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Abstract—Although attempts have been made to solve the problem of clustering categorical data via cluster ensembles, with the

results being competitive to conventional algorithms, it is observed that these techniques unfortunately generate a final data partition

based on incomplete information. The underlying ensemble-information matrix presents only cluster-data point relations, with many

entries being left unknown. The paper presents an analysis that suggests this problem degrades the quality of the clustering result, and

it presents a new link-based approach, which improves the conventional matrix by discovering unknown entries through similarity

between clusters in an ensemble. In particular, an efficient link-based algorithm is proposed for the underlying similarity assessment.

Afterward, to obtain the final clustering result, a graph partitioning technique is applied to a weighted bipartite graph that is formulated

from the refined matrix. Experimental results on multiple real data sets suggest that the proposed link-based method almost always

outperforms both conventional clustering algorithms for categorical data and well-known cluster ensemble techniques.

Index Terms—Clustering, categorical data, cluster ensembles, link-based similarity, data mining.

Ç

1 INTRODUCTION

DATA clustering is one of the fundamental tools we have
for understanding the structure of a data set. It plays a

crucial, foundational role in machine learning, data mining,
information retrieval, and pattern recognition. Clustering
aims to categorize data into groups or clusters such that the
data in the same cluster are more similar to each other than
to those in different clusters. Many well-established
clustering algorithms, such as k-means [1] and PAM [2],
have been designed for numerical data, whose inherent
properties can be naturally employed to measure a distance
(e.g., euclidean) between feature vectors [3], [4]. However,
these cannot be directly applied for clustering of categorical
data, where domain values are discrete and have no
ordering defined. An example of categorical attribute is
sex ¼ fmale; femaleg or shape ¼ fcircle; rectangle; . . .g.

As a result, many categorical data clustering algo-
rithms have been introduced in recent years, with
applications to interesting domains such as protein
interaction data [5]. The initial method was developed
in [6] by making use of Gower’s similarity coefficient [7].
Following that, the k-modes algorithm in [8] extended the
conventional k-means with a simple matching dissim-
ilarity measure and a frequency-based method to update
centroids (i.e., clusters’ representative). As a single-pass

algorithm, Squeezer [9] makes use of a prespecified
similarity threshold to determine which of the existing
clusters (or a new cluster) to which a data point under
examination is assigned. LIMBO [10] is a hierarchical
clustering algorithm that uses the Information Bottleneck
(IB) framework to define a distance measure for catego-
rical tuples. The concepts of evolutionary computing and
genetic algorithm have also been adopted by a partition-
ing method for categorical data, i.e., GAClust [11].
Cobweb [12] is a model-based method primarily exploited
for categorical data sets. Different graph models have also
been investigated by the STIRR [13], ROCK [14], and
CLICK [15] techniques. In addition, several density-based
algorithms have also been devised for such purpose, for
instance, CACTUS [16], COOLCAT [17], and CLOPE [18].

Although, a large number of algorithms have been
introduced for clustering categorical data, the No Free
Lunch theorem [19] suggests1 there is no single clustering
algorithm that performs best for all data sets [20] and can
discover all types of cluster shapes and structures presented
in data [21]. Each algorithm has its own strengths and
weaknesses. For a particular data set, different algorithms,
or even the same algorithm with different parameters,
usually provide distinct solutions. Therefore, it is difficult
for users to decide which algorithm would be the proper

alternative for a given set of data. Recently, cluster
ensembles have emerged as an effective solution that is
able to overcome these limitations, and improve the
robustness as well as the quality of clustering results. The
main objective of cluster ensembles is to combine different
clustering decisions in such a way as to achieve accuracy
superior to that of any individual clustering. Examples of
well-known ensemble methods are:
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1. The No Free Lunch theorem seems to apply here because the problem
of clustering can be reduced to an optimization problem—we are seeking to
find the optimal set of clusters for a given data set via an algorithm.
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1. the feature-based approach that transforms the
problem of cluster ensembles to clustering catego-
rical data (i.e., cluster labels) [11], [22], [23], [24],

2. the direct approach that finds the final partition
through relabeling the base clustering results [25],
[26],

3. graph-based algorithms that employ a graph parti-
tioning methodology [27], [28], [29], and

4. the pairwise-similarity approach that makes use of
co-occurrence relations between data points [30],
[31], [32].

Despite notable success, these methods generate the final
data partition based on incomplete information of a cluster
ensemble. The underlying ensemble-information matrix
presents only cluster-data point relationships while com-
pletely ignores those among clusters [33]. As a result, the
performance of existing cluster ensemble techniques may
consequently be degraded as many matrix entries are left
unknown. This paper introduces a link-based approach to
refining the aforementioned matrix, giving substantially
less unknown entries. A link-based similarity measure [34],
[35], [36] is exploited to estimate unknown values from a
link network of clusters. This research uniquely bridges the
gap between the task of data clustering and that of link
analysis. It also enhances the capability of ensemble
methodology for categorical data, which has not received
much attention in the literature. In addition to the problem
of clustering categorical data that is investigated herein, the
proposed framework is generic such that it can also be
effectively applied to other data types.

