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Abstract

Bandit algorithms are concerned with trad-
ing exploration with exploitation where a
number of options are available but we can
only learn their quality by experimenting
with them. We consider the scenario in which
the reward distribution for arms is modelled
by a Gaussian process and there is no noise
in the observed reward. Our main result is to
bound the regret experienced by algorithms
relative to the a posteriori optimal strategy
of playing the best arm throughout based
on benign assumptions about the covariance
function defining the Gaussian process. We
further complement these upper bounds with
corresponding lower bounds for particular co-
variance functions demonstrating that in gen-
eral there is at most a logarithmic looseness
in our upper bounds.

1 INTRODUCTION

Bandit problems have become a topic of extensive re-
search in recent years and many extensions of the clas-
sical framework (Robbins, 1952; Gittins and Jones,
1979; Berry and Fristedt, 1985; Auer et al., 2002;
Cesa-Bianchi and Lugosi, 2006) have been developed
(among many others, Abernethy et al., 2008; Slivkins
and Upfal, 2008; Wang et al., 2008; Bubeck et al.,
2008; Kleinberg et al., 2008b). A particularly impor-
tant extension for real world applications is the use of
a Gaussian process to model the reward distribution.
It allows a canonical treatment of optimization prob-
lems with expensive-to-evaluate objective functions for
which the expected similarity for different arguments
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(or parameter settings) are defined through kernels.
Recently a number of different algorithms have been
developed to tackle this sequential optimization prob-
lem with Gaussian process (GP) prior (see Section 2
of Ginsbourger et al. (2008) for an overview of them).
The theoretical underpinnings in the form of regret
bounds are, however, still missing.

To illustrate the setting, consider the problem of opti-
mizing throughput of mobile phones. In this example,
the arms of the bandit would correspond to system
settings and the corresponding throughput to the re-
ward. A kernel could be used to model the expected
similarity between the rewards of two settings of the
mobile. In the Bayesian framework, the kernel encodes
our prior belief that the reward as a function of param-
eter settings is drawn from a GP defined by the given
kernel (Figure 1 shows a draw from a GP with a Gaus-
sian kernel). The approach will work well in practice
if the GP reward functions are similar to that of the
concrete optimisation problem at hand.

Due to the flexibility and power of GPs, the approach
has sparked considerable interest (Schonlau, 1997;
Jones et al., 1998; Jones, 2001; Ginsbourger and Riche,
2009; Osborne et al., 2009). The early works were
done in the field of global optimisation. Using stochas-
tic processes for global optimisation has a long tradi-
tion. The earliest works date back to Kushner (1964).
The use of GPs is relatively new and can be found
associated with the name “Kriging” and response sur-
faces (Schonlau, 1997; Jones et al., 1998; Jones, 2001).
These works address exploration-exploitation trade-
offs to find the global optimum which is very sim-
ilar to what Bandit algorithms do. Their motiva-
tion for introducing GPs to global optimisation comes
from an engineering viewpoint, where the design space
(also called the state space) can often be interpolated
and extrapolated quite accurately and the GP allows
them to “see” obvious trends. Furthermore, it allows
them to provide what they call credible stopping rules.
The suboptimality of the one-step lookahead policy
has been recently exhibited and a multi-step optimal
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lookahead policy has been proposed (Osborne et al.,
2009; Ginsbourger and Riche, 2009).

While a number of practical algorithms have been de-
veloped, there are no theoretical guarantees available
on their performance in the form of regret bounds.
One of the reason for this lies in the difficulty of de-
riving regret bounds for the GP setting. Bounding
the regret requires to understand the behaviour of the
supremum of the reward function for the posterior dis-
tribution, that is the distribution of the process know-
ing the past observations. Furthermore, each kernel
induces various type of correlations between the re-
wards. Dealing with these problems in a generic way
is also the target of this work. If we consider again Fig-
ure 1, we can ask where is the maximum? How high
is it? How close to the maximum are rewards at arms
that are ε close to the optimal arm? How consistent
are these properties across multiple draws?

