h_t: X \to \mathbb{R}$

 $sign(h_t(x)) = prediction$ $|h_t(x)| = "confidence"$

• use identical update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))$$

and identical rule for combining weak classifiers

• <u>question</u>: how to choose α_t and h_t on each round

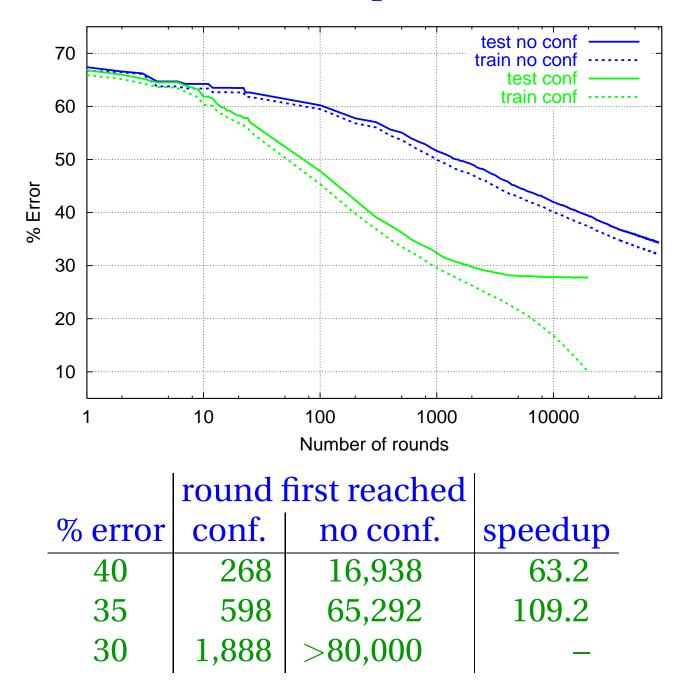
Confidence-rated Predictions (cont.)

• <u>saw earlier</u>:

training error(
$$H_{\text{final}}$$
) $\leq \prod_{t} Z_t = \sum_{i} \exp\left(-y_i \sum_{t} \alpha_t h_t(x_i)\right)$

- therefore, on each round t, should choose $\alpha_t h_t$ to minimize: $Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))$
- in many cases (e.g., decision stumps), best confidence-rated weak classifier has simple form that can be found efficiently

Confidence-rated Predictions Help a Lot



Application: Boosting for Text Categorization

[with Singer]

- weak classifiers: very simple weak classifiers that test on simple patterns, namely, (sparse) *n*-grams
 - find parameter α_t and rule h_t of given form which minimize Z_t
 - use efficiently implemented exhaustive search
- "How may I help you" data:
 - 7844 training examples
 - 1000 test examples
 - **categories:** AreaCode, AttService, BillingCredit, CallingCard, Collect, Competitor, DialForMe, Directory, HowToDial, PersonToPerson, Rate, ThirdNumber, Time, TimeCharge, Other.

Weak Classifiers

rnd term	AC	AS	BC	CC	CO	CM	DM	DI	HO	PP	RA	3N	TI	TC	ОТ
1 collect		-	_	-			-	-	-	-			_		-
				-			-								
2 card		_	-		-	_		-		-	-	-		-	-
				-				_				_			_
3 my home		_					_	_		_			_		_
<u> </u>	<u> </u>											-			
4 person? person				-	_		-					-			
					,	,				-	,				
5 code		-		_		-	_	—					-		-
6 I															
				_	—			_					_		
				_											

More Weak Classifiers

rnd	term	AC	AS	BC	CC	CO	СМ	DM	DI	HO	PP	RA	3N	TI	ТС	ОТ
7	time	-				-				-			-			
															-	
8	wrong number															
			_	_			_					_				
9	how		_	_	-			-			-		_	_		
												_				
10	call	_	-						-							
								_								
11	seven		-				—		-	-						
		_						_							_	
12	trying to		_				_	_			-	_	_	_	-	
13	and															
10	unu		-											_		

More Weak Classifiers

rnd	term	AC	AS	BC	CC	CO	CM	DM	DI	HO	PP	RA	3N	TI	TC	OT
14	third		-	_				-	-	-	-	-				
			_		_		_			_		_				
15	to	_									_	_	_		_	
															_	
16	for	-	_	_	-	_			<u> </u>		—	-	-		-	
												_				
17	charges		_	_			_				_	_	_			-
														_	_	
18	dial		_	_		_			_		-		_			
											_					
19	just	-	_	_		_	_	_	_			_	_		_	_