The rest of this paper is organized as follows: Section 2
presents the cluster ensemble framework upon which the
current research has been established. The proposed link-
based approach, including the underlying intuition of
refining an ensemble-information matrix and details of a
link-based similarity measure, is introduced in Section 3.
Then, Section 4 exhibits the evaluation of this new approach
against other cluster ensemble methods and categorical data
clustering algorithms, over real data sets. Similarity and
differences between the proposed method and many
clustering algorithms for categorical data are discussed in
Section 5. This underlines the novelty of the link-based
ensemble framework and its unique application to catego-
rical data clustering. The paper is concluded in Section 6
with suggestions for further work.

2 CLUSTER ENSEMBLE METHODOLOGY

2.1 Problem Formulation and General Framework

Let X ¼ fx1; . . . ; xNg be a set of N data points and � ¼
f�1; . . . ; �Mg be a cluster ensemble with M base clusterings,
each of which is referred to as an ensemble member. Each base
clustering returns a set of clusters �i ¼ fCi

1; C
i
2; . . . ; Ci

ki
g, such

that
Ski
j¼1 C

i
j ¼ X, where ki is the number of clusters in the ith

clustering. For each x 2 X, CðxÞ denotes the cluster label to
which the data point x belongs. In the ith clustering, CðxÞ ¼
“j” (or “Ci

j”) if x 2 Ci
j. The problem is to find a new partition

�� of a data set X that summarizes the information from the
cluster ensemble �. Fig. 1 shows the general framework of
cluster ensembles. Essentially, solutions achieved from
different base clusterings are aggregated to form a final

partition. This metalevel methodology involves two major
tasks of: 1) generating a cluster ensemble, and 2) producing

the final partition, normally referred to as a consensus

function.

2.2 Ensemble Generation Methods

It has been shown that ensembles are most effective when
constructed from a set of predictors whose errors are
dissimilar [37]. To a great extent, diversity among ensemble
members is introduced to enhance the result of an ensemble
[38]. Particularly for data clustering, the results obtained with
any single algorithm over many iterations are usually very
similar. In such a circumstance where all ensemble members
agree on how a data set should be partitioned, aggregating
the base clustering results will show no improvement over
any of the constituent members. As a result, several heuristics
have been proposed to introduce artificial instabilities in
clustering algorithms, giving diversity within a cluster
ensemble. The following ensemble generation methods yield
different clusterings of the same data, by exploiting different
cluster models and different data partitions.

. Homogeneous ensembles. Base clusterings are created
using repeated runs of a single clustering algorithm,
with several sets of parameter initializations, such as
cluster centers of the k-means clustering technique
[31], [22], [39].

. Random-k. One of the most successful techniques is
randomly selecting the number of clusters (k) for
each ensemble member [31], [38].

. Data subspace/sampling. A cluster ensemble can also be
achieved by generating base clusterings from differ-
ent subsets of initial data. It is intuitively assumed that
each clustering algorithm will provide different levels
of performance for different partitions of a data set
[27]. Practically speaking, data partitions are obtained
by projecting data onto different subspaces [40], [24],
choosing different subsets of features [29], [41], or data
sampling [42], [26], [43].

. Heterogeneous ensembles. A number of different
clustering algorithms are used together to generate
base clusterings [30], [44], [45].

. Mixed heuristics. In addition to using one of the
aforementioned methods, any combination of them
can be applied as well [27], [31], [33], [38], [32],
[23], [29].
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Fig. 1. The basic process of cluster ensembles. It first applies multiple

base clusterings to a data set X to obtain diverse clustering decisions

(�1 . . . �M ). Then, these solutions are combined to establish the final

clustering result (��) using a consensus function.



2.3 Consensus Functions

Having obtained the cluster ensemble, a variety of
consensus functions have been developed and made
available for deriving the ultimate data partition. Each
consensus function utilizes a specific form of information
matrix, which summarizes the base clustering results. From
the cluster ensemble shown in Fig. 2a, three general types of
such ensemble-information matrix can be constructed. First,
the label-assignment matrix (Fig. 2b), of size N �M,
represents cluster labels that are assigned to each data
point by different base clusterings. Second, the pairwise-
similarity matrix (Fig. 2c), of size N �N , summarizes co-
occurrence statistics among data points. Furthermore, the
binary cluster-association matrix (BM) (Fig. 2d) provides a
cluster-specific view of the original label-assignment ma-
trix. The association degree that a data point belonging to a
specific cluster is either 1 or 0. In light of this background,
consensus methods can be categorized as follows:

. Feature-based approach. It transforms the problem of
cluster ensembles to clustering categorical data.
Specifically, each base clustering provides a cluster
label as a new feature describing each data point (see
Fig. 2b), which is utilized to formulate the ultimate
solution [11], [23], [39], [24].

. Direct approach. It is based on relabeling �i and
searching for the �� that has the best match with all
�i; i ¼ 1 . . .M [25], [26], [22]. Conceptually, the
underlying relabel process allows the homogeneous
labels to be established from heterogeneous cluster-
ing decisions, where each base clustering possesses a
unique set of decision labels (see Fig. 2b).