The key to dealing with these questions lies in a fun-
damental work from probability theory. One of the
key tools is the celebrated chaining argument with, in
particular, the Dudley integral (Dudley, 1967). This
argument allows us to bound the expected supremum
and, from concentration inequalities, with high prob-
ability, the supremum for a given GP sample. The
interesting property of the Dudley integral is that it
breaks the problem of handling the supremum down to
understanding the posterior covariance function. The
second important idea to make the approach general
is the use of Hölder continuity assumptions on the ker-
nel. These assumptions allows to control how the prior
(and indirectly the posterior) Gaussian process when
we move a short distance away from our current point.
The assumption on the covariance is fulfilled by a ma-
jority of kernels (this is typically the case for the Brow-
nian motion, the Brownian bridge, the OrnsteinUhlen-
beck process, and the GP associated to the Gaussian
kernel) and can be easily verified.

2 MAIN RESULTS

The first result is the upper bound on the regret for
GPs with covariance functions that are Hölder contin-
uous with a coefficient α and a constant Lk (details
are given in Section 4). Assuming a zero mean Gaus-
sian process prior, we know that after playing T arms
in [0, 1]D that the optimal strategy has a regret no
bigger than

4

√
Lk log(2T )

(2T̃ )α
+ 15

√
(α+ 3)DLk

α(2T̃ )α
,

where T̃ := bT 1/Dc.

This upper bound is complemented by the following

Figure 1: A draw from a Gaussian process on [0, 1]2

with a Gaussian kernel (σ = 0.1). A draw represents
an optimization problem. The optimal arm is the one
where the peak is highest.

lower bound on the optimal regret:

κ

√
Lk

2α(2T )α/D log T
,

where κ > 0 is a universal constant. The lower bound
is derived for a specific kernel that fulfills the α-Hölder
continuity assumption and matches the upper bound
up to a logarithmic factor.

During the reviewing process of this work, another
work (Srinivas et al., 2009) addressing regret bounds
in GP optimization has appeared. It provides a differ-
ent approach linked to optimal empirical design and
information gain and studies the cumulative regret.
So, both the bounds presented here and theirs are of
interest (and cannot really be compared).

3 BACKGROUND

We start with discussing the classical bandit setting.
In its most basic formulation a finite number of arms
(or actions) x1, . . . , xK is given. Each arm is associated
to a reward distribution characterizing the arm. Suc-
cessive plays of an arm xi yields a sequence of rewards
which are independent and identically distributed ac-
cording to this unknown distribution (with unknown
expectation). The goal is to define a strategy such that
a functional called regret is minimised. Typically, the
regret measures the expected loss for the strategy com-
pared to playing the arm with the highest expected
reward.

In our setting we do not have a finite number of arms
but a continuum of arms. Different approaches to the
continuum arm space setting have already been pro-
posed Agrawal (1995); Kleinberg (2004); Auer et al.
(2007); Wang et al. (2008); Bubeck et al. (2008); Klein-
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berg et al. (2008a) but they do not integrate the Gaus-
sian process assumption. The precise definition of our
setting and regret is given in Section 4.

3.1 GAUSSIAN PROCESSES

We use a Gaussian process to model the reward dis-
tribution. A stochastic process r(x) is Gaussian if
and only if for every finite set of indices x1, . . . , xn
the variable (r(x1), . . . , r(xn)) is a multivariate Gaus-
sian random variable (Rasmussen and Williams, 2006).
A Gaussian process is completely specified by its
mean function µ and its covariance function k(x, y) =
Cov[r(x), r(y)]. The covariance function k is symmet-
ric and positive semi-definite.

3.1.1 Metric Entropy Bound for the
Expected Supremum

The Dudley integral (Dudley, 1967) gives a bound on
the expected supremum of a Gaussian process. It is
defined with respect to the canonical metric d(x, y) =√
〈x, x〉 − 2〈x, y〉+ 〈y, y〉, where 〈·, ·〉 denotes the co-

variance.