Finding Outliers

examples with most weight are often outliers (mislabeled and/or ambiguous)

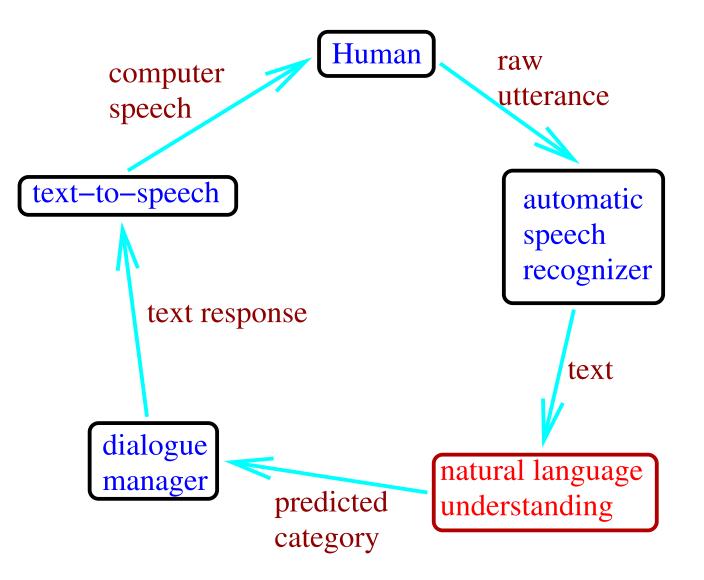
- I'm trying to make a credit card call (Collect)
- hello (Rate)
- yes I'd like to make a long distance collect call please (CallingCard)
- calling card please (Collect)
- yeah I'd like to use my calling card number (Collect)
- can I get a collect call (CallingCard)
- yes I would like to make a long distant telephone call and have the charges billed to another number (CallingCard DialForMe)
- yeah I can not stand it this morning I did oversea call is so bad (BillingCredit)
- yeah special offers going on for long distance (AttService Rate)
- mister allen please william allen (PersonToPerson)
- yes ma'am I I'm trying to make a long distance call to a non dialable point in san miguel philippines (AttService Other)
- yes I like to make a long distance call and charge it to my home phone that's where I'm calling at my home (DialForMe)

Application: Human-computer Spoken Dialogue

[with Rahim, Di Fabbrizio, Dutton, Gupta, Hollister & Riccardi]

- <u>application</u>: automatic "store front" or "help desk" for AT&T Labs' Natural Voices business
- caller can request demo, pricing information, technical support, sales agent, etc.
- interactive dialogue
- naturalvoices.att.com, 1-877-741-4321

How It Works

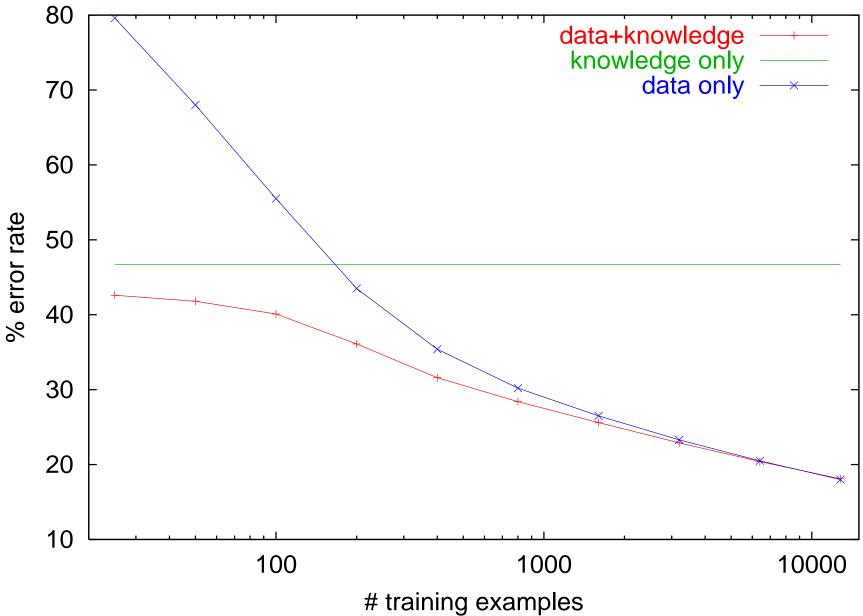


• NLU's job: classify caller utterances into 24 categories (demo, sales rep, pricing info, yes, no, etc.)