. Pairwise-similarity approach. It creates a matrix,
containing the pairwise similarity among data points
(see Fig. 2c for an example), to which any similarity-
based clustering algorithm (e.g., hierarchical cluster-
ing) can be applied [30], [31], [32].

. Graph-based approach. It makes use of the graph
representation to solve the cluster ensemble problem
[27], [28], [29]. Specifically to the consensus methods
in [27] and [29], a graph representing the similarity
among data points is created from a pairwise matrix

similar to that given in Fig. 2c. To achieve the final
clustering result, this graph is partitioned into a
definite number of approximately equal-sized parti-
tions, using METIS [46]. In addition, the binary
cluster-association matrix shown in Fig. 2d is used
for generating a bipartite graph whose vertices
represent both data points and clusters. According
to [28], the solution to a cluster ensemble problem is
to divide this graph using either METIS or Spectral
graph partitioning (SPEC) [47].

2.4 Cluster Ensembles of Categorical Data

While a large number of cluster ensemble techniques for
numerical data have been put forward in the previous
decade, there are only a few studies that apply such a
methodology to categorical data clustering. The method
introduced in [48] creates an ensemble by applying a
conventional clustering algorithm (e.g., k-modes [8] and
COOLCAT [17]) to different data partitions, each of which
is constituted by a unique subset of data attributes. Once an
ensemble has been obtained, the graph-based consensus
functions of [28] and [29] are utilized to generate the final
clustering result.

Unlike the conventional approach, the technique devel-
oped in [49] acquires a cluster ensemble without actually
implementing any base clustering on the examined data set.
In fact, each attribute is considered as a base clustering that
provides a unique data partition. In particular, a cluster in
such attribute-specific partition contains data points that
share a specific attribute value (i.e., categorical label). Thus,
the ensemble size is determined by the number of
categorical labels, across all data attributes. The final
clustering result is generated using the graph-based con-
sensus techniques presented in [29]. Specific to this so-called
“direct” ensemble generation method, a given categorical
data set can be represented using a binary cluster-associa-
tion matrix, whose example is shown earlier in Fig. 2d. Such
an information matrix is analogous to the “market-basket”
numerical representation of categorical data, which has been
the focus of traditional categorical data analysis [50], [51].

3 A NOVEL LINK-BASED APPROACH

Existing cluster ensemble methods to categorical data
analysis rely on the typical pairwise-similarity and binary
cluster-association matrices [48], [49], which summarize the
underlying ensemble information at a rather coarse level.
Many matrix entries are left “unknown” and simply recorded
as “0.” Regardless of a consensus function, the quality of the
final clustering result may be degraded. As a result, a link-
based method has been established with the ability to
discover unknown values and, hence, improve the accuracy
of the ultimate data partition [33]. In spite of promising
findings, this initial framework is based on the data point-
data point pairwise-similarity matrix, which is highly
expensive to obtain. The link-based similarity technique,
SimRank [52], that is employed to estimate the similarity
among data points is inapplicable to a large data set.

To overcome these problems, a new link-based cluster
ensemble (LCE) approach is introduced herein. It is more
efficient than the former model, where a BM-like matrix is
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Fig. 2. Examples of (a) cluster ensemble and the corresponding
(b) label-assignment matrix, (c) pairwise-similarity matrix, and (d) binary
cluster-association matrix, respectively. Note that X ¼ fx1; . . . ; x5g,
� ¼ f�1; �2; �3g, �1 ¼ fC1

1 ; C
1
2 ; C

1
3g; �2 ¼ fC2

1 ; C
2
2g, and �3 ¼ fC3

1 ; C
3
2g.



used to represent the ensemble information. The focus has
shifted from revealing the similarity among data points to
estimating those between clusters. A new link-based
algorithm has been specifically proposed to generate such
measures in an accurate, inexpensive manner. The LCE
methodology is illustrated in Fig. 3. It includes three major
steps of: 1) creating base clusterings to form a cluster
ensemble (�), 2) generating a refined cluster-association
matrix (RM) using a link-based similarity algorithm, and
3) producing the final data partition (��) by exploiting the
spectral graph partitioning technique as a consensus
function.

3.1 Creating a Cluster Ensemble

Type I (Direct ensemble). Following the study in [49], the first
type of cluster ensemble transforms the problem of
categorical data clustering to cluster ensembles by con-
sidering each categorical attribute value (or label) as a
cluster in an ensemble. Let X ¼ fx1; . . . ; xNg be a set of N
data points, A ¼ fa1; . . . ; aMg be a set of categorical
attributes, and � ¼ f�1; . . . ; �Mg be a set of M partitions.
Each partition �i is generated for a specific categorical
attribute ai 2 A. Clusters belonging to a partition �i ¼
fCi

1; . . . ; Ci
ki
g correspond to different values of the attribute

ai ¼ fai1; . . . ; aikig, where
Ski
j¼1 C

i
j ¼ ai and ki is the number

of values of attribute ai. With this formalism, categorical
data X can be directly transformed to a cluster ensemble �,
without actually implementing any base clustering. While
single-attribute data partitions may not be as accurate as
those obtained from the clustering of all data attributes,
they can bring about great diversity within an ensemble.
Besides its efficiency, this ensemble generation method has
the potential to lead to a high-quality clustering result.