The bound on the expected supremum uses the size
of the parameter space X. The size is measured with
the packing number N(ε,X), which is the maximal
number of points that are all at least ε-distant from
each other (in the d(x, y) metric).

The bound on the expected supremum is given in the
following theorem (Massart, 2003)[Th. 3.18, p. 74]:

Theorem 3.1 (Metric Entropy Bound) Let
(f(x))x∈X be some centered Gaussian process. As-
sume that (X, d) is totally bounded and denote
by N(ε,X) the ε-packing number of (X, d), for
all positive ε. If

√
logN(ε,X) is integrable at 0,

then (f(x))x∈X admits a version which is almost
surely uniformly continuous on (X, d). Moreover, if
(f(x))x∈X is almost surely continuous on (X, d), then

E sup
x∈X

f(x) ≤ 12

∫ σX

0

√
logN(ε,X)dε,

where σX = supx∈X Var f(x) is the supremum of the
variance on X.

The important property of the bound is that it trans-
forms the problem of understanding some complex
stochastic process into understanding d(x, y) which is
a deterministic object that can be studied using ana-
lytic methods.

3.1.2 Inequalities

We will need two inequalities for Gaussian, respec-
tively sub-Gaussian random variables. The first can

be found in Massart (2003)[Prop. 3.19, p. 77]:

Proposition 3.2 If (f(x))x∈X is some almost surely
continuous Gaussian process on the totally bounded set
(X, d) then for every λ ∈ R

E[exp(λ(sup f(x)− E[sup f(x)]))] ≤ exp

(
λ2σ2

X

2

)
,

with σX = supx∈X Var f(x).

The second is a statement about the supremum of
sub-Gaussian random variables and can be found in
Devroye and Lugosi (2001)[Lem. 2.2, p. 7]:

Lemma 3.3 Let σ > 0, n ≥ 2 and let Y1, . . . , Yn be
real-valued random variables such that for all s > 0
and 1 ≤ i ≤ n,E exp (sYi) ≤ exp

(
s2σ2/2

)
. Then

Emaxi≤n Yi ≤ σ
√

2 log n.

3.1.3 The Posterior Process

The posterior process, i.e. the process conditional on
observations, is again a Gaussian process. For a zero
mean prior process f the mean µZ of the posterior
process is given by

µZ(x) = k(x, Z)′k(Z,Z)−1f(Z),

where we use the short form k(x, Z) :=
(k(x, Z1), . . . , k(x, Zn))′ and k(Z,Z) for the ker-
nel matrix of a vector Z := (Z1, . . . , Zn). The Z’s
denote the positions of the observations. And the val-
ues at these positions are f(Z) = (f(Z1), . . . , f(Zn))′.
The covariance of the posterior process is given by

〈x, y〉 := 〈x, y〉Z := k(x, y)− k(x, Z)′k(Z,Z)−1k(Z, y).

4 THE BANDIT GAME WITH A
GAUSSIAN PROCESS PRIOR

Central to our approach are two Hölder continuity as-
sumptions for the mean and the covariance. The co-
variance function k and the mean function µ are as-
sumed to satisfy the following mild conditions:

(A1) For some Lµ ≥ 0, for any x, y ∈ X,
∣∣µ(x)−µ(y)

∣∣ ≤
Lµ‖x− y‖∞.

(A2) For some Lk ≥ 0 and some α > 0, for any x, y ∈
X,
∣∣k(x, x)− k(x, y)

∣∣ ≤ Lk‖x− y‖α∞.
We use the supremum norms as it leads to sim-
pler bounds (compared to the Euclidean norm for in-
stance). However, as X is a finite dimensional space
all norms are equivalent, meaning the results apply to
arbitrary norms up to an extra constant.

Furthermore, we assume for simplicity that the space
of arms is the D-dimensional unit cube X = [0, 1]D.
It is easy to extend the results to cubes of size R.



         276

Regret Bounds for Gaussian Process Bandit Problems

4.1 GAME DEFINITION

The player knows the (prior) distribution of the Gaus-
sian process (he knows the mean function µ and the
covariance function k). He also knows the number T
of rounds to play. The game is the following.