Need for Prior, Human Knowledge

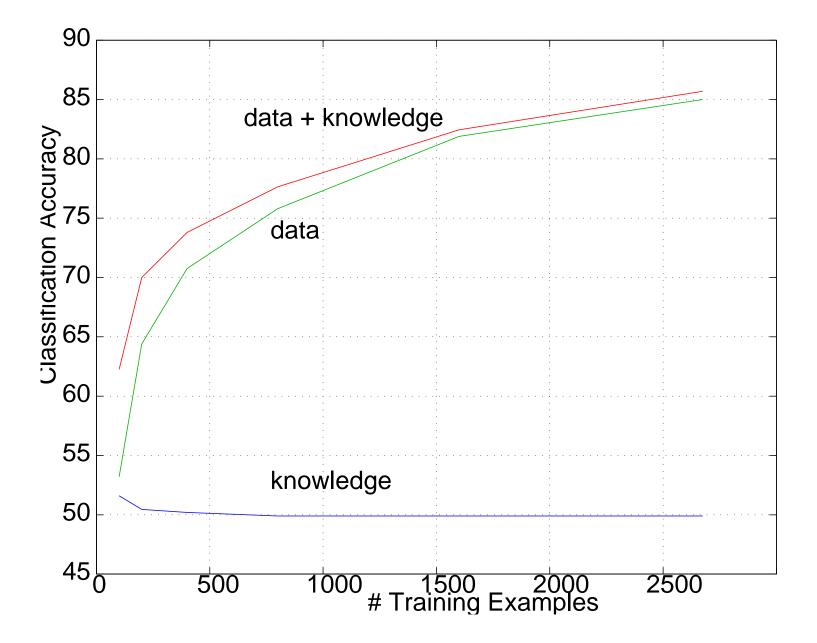
[with Rochery, Rahim & Gupta]

- building NLU: standard text categorization problem
- need <u>lots of data</u>, but for cheap, <u>rapid</u> deployment, can't wait for it
- <u>bootstrapping</u> problem:
 - need labeled data to deploy
 - need to deploy to get labeled data
- <u>idea</u>: use human knowledge to compensate for insufficient data
 - modify loss function to balance <u>fit to data</u> against <u>fit to prior model</u>



ing champi

Results: Helpdesk



Problem: Labels are Expensive

- for spoken-dialogue task
 - getting examples is cheap
 - getting <u>labels</u> is expensive
 - must be annotated by humans
- how to reduce number of <u>labels</u> needed?

Active Learning

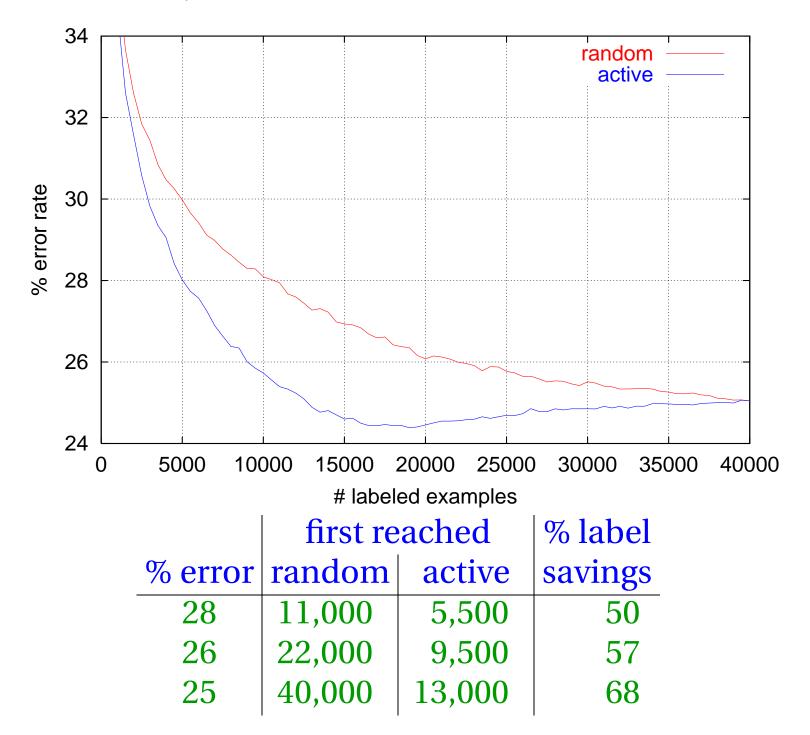
- <u>idea</u>:
 - use <u>selective sampling</u> to choose which examples to label
 - focus on <u>least confident</u> examples [Lewis & Gale]
- \bullet for boosting, use (absolute) margin $|f(\boldsymbol{x})|$ as natural confidence measure