Type II (Full-space ensemble). Unlike the previous case, the
following two ensemble types are created from base
clustering results, each of which is obtained by applying a
clustering algorithm to the categorical data set. For this study,
the k-modes technique [8] is used to generate base cluster-
ings, each with a random initialization of cluster centers. In
particular to a full-space ensemble, base clusterings are
created from the original data, i.e., with all data attributes. To
introduce an artificial instability to k-modes, the following
two schemes are employed to select the number of clusters in
each base clusterings: 1) Fixed-k, k ¼ d

ffiffiffiffiffi
N
p
e (where N is the

number of data points), and 2) Random-k, k 2 f2; . . . ; d
ffiffiffiffiffi
N
p
eg.

Type III (Subspace ensemble). Another alternative to
generate diversity within an ensemble is to exploit a
number of different data subsets. To this extent, the cluster
ensemble is established on various data subspaces, from
which base clustering results are generated [48]. Similar to
the study in [41], for a given N � d data set of N data points

and d attributes, an N � q data subspace (where q < d) is
generated by

q ¼ qmin þ b�ðqmax � qminÞc; ð1Þ

where � 2 ½0; 1� is a uniform random variable, qmin and qmax
are the lower and upper bounds of the generated subspace,
respectively. In particular, qmin and qmax are set to 0:75d and
0:85d. An attribute is selected one by one from the pool of d
attributes, until the collection of q is obtained. The index of
each randomly selected attribute is determined as
h ¼ b1þ �dc, given that h denotes the hth attribute in the
pool of d attributes and � 2 ½0; 1Þ is a uniform random
variable. Note that k-modes is exploited to create a cluster
ensemble from the set of subspace attributes, using both
Fixed-k and Random-k schemes for selecting the number of
clusters.

3.2 Generating a Refined Matrix

Several cluster ensemble methods, both for numerical [28],
[29] and categorical data [48], [49], are based on the binary
cluster-association matrix. Each entry in this matrix
BMðxi; clÞ 2 f0; 1g represents a crisp association degree
between data point xi 2 X and cluster cl 2 �. According
to Fig. 2 that shows an example of cluster ensemble and the
corresponding BM, a large number of entries in the BM are
unknown, each presented with “0.” Such condition occurs
when relations between different clusters of a base cluster-
ing are originally assumed to be nil. In fact, each data point
can possibly associate (to a certain degree within ½0; 1�) to
several clusters of any particular clustering. These hidden or
unknown associations can be estimated from the similarity
among clusters, discovered from a network of clusters.

Based on this insight, the refined cluster-association
matrix is put forward as the enhanced variation of the
original BM. Its aim is to approximate the value of unknown
associations (“0”) from known ones (“1”), whose association
degrees are preserved within the RM, i.e., BMðxi; clÞ ¼
1! RMðxi; clÞ ¼ 1. For each clustering �t; t ¼ 1 . . .M and
their corresponding clusters Ct

1; . . . ; Ct
kt

(where kt is the
number of clusters in the clustering �t), the association
degree RMðxi; clÞ 2 ½0; 1� that data point xi 2 X has with
each cluster cl 2 fCt

1; . . . ; Ct
kt
g is estimated as follows:

RMðxi; clÞ ¼
1; ifcl ¼ Ct

�ðxiÞ;
simðcl; Ct

�ðxiÞÞ; otherwise;

�
ð2Þ

where Ct
�ðxiÞ is a cluster label (corresponding to a particular

cluster of the clustering �t) to which data point xi belongs.
In addition, simðCx;CyÞ 2 ½0; 1� denotes the similarity
between any two clusters Cx;Cy, which can be discovered
using the following link-based algorithm. Note that, for any
clustering �t 2 �, 1 �

P
8C2�t RMðxi; CÞ � kt. Unlike the

measure of fuzzy membership, the typical constraint ofP
8C2�t RMðxi; CÞ ¼ 1 is not appropriate for rescaling

associations within the RM. In fact, this local normalization
will significantly distort the true semantics of known
associations (“1”), such that their magnitudes become
dissimilar, different from one clustering to another. Accord-
ing to the empirical investigation, this fuzzy-like enforce-
ment decreases the quality of the RM, and hence, the
performance of the resulting cluster ensemble method.
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Fig. 3. The link-based cluster ensemble framework: 1) a cluster
ensemble � ¼ f�1; . . . ; �Mg is created from M base clusterings, 2) a
refined cluster-association matrix is then generated from the ensemble
using a link-based similarity algorithm, and 3) a final clustering result (��)
is produced by a consensus function of the spectral graph partitioning.