For t = 1, . . . , T

the player chooses x̂t ∈ X.

the player observes r(x̂t).

At the end of these T rounds, the player receives the
reward

max
(
r(x̂1), . . . , r(x̂T )

)
.

A common alternative target encountered in the ban-
dit literature is the cumulative reward

∑T
t=1 r(x̂t). In

applications, it is often the case that the ’max’ reward
is more interesting than the cumulative one. The two
problems differ substantially in the sense that there is
no cost of exploring in the ’max’ reward setting (see
Bubeck et al. (2009) for an interesting link between
the two regret notions).

4.2 THE OPTIMAL STRATEGY

It is then natural to define the optimal strategy as the
one having the highest expected reward:

Emax
(
r(x̂1), . . . , r(x̂T )

)
.

It occurs that the optimal strategy is the one obtained
by dynamic programming or backward induction Bell-
man (1956), which in our finite horizon setting can
be viewed as the T -steps lookahead strategy following
the terminology of Ross (1970): at time t the player
chooses

x̂t = argmax
xt∈X

E
[

max
xt+1∈X

· · ·E
[

max
xT−1∈X

E
[

max
xT∈X

E
[

max
(
r(x1), . . . , r(xT )

)∣∣r(x1), . . . , r(xT−1)
]

∣∣r(x1), . . . , r(xT−2)
]
· · ·
∣∣r(x1), . . . , r(xt−1)

]
. (1)

The formula is a bit awful, but the idea is simple. If
we are at time T , the optimal action x̂T is

argmax
xT∈X

E
[

max
(
r(x1), . . . , r(xT )

)∣∣r(x1), . . . , r(xT−1)
]
,

which corresponds to a one-step lookahead. From this,
we know that at time T − 1, if we choose xT−1, our
expected reward knowing the past will be

E
[

max
xT∈X

E
[

max
(
r(x1), . . . , r(xT )

)∣∣r(x1), . . . , r(xT−1)
]

∣∣r(x1), . . . , r(xT−2)
]
.

This leads to the optimal choice for xT−1 defined in
(1). Repeated this argument again, we obtain the T -
steps lookahead strategy. This policy is, in spirit, the

same as the one proposed in (Osborne et al., 2009,
Section 3.2). Our main result is to provide a regret
bound for it.

It is important to understand that the distribution of
r(xt) knowing r(x1), . . . , r(xt−1) is known: it is the
Gaussian posterior. The difficulty of proving results
on the algorithm relies on the understanding of the
behaviours of the mean and covariance of the Gaussian
process conditional to the past observations.

4.3 GUARANTEE ON THE
PERFORMANCE OF THE OPTIMAL
STRATEGY

We call a guarantee on how the optimal strat-
egy works a lower bound on the expected reward
Emax

(
r(x̂1), . . . , r(x̂T )

)
, or equivalently an upper

bound on the expected regret E
{

supx∈X r(x) −
max

(
r(x̂1), . . . , r(x̂T )

)}
. We need a definition to sim-

plify the notation: T̃ := bT 1/Dc. To establish the
bound, we will use the following path.

• define a simpler strategy: we will consider the
naive grid strategy. We partition the space of
arms X into T̃D ≤ T many cubes of side length
1/T̃ and play the center of each of these cubes.

• lower bound the expected reward of this simpler
strategy. This last point will rely on the use of
concentration inequalities for the supremum of
Gaussian and sub-Gaussian processes.

Theorem 4.1 Under Assumptions (A1) and (A2),
The optimal strategy satisfies

E
{

sup
x∈X

r(x)−max
(
r(x̂1), . . . , r(x̂T )

)}
≤ E

{
sup
x∈X

r(x)−max
(
r(x1), . . . , r(xT )

)}
≤ 4

√
Lk log(2T )

(2T̃ )α
+ 15

√
(α+ 3)DLk

α(2T̃ )α
+
Lµ

2T̃
.