[Abe & Mamitsuka]

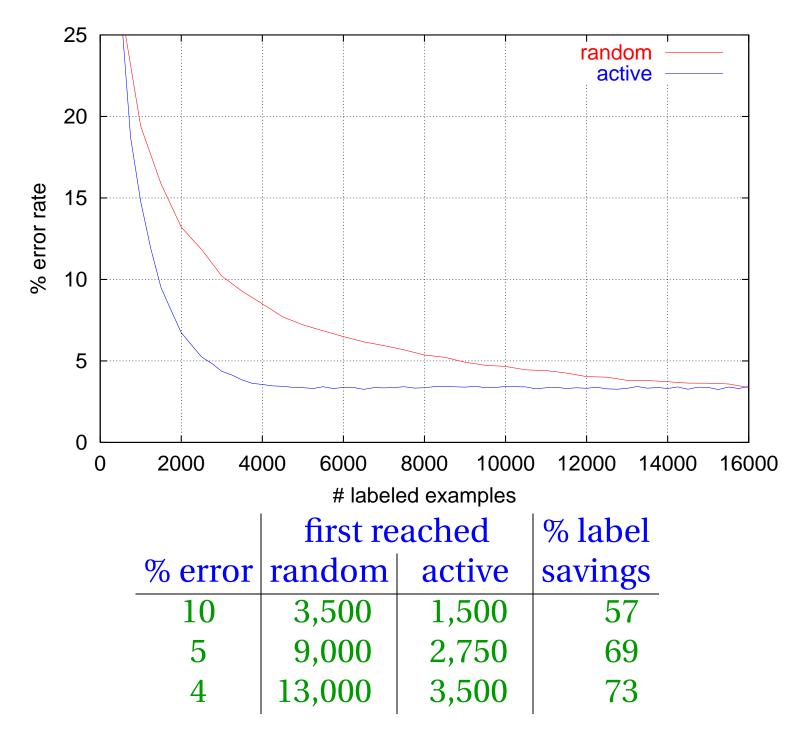
Labeling Scheme

- start with pool of unlabeled examples
- choose (say) 500 examples at random for labeling
- run boosting on all labeled examples
 - get combined classifier f
- pick (say) 250 additional examples from pool for labeling
 - choose examples with minimum $\left|f(x)\right|$
- repeat

Results: How-May-I-Help-You?



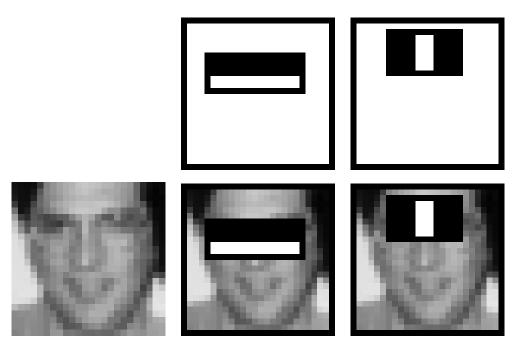
Results: Letter



Application: Detecting Faces

[Viola & Jones]

- problem: find faces in photograph or movie
- weak classifiers: detect light/dark rectangles in image



• many clever tricks to make extremely fast and accurate

Conclusions

- <u>boosting is a practical tool</u> for classification and other learning problems
 - grounded in rich theory
 - performs well experimentally
 - often (but not always!) resistant to overfitting
 - many applications and extensions
- <u>many ways</u> to think about boosting
 - none is entirely satisfactory by itself, but each useful in its own way
 - considerable room for further theoretical and experimental work

References

Ron Meir and Gunnar Rätsch. An Introduction to Boosting and Leveraging. In *Advanced Lectures on Machine Learning (LNAI2600)*, 2003. http://www.boosting.org/papers/MeiRae03.pdf

Robert E. Schapire. The boosting approach to machine learning: An overview. In *MSRI Workshop on Nonlinear Estimation and Classification*, 2002. http://www.cs.princeton.edu/~schapire/boost.html