3.2.1 Weighted Triple-Quality (WTQ): A New

Link-Based Similarity Algorithm

Given a cluster ensemble � of a set of data points X, a
weighted graph G ¼ ðV ;WÞ can be constructed, where V is
the set of vertices each representing a cluster and W is a set
of weighted edges between clusters. Formally, the weight
assigned to the edge wxy 2W , that connects clusters
Cx;Cy 2 V , is estimated by the proportion of their over-
lapping members.

wxy ¼
jLx \ Lyj
jLx [ Lyj

; ð3Þ

where Lz � X denotes the set of data points belonging to
cluster Cz 2 V . Fig. 4 shows the network of clusters that is
generated from the example given in Fig. 2. Note that circle
nodes represent clusters and edges exist only when the
corresponding weights are nonzero.

Shared neighbors have been widely recognized as the
basic evidence to justify the similarity among vertices in
a link network [35], [36]. Formally, a vertex Ck 2 V is a
common neighbor (sometimes called “triple,” which is
short for “center of the connected triple”) of vertices
Cx;Cy 2 V , provided that wxk; wyk 2W . Many advanced
methods extend this basis by taking into account common
neighbors that may be many edges away from the two
under examination: for instance, Connected-Path [34],
SimRank [52], and a variation of random walk algorithms
[53], [54]. Despite reported effectiveness, these techniques
are computationally expensive, or even impractical for a
large data set. Henceforth, the Weighted Triple-Quality
algorithm is proposed, as part of the current research, for
the efficient approximation of the similarity between
clusters in a link network. Unlike the technique in [55] that
simply counts the number of triples, WTQ aims to
differentiate the significance of triples and hence their
contributions toward the underlying similarity measure.
WTQ is inspired by the initial measure in [56], which
evaluates the association between home pages. In particu-
lar, features of the compared pages pa and pb are used to
estimate their similarity sðpa; pbÞ as follows:

sðpa; pbÞ ¼
X
8zc2Z

1

logðfrequencyðzcÞÞ
; ð4Þ

where Z denotes the set of features shared by home pages
pa and pb, and frequencyðzdÞ represents the number of times
zd appearing in the studied set of pages. Note that the
method gives high weights to rare features and low weights

to features that are common to most of the pages. For WTQ,

(4) can be modified to discriminate the quality of shared

triples between a pair of clusters in question. The quality of

each cluster is determined by the rarity of links connecting

to other clusters in a network. With a weighted graph G

presented in Fig. 4, the WTQ measure of clusters Cx;Cy 2 V
with respect to each triple Ck 2 V is estimated by

WTQk
xy ¼

1

Wk
: ð5Þ

Here, Wk is defined as Wk ¼
P
8t2Nk

wtk, where Nk � V
denotes the set of clusters that is directly linked to the

cluster Ck, such that 8Ct 2 Nk;wtk 2W . The accumulative

WTQ score from all triples ð1 . . . qÞ between clusters Cx and

Cy can be found as follows:

WTQxy ¼
Xq
k¼1

WTQk
xy: ð6Þ

The WTQ algorithm is summarized below:

ALGORITHM: WTQðG;Cx; CyÞ
G ¼ ðV ;WÞ, a weighted graph, where Cx;Cy 2 V ;

Nk � V , a set of adjacent neighbors of Ck 2 V ;
Wk ¼

P
8Ct2Nk

wtk;

WTQxy, the WTQ measure of Cx {and} Cy;

(1) WTQxy  0

(2) For each c 2 Nx

(3) If c 2 Ny

(4) WTQxy  WTQxy þ 1
Wc

(5) Return WTQxy

Following that, the similarity between clusters Cx and Cy
can be estimated by

simðCx;CyÞ ¼
WTQxy

WTQmax
� DC; ð7Þ

where WTQmax is the maximum WTQpq value of any two

clusters Cp; Cq 2 V and DC 2 ½0; 1� is a constant decay factor

(i.e., confidence level of accepting two nonidentical clusters

as being similar). With this link-based similarity metric,

simðCx;CyÞ 2 ½0; 1� with simðCx;CxÞ ¼ 1, Cx;Cy 2 V . It is

also reflexive such that simðCx;CyÞ is equivalent to

simðCy; CxÞ. Following the example shown in Figs. 2 and

4, the WTQ similarity among different clusters and the

resulting RM are presented in Figs. 5a and 5b, respectively.

3.3 Applying a Consensus Function to RM

Having obtained an RM, a graph-based partitioning method

is exploited to obtain the final clustering. This consensus

function requires the underlying matrix to be initially

transformed into a weighted bipartite graph. Given an RM

representing associations between N data points and P

clusters in an ensemble �, a weighted graph G ¼ ðV ;WÞ can

be constructed, where V ¼ V X [ V C is a set of vertices

representing both data points V X and clusters V C , and W

denotes a set of weighted edges that can be defined as follows:

. wij 62W when vertices vi; vj 2 V X .

. wij 62W when vertices vi; vj 2 V C .
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Fig. 4. An example of a cluster network, where each edge is marked with
its weight.



. Otherwise, wij ¼ RMðvi; vjÞ when vertices vi 2 V X

and vj 2 V C . Note that the graph G is bidirectional
such that wij is equivalent to wji.