Proof. Let i = (i1, . . . , iD) be a D-dimensional index
with 1 ≤ ij ≤ T̃ . Let Ii =

[
i1−1
T̃
, i1
T̃

]
× . . .×

[
iD−1
T̃

, iD
T̃

]
be the i’s cube. We have xi = ( 2i1−1

2T̃
, . . . , 2iD−1

2T̃
) ∈ Ii.

Introduce the random variables

Ui = sup
x∈Ii

{
r(x)− E

[
r(x)

∣∣r(xi)]}
Vi = sup

x∈Ii

{
E
[
r(x)

∣∣r(xi)]− r(xi)}
Wi = sup

x∈Ii

{
r(x)− r(xi)

}
.
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We have

E
{

sup
x∈X

r(x)−max
(
r(x1), . . . , r(xT )

)}
≤ E max

i∈{1,...,T̃}D
Wi

≤ E max
i∈{1,...,T̃}D

Ui + E max
i∈{1,...,T̃}D

Vi

≤ E max
i∈{1,...,T̃}D

{
Ui − E[Ui|r(xi)]

}
+ E max

i∈{1,...,T̃}D
E[Ui|r(xi)] + E max

i∈{1,...,T̃}D
Vi. (2)

Before giving the propositions upper bounding the
three terms of the last righthand-side, let us introduce
a convenient notation. Define

k(x, y|z) = k(x, y)− k(x, z)k(y, z)

k(z, z)
1k(z,z)>0

= Cov(r(x), r(y)|r(z)),

i.e., k(x, y|z) is the conditional covariance of r(x)
and r(y) knowing the value of r(z). Similarly, define
d(x, y|z) the posterior distance knowing the value of
r(z). We have

d2(x, y|z) = k(x, x|z) + k(y, y|z)− 2k(x, y|z)
= k(x, x) + k(y, y)− 2k(x, y)

− [k(x, z)− k(y, z)]2

k(z, z)
1k(z,z)>0

≤ d2(x, y), (3)

where d(x, y) denotes the prior distance and we used
the characteristic function 1k(z,z)>0 to account for
cases where k(z, z) = 0, i.e. for cases where at z no in-
formation can be gained as the value is known exactly.
This inequality shows that the posterior distance is at
most equal to the prior distance, which gives a rough
but useful upper bound on the posterior distance.

The ε-covering number is the minimum number of
balls of radius ε covering the space. The ε-packing
number is known to be smaller than the ε/2-covering
number. We will map the problem of covering X in
the canonical d(x, y) metric to the problem of covering
X in the original metric from X. It is convenient to
introduce a function for this. Let

ψi(β) = sup
x,y∈Ii

‖x−y‖∞≤β

d(x, y|xi)

Define σi = supx∈Ii

√
Var

{
r(x)

∣∣r(xi)}. We have

σi = sup
x∈Ii

√
Var

{
r(x)− r(xi)

∣∣r(xi)}
= sup
x∈Ii

d(x, xi|xi) ≤
√

2Lk

(2T̃ )α
,

where the last inequality uses (3), the decomposition
d2(x, xi) = [k(x, x)−k(x, xi)]+[k(xi, xi)−k(x, xi)] and
Assumption (A2). Introduce σ = maxi∈{1,...,T̃}D σi.
We have

σ ≤
√

2Lk

(2T̃ )α
. (4)

Proposition 4.2 For the first term we have that

E max
i∈{1,...,T̃}D

{
Ui − E[Ui|r(xi)]

}
≤ 2

√
Lk log(T )

(2T̃ )α
.

Proof. Using Proposition 3.2 we have for any i ∈
{1, . . . , T̃}D and λ > 0 that

Eeλ{Ui−E[Ui|r(xi)]} = Er(xi)E
[
eλ{Ui−E[Ui|r(xi)]}

∣∣r(xi)]
≤ Er(xi)e

λ2σ2
i /2 = eλ

2σ2
i /2 ≤ eλ

2σ2
X/2.

We can use now apply Lemma 3.3 and we get that

E max
i={1,...,T̃}D

{
Ui − E[Ui|r(xi)]

}
≤ σ

√
2 log(T̃D),

and conclude by using (4). �

Proposition 4.3 Under Assumption (A2) we have
for the second term that

E max
i∈{1,...,T̃}D

E[Ui|r(xi)] ≤ 24

√
(α+ 3)DLk log(2)

2α(2T̃ )α
.

Proof. We use the metric entropy bound to control
the E[Ui|r(xi)] terms together with the Lipschitz as-
sumption. Our bound will be the same for all i and
will be a deterministic quantity. Therefore the outer
expectation does not change anything. Let

ψ−1i (ε) = inf
{
β > 0 : ψi(β) > ε

}
.

Since ψi is continuous, we have ψi[ψ
−1
i (ε/2)], and in

particular, ‖x−y‖∞ ≤ ψ−1i ( ε2 ) implies d(x, y|xi) ≤ ε
2 .

So a uniform grid of Ii of step 2ψ−1i ( ε2 ) allows to build a
ε
2 -covering net, implying that N(ε, Ii) ≤ d 1

2T̃ψ−1
i ( ε2 )

eD.

Using Theorem 3.1, we have

E[Ui|r(xi)] ≤ 12
√
D

∫ σ

0

√
log

(
1

2T̃ψ−1i ( ε2 )
+ 1

)
dε.

Since ψi(β) ≤
√

2Lkβα, we have ψ−1i ( ε2 ) ≥
(

ε
2
√
2Lk

) 2
α .

By using (4) and the integral computations in Ap-

pendix A with a = α/2, b = (2
√
2Lk)

2/α

2T̃
and c =√

2Lk
(2T̃ )α

, we get∫ σ

0

√
log

(
1

2T̃ψ−1i ( ε2 )
+ 1

)
dε ≤

∫ c

0

√
log
(
1 + bε−1/a

)
dε

≤ 2

√
Lk log(2e2α/2)

α(2T̃ )α
.
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�

Proposition 4.4 Under Assumption (A1) and (A2)
we have for the third term that

E max
i∈{1,...,T̃}D

Vi ≤
Lµ

2T̃
+ 2

√
Lk log(2T )

(2T̃ )α
.

Proof. We have

Vi = sup
x∈Ii

{
µ(x)− µ(xi)

+ 1k(xi,xi)>0

[
k(x, xi)

k(xi, xi)
− 1

]
[r(xi)− µ(xi)]

}
.

Let ai = supx∈Ii
∣∣ k(x,xi)
k(xi,xi)

− 1
∣∣1k(xi,xi)>0. We have

Vi ≤ sup
x∈Ii

{
µ(x)− µ(xi)

}
+
∣∣ai[µ(xi)− r(xi)]

∣∣.
ai[µ(xi)−r(xi)] is a one dimensional Gaussian random
variable with mean zero. Now using a property from
the moment generating function of a one dimensional
Gaussian we find that for any λ ∈ R

Eeλai[µ(xi)−r(xi)] ≤ eλ
2a2i k(xi,xi)/2.

Using again Lemma 3.3, we have

E max
i={1,...,T̃}D

Vi ≤ max
i={1,...,T̃}D

{
µ(x)− µ(xi)

}
+
√

2 log(2T̃D) max
i={1,...,T̃}D

a2i k(xi, xi).

The last term can be bounded in the following way

a2i k(xi, xi) ≤ sup
x∈Ii

[k(x, xi)− k(xi, xi)]
2

k(xi, xi)
1k(xi,xi)>0

≤ sup
x∈Ii

d2(x, xi) ≤
(A2)

2Lk

(2T̃ )α
,

where the Cauchy-Schwarz inequality was used at the
second inequality. �

Plugging the results of the three previous propositions
into (2) leads to the announced result. �

4.4 A LOWER BOUND

In this section we present a lower bound to comple-
ment the upper bound from Theorem 4.1. On the pos-
itive side, this lower bound matches the leading term
(in T ) of the upper bound up to a logarithmic factor,
and it holds for any dimension D. On the negative
side, the bound is obtained by constructing a specific
Gaussian process. Therefore, it does not apply to a
specific kernel. Yet, it tells us that under our general
assumptions a big improvement cannot be gained.