Given such a graph, a spectral graph partitioning

method similar to that in [47] is applied to generate a final

data partition. This is a powerful method for decomposing

an undirected graph, with good performance being ex-

hibited in many application areas, including protein

modeling, information retrieval, and identification of

densely connected online hypertextual regions [57]. Princi-

pally, given a graph G ¼ ðV ;WÞ, SPEC first finds the K

largest eigenvectors u1; . . . ; uK of W , which are used to

formed another matrix U (i.e., U ¼ ½u1; . . . ; uK �), whose rows

are then normalized to have unit length. By considering the

row of U as K-dimensional embedding of the graph

vertices, SPEC applies k-means to these embedded points

in order to acquire the final clustering result.

4 PERFORMANCE EVALUATION

This section presents the evaluation of the proposed link-

based method (LCE), using a variety of validity indices and

real data sets. The quality of data partitions generated by

this technique is assessed against those created by different

categorical data clustering algorithms and cluster ensemble

techniques.

4.1 Investigated Data Sets

The experimental evaluation is conducted over nine data

sets. The “20Newsgroup” data set is a subset of the well-

known text data collection—20-Newsgroups,2 while the

others are obtained from the UCI Machine Learning

Repository [58]. Their details are summarized in Table 1.

Missing values (denoted as “?”) in these data sets are

simply treated as a new categorical value. The “20News-

group” data set contains 1,000 documents from two news-

groups, each of which is described by the occurrences of

6,084 different terms. In particular, the frequency

(f 2 f0; 1; . . . ;1g) that a key word appears in each

document is transformed into a nominal value: “Yes” if

f > 0, “No” otherwise. Moreover, the “KDDCup99” data

set used in this evaluation is a randomly selected subset of

the original data. Each data point (or record) corresponds to

a network connection and contains 42 attributes: some are

nominal and the rest are continuous. Following the study in

[17], numerical attributes are transformed to categorical

using a simple discretization process. For each attribute,

any value less than the median is assigned a label “0,”

otherwise “1.” Note that the selected set of data records

covers 20 different connection classes. These two data sets

are specifically included to assess the performance of

different clustering methods, with respect to the large

numbers of dimensionality and data points, respectively.

4.2 Experiment Design

The experiments set out to investigate the performance of

LCE compared to a number of clustering algorithms, both

specifically developed for categorical data analysis and

those state-of-the-art cluster ensemble techniques found in

literature. Baseline model is also included in the assess-

ment, which simply applies SPEC, as a consensus function,

to the conventional BM (see Section 4.2.2). For comparison,

as in [28], [31], [22], each clustering method divides data

points into a partition of K (the number of true classes for

each data set) clusters, which is then evaluated against the

corresponding true partition using the following set of

label-based evaluation indices: Classification Accuracy

(CA) [23], Normalized Mutual Information (NMI) [29] and

Adjusted Rand (AR) Index [59]. Further details of these

quality measures are provided in Section I of the online

supplementary.3 Note that, true classes are known for all

data sets but are explicitly not used by the cluster ensemble

process. They are only used to evaluate the quality of the

clustering results.

4.2.1 Parameter Settings

In order to evaluate the quality of cluster ensemble methods
previously identified, they are empirically compared, using
the settings of cluster ensembles exhibited below.

. Five types of cluster ensembles are investigated in
this evaluation: Type-I, Type-II (Fixed-k), Type-II
(Random-k), Type-III (Fixed-k), and Type-III (Ran-
dom-k). The k-modes clustering algorithm is speci-
fically used to generate the base clusterings.

. Ensemble size (M) of 10 is experimented.

. The quality of each method with respect to a specific
ensemble setting is generalized as the average of
50 runs.

. The constant decay factor (DC) of 0.9 is exploited
with WTQ.

4.2.2 Compared Methods

To fully evaluate the potential of the proposed method, it is
compared to the baseline model (referred to as “Base”
hereafter), which applies SPEC to the BM. This allows the
quality of BM and RM to be directly compared. In addition,
five clustering techniques for categorical data and five
methods developed for cluster ensemble problems are
included in this evaluation. Details of these techniques are
given below.

Clustering algorithms for categorical data. Based on their
notable performance reported in the literature and avail-
ability, five different algorithms are selected to demonstrate
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Fig. 5. The illustrations of (a) WTQ similarity degrees between different
clusters and (b) the resulting RM, where DC ¼ 0:9.



the efficiency of conventional techniques to clustering
categorical data: Squeezer, GAClust, k-modes, CLOPE,
and Cobweb. Squeezer [9] is a single-pass algorithm that
considers one data point at a time. Each data point is either
placed in one of the existing clusters if their distance is less
than a given threshold, or used to form a new cluster.
GAClust [11] searches for a data partition (referred to as the
“median” partition), which has the minimum dissimilarity
to those partitions generated by categorical attributes. Note
that the similarity (or closeness) between two partitions is
estimated by using a generalization of the classical condi-
tional entropy. A genetic algorithm has been employed to
make the underlying search process more efficient, with the
partitions being represented by chromosomes.
k-modes [8] extends the conventional k-means technique,

with a simple matching dissimilarity measure. The distance
is estimated by the number of common categorical
attributes shared by two data points. It iteratively refines
k cluster representatives, each as the attribute vector that
has the minimal distance to all the points in a cluster (i.e.,
the cluster’s most frequent attribute values). CLOPE [18] is
a fast and scalable clustering technique, initially designed
for transactional data analysis. Its underlying concept is to
increase the height-to-width ratio of the cluster histogram.
This is achieved through a repulsion parameter that
controls tightness of transactions in a cluster, and hence
the resulting number of clusters. Cobweb [12] is a
conceptual clustering method. It creates a classification
tree, in which each node corresponds to a concept.
Observations are incrementally integrated into the classifi-
cation tree, along the path of best matching nodes. This is
guided by the heuristic evaluation measure, called category
utility. A given utility threshold determines the sibling
nodes that are used to form the resulting data partition.