Theorem 4.5 Let

κT =
√

log T E
{

max
i=1,...,2T

Yi − max
i=1,...,T

Yi

}
where Y1, . . . , Y2T are independent standard normal
random variables. For any D ≥ 1, Lk ≥ 0, Lµ ≥ 0,

0 < α ≤ 1 and T ∈
{

1
2 ,

2D

2 ,
3D

2 , . . .
}

, there exists
a Gaussian process r defined on [0, 1]D satisfying As-
sumptions (A1) and (A2) such that

E
{

sup
x∈X

r(x)−max
(
r(x̂1), . . . , r(x̂T )

)}
≥ κT

√
Lk

2α(2T )α/D log T

≥ κ

√
Lk

2α(2T )α/D log T
,

for some universal constant κ > 0.

Proof. Let m = (2T )1/D. By assumption on
T , m is an integer. Define h =

√
Lk(2m)α. To

prove the lower bound, we consider a Gaussian process
r(x) =

∑2T
i=1 φi(x)Yi, where φi are real-valued func-

tions with disjoint supports (up to the boundaries) and
Y1, . . . , Y2T are i.i.d. centered normal random vari-
ables with unit variance. Consider the regular grid on
[0, 1]D defined by

G =

{(
2i1 − 1

2m
, . . . ,

2iD − 1

2m

)
:

(i1, . . . , iD) ∈ {1, . . . ,m}D
}
.

This grid has 2T points. Let s1, . . . , s2T denote these
points (the ordering of these points has no impor-
tance). Define the function φ by

φ(u) =

{
h
[
(2m)−α − ‖u‖α∞

]
if ‖u‖∞ ≤ (2m)−1

0 otherwise

We consider the functions φi(x) = φ(x − si) so that
the Gaussian process is simply

r(x) =

2T∑
i=1

φ(x− si)Yi.

The function φ is continuous and “peaked around
zero”. Let us check that for any s, t ∈ RD, we have∣∣φ(t)− φ(s)

∣∣ ≤ h‖t− s‖α∞. (5)

First it is easy to see that we only need to prove this
inequality for s and t in the cubic ball B =

{
u ∈ RD :

‖u‖∞ ≤ (2m)−1
}

. Now, since for 0 < α ≤ 1 and
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any nonnegative numbers a and b we have (a+ b)α ≤
aα + bα, for any s and t in B, we obtain∣∣φ(t)− φ(s)

∣∣ ≤ h∣∣‖t‖α∞ − ‖s‖α∞∣∣
≤ h

∣∣‖t‖∞ − ‖s‖∞∣∣α ≤ h‖t− s‖α∞,
so that (5) holds. We now use (5) to prove that As-
sumption (A2) is satisfied. We have

k(s, t) = E[r(s)r(t)] =

2T∑
i=1

φ(s− si)φ(t− si)

= φ(s− sj)φ(t− sj),

for j an integer such that t − sj ∈ B. For such a j,
from (5), we can also write∣∣k(t, t)− k(s, t)

∣∣ =
∣∣φ(t− sj)

[
φ(t− sj)− φ(s− sj)

]∣∣
≤ h2(2m)−α‖t− s‖α∞
= Lk‖t− s‖α∞.

So Assumptions (A1) and (A2) are satisfied (for any
Lµ ≥ 0, since µ(x) = 0 for any x ∈ [0, 1]D).

Whatever policy is used, after T observations of the
Gaussian process, among the 2T random variables
Y1, . . . , Y2T , we know only the values of T of them, and
we get absolutely no information on the T remaining
ones1. Without loss of generality, let us consider that
these T values correspond to Y1, . . . , YT . We thus have

E
{

sup
x∈X

r(x)−max
(
r(x̂1), . . . , r(x̂T )

)}
≥ h(2m)−αE

{
max

i=1,...,2T
Yi − max

i=1,...,T
Yi

}
= κT

√
Lk

(2m)α log T
.