In this experiment, a similarity threshold, a repulsion
value, and a category utility threshold, which are required
(as an input) by Squeezer, CLOPE, and Cobweb, respec-
tively, are set particularly for each data set such that a
desired number of clusters is obtained. As for the GAClust
algorithm, the population size is set to be 50, the seed
parameter 2 f1; . . . ; 10g and other parameters are left to
their default values.

Cluster ensemble methods. LCE is also assessed against five
ensemble methods of CO+SL, CO+AL, Cluster-based Simi-
larity Partitioning Algorithm (CSPA), Hyper-Graph Parti-
tioning Algorithm (HGPA), and Metaclustering Algorithm

(MCLA). The first two algorithms are based principally on
the pairwise similarity among data points. Given a cluster
ensemble � ¼ f�1; . . . ; �Mg of a data set X ¼ fx1; . . . ; xNg,
an N �N similarity matrix (CO) is constructed by
COðxi; xjÞ ¼ 1

M

PM
m¼1 Smðxi; xjÞ, where COðxi; xjÞ 2 ½0; 1� re-

presents the similarity measure between data points
xi; xj 2 X. In addition, Smðxi; xjÞ ¼ 1 if CmðxiÞ ¼ CmðxjÞ,
and Smðxi; xjÞ ¼ 0 otherwise. Note that CmðxiÞ denotes the
cluster label of the mth clustering to which a data point xi 2
X belongs. Since CO is a similarity matrix, any similarity-
based clustering algorithm can be applied to this matrix to
yield the final partition ��. Specifically to [31], the single-
linkage (SL) and average-linkage (AL) agglomerative hier-
archical clusterings are used for such purpose.

To consolidate the underlying evaluation, three well-
known graph-based cluster ensemble algorithms are also
examined: CSPA, HGPA, and MCLA [29]. First, the Cluster-
based Similarity Partitioning Algorithm creates a similarity
graph, where vertices represent data points and edges’
weight represent similarity scores obtained from the CO
matrix. Afterward, a graph partitioning algorithm called
METIS [46] is used to partition the similarity graph into K
clusters. The Hypergraph Partitioning Algorithm constructs
a hypergraph, where vertices represent data points and the
same-weighted hyperedges represent clusters in the en-
semble. Then, HMETIS [60] is applied to partition the
underlying hypergraph into K parts with roughly the same
size. Unlike the previous methods, the Metaclustering
Algorithm generated a graph that represents the relation-
ships among clusters in the ensemble. In this metalevel
graph, each vertex corresponds to each cluster in the
ensemble and each edge’s weight between any two cluster
vertices is computed using the binary Jaccard measure.
METIS is also employed to partition the metalevel graph
into K metaclusters. Each data point has a specific
association degree to each metacluster. This can be
estimated from the number of original clusters to which
the data point belongs, in the underlying metacluster. The
final clustering is produced by assigning each data point to
the metacluster with which it is most frequently associated.

4.3 Experiment Results

Based on the classification accuracy, Table 2 compares the
performance of different clustering techniques over exam-
ined data sets. Note that the presented measures of cluster
ensemble methods that implement the ensemble Type-II
and Type-III are the averages across 50 runs. In addition, a
measure is marked “N/A” when the clustering result is not
obtainable. For each data set, the highest five CA-based
values are highlighted in boldface.

The results shown in this table indicate that the LCE
methods usually perform better than the investigated
collection of cluster ensemble techniques and clustering
algorithms for categorical data. In particular to Type-II and
Type-III ensembles, LCE also enhances the performance of
k-modes, which is used as base clusterings. According to
the findings with the 20Newsgroup data set, LCE is
effective for such high-dimensional data, where Squeezer
and Cobweb fail to generate the clustering results. Likewise,
LCE is also applicable to a large data set such as
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TABLE 1
Description of Data Sets: Number of

Data Points (N), Attributes (d),
Attribute Values (AA), and Classes (K)



KDDCup99, for which several cluster ensemble techniques
(CO+SL, CO+AL, and CSPA) are immaterial.

With the measures of LCE models being mostly higher
than those of the corresponding baseline counterparts
(Base), the quality of the RM appears to be significantly
better than that of the original, binary variation. As
compared to the LCE models that use Type-II and Type-
III ensembles (both “Fixed-k” and “Random-k”), the LCE
with Type-I (or direct) ensemble is less effective. This is
greatly due to the quality of base clusterings, which are
single attribute and multiattribute for Type-I and the others,
respectively. Despite its inefficiency, CSPA has the best
performance among assessed ensemble methods. In addi-
tion, Cobweb is the most effective among five categorical
data clustering algorithms included in this evaluation.
Similar experimental results are also observed using NMI
and AR evaluation indices. The corresponding details are
given in Section II-A of the online supplementary.