This is the first inequality of the theorem. To obtain
the second inequality, we will prove that there is an
absolute constant κ > 0 such that κT > κ for any
T ≥ 1. To do this, since κT is positive for any T ≥
1, it suffices to prove that there exists uT such that
κT ≥ uT for any large enough T and uT converges to
a positive constant when T tends to infinity. Define

aT = 2 log

(
T√

log(2T )

)
,

M1 = max
i=1,...,T

Yi, M2 = max
i=T+1,...,2T

Yi,

Φ(t) = P(Y1 > t), and

uT =
√

log T
(√

aT + 2 log 2−
√
aT
)

×
[
1− P

(
M1 ≤

√
aT + 2 log 2

)]
P
(
M1 ≤

√
aT
)
.

1A different viewpoint is to compute explicitly the opti-
mal policy in this setting. It is easy to see that the policy
stems down to playing a different grid point at each time
step.

For T ≥ 2, we have

κT =
√

log T Emax(0,M2 −M1)

≥
√

log T
(√

aT + 2 log 2−
√
aT
)

× P
(
M2 ≥

√
aT + 2 log 2;M1 ≤

√
aT
)

= uT .

To obtain an equivalent on uT when T goes to infinity,
we use the well-known bound on tails of the normal
distribution (e.g., see Pollard (2002, Appendix D)):

exp(− t
2

2 )

t
√

2π

(
1− 1

t2

)
≤ Φ(t) ≤

exp(− t
2

2 )

t
√

2π
.

Consequently, we obtain

P
(
M1 ≤

√
aT
)

= [1− Φ(
√
aT )]T −→

T→∞
exp

(
− 1√

4π

)
and similarly

P
(
M1 ≤

√
aT + 2 log 2

)
−→
T→∞

exp

(
− 1

2
√

4π

)
.

Finally, elementary computations give√
log T

(√
aT + 2 log 2−

√
aT
)
−→
T→∞

log 2√
2
.

Putting together the three last results, we obtain that
uT converges to a positive constant when T goes to
infinity, hence there exists κ > 0 such that κT ≥ κ for
any T ≥ 1. �

5 CONCLUSIONS AND FUTURE
WORK

The main contribution of the paper has been to our
knowledge the first analysis of a new bandit scenario
based on a Gaussian process model of the reward func-
tion. The results bound the regret (relative to always
playing the optimal arm) of particular strategies in the
case where there is no noise in the observed reward and
the kernel satisfies benign continuity assumptions. We
provide lower bounds that show our bounds are in gen-
eral at most a logarithmic factor away from optimal.

We intend to extend this work to model of rewards in-
corporating a noise term so that the true reward would
not then be directly observed. A more ambitious goal
is to develop reward bounds for algorithms that merge
the exploration and exploitation phases through for
example selecting arms based on an upper confidence
bound. It will also be interesting to see if more detail
properties of the kernel (other than Hölder continu-
ity) can be incorporated into the analysis to provide
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tighter bounds for special types of kernel, such as for
example specific spectral properties.

We believe that the line of analysis developed here will
provide important groundwork for these further stud-
ies and will at the same time help to inform improve-
ments in practical Gaussian process bandit algorithms.

A Dudley integral computations

To bound the Dudley integral, we use∫ c

0

√
log(1 + bε−1/a)dε ≤ c

√
log(e2a+1)

a
. (6)

which holds for any a, b and c such that ba = 2c.
Indeed, letting ξ = (1 + 2−1/a)a, we have∫ c

0

√
log(1 + bε−1/a)dε ≤

∫ c

0

√
log
(
ξabε−1/a

)
dε

= ξba
∫ 1

2ξ

0

√
log
(
u−1/a

)
du =

ξba√
a

∫ 1
2ξ

0

√
− log udu

≤ ξba√
2aξ

√
−
∫ 1

2ξ

0

log(u) du ≤ c
√

log(e2a+1)

a
.
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