In order to further evaluate the quality of identified
techniques, the number of times that one method is
significantly better and worse (of 95 percent confidence
level) than the others are assessed across experimented data
sets. Let XCði; �Þ be the average value of validity index C 2
fCA;NMI;ARg across n runs (n ¼ 50 in this evaluation)
for a clustering method i 2 CM (CM is a set of 40
experimented clustering methods), on a specific data set
� 2 DT (DT is a set of six data sets). To obtain a fair
comparison, this pairwise assessment is conducted on the
results with six data sets, where the clustering results can be
obtained for all the clustering methods. Also note that CM
consists of five clustering algorithms for categorical data
and 35 different cluster ensemble models, each of which is a
unique combination of ensemble type (i.e., Type-I, Type-
II(Fixed-k), Type-II(Random-k), Type-III(Fixed-k), and
Type-III(Random-k)) and ensemble method (i.e., LCE, Base,
CO+SL, CO+AL, CSPA, HGPA, and MCLA).
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TABLE 2
Classification Accuracy of Different Clustering Methods

The five highest CA scores of each data set are highlighted in boldface. Note that unobtainable results are marked as “N/A.”



The 95 percent confidence interval, ½LXC ði;�Þ; UXCði;�Þ�,
for the mean XCði; �Þ of each validity criterion C is

calculated by

LXCði;�Þ ¼ XCði; �Þ � 1:96
SCði; �Þffiffiffi

n
p

and UXCði;�Þ ¼ XCði; �Þ þ 1:96
SCði; �Þffiffiffi

n
p

Note that SCði; �Þ denotes the standard deviation of the
validity index C across n runs for a clustering method i and
a data set �. The number of times that one method i 2 CM
is significantly better than its competitors, BCðiÞ (in
accordance with the validity criterion C), can be defined as

BCðiÞ ¼
X
8�2DT

X
8i�2CM;i� 6¼i

better�Cði; i�Þ; ð8Þ

better�Cði; i
�Þ ¼ 1; ifLXCði;�Þ > UXCði�;�Þ;

0; otherwise:

�
ð9Þ

Similarly, the number of times that one method i 2 CM is
significantly worse than its competitors, WCðiÞ, in accor-
dance with the validity criterion C, can be computed as

WCðiÞ ¼
X
8�2DT

X
8i�2CM;i� 6¼i

worse�Cði; i�Þ; ð10Þ

worse�Cði; i
�Þ ¼ 1; ifUXCði;�Þ < LXCði�;�Þ;

0; otherwise:

�
ð11Þ

Using the aforementioned assessment formalism, Table
3 illustrates for each method the frequencies of significant
better (B) and significant worse (W ) performance, which
are categorized in accordance with the evaluation indices
(CA, NMI, and AR). The results shown in this table
indicate the superior effectiveness of the proposed link-
based methods, as compared to other clustering techni-
ques included in this experiment. To better perceive this
comparison, Fig. 6 summarizes the total performance
(B�W ) of each clustering method, sorted in the
descending order, across all evaluation indices and six
data sets. Note that the total performance (B�W ) of any
particular algorithm is specified as the difference between
corresponding values of B and W . It can be seen that all

link-based methods perform better than their competitors.
In fact, these LCE models have the highest five statistics
of B�W , while CO+AL with a Type-II(Fixed-k) ensemble
is the most effective among compared techniques. In
addition, Cobweb and Squeezer perform better than the
other three categorical data clustering algorithms. Another
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TABLE 3
The Pairwise Performance Comparison among

Examined Clustering Methods

For each evaluation index, “B” and “W ” denote the number of times that
a particular method performs significantly “better” and “worse” than the
others.

Fig. 6. The statistics of total performance (B�W ) at 95 percent confidence level, summarized across all evaluation indices and six data sets, and
sorted in descending order.



important investigation is on the subject of relations
between performance of experimented cluster ensemble
methods and different types of ensemble being explored
in the present evaluation. To this point, it has been
demonstrated that the LCE approach is more accurate
than other cluster ensemble methods, across all examined
ensemble types. Further details of the results and
discussion regarding the effect of ensemble types on the
performance of LCE are provided in Section II-B of the
online supplementary.

4.4 Parameter and Complexity Analysis

The parameter analysis aims to provide a practical means
by which users can make the best use of the link-based
framework. Essentially, the performance of the resulting
technique is dependant on the decay factor (i.e.,
DC 2 ½0; 1�), which is used in estimating the similarity
among clusters and association degrees previously un-
known in the original BM.

We varied the value of this parameter from 0.1 through
0.9, in steps of 0.1, and obtained the results in Fig. 7. Note
that the presented results are obtained with the ensemble
size (M) of 10. The figure clearly shows that the results of
LCE are robust across different ensemble types, and do not
depend strongly on any particular value of DC. This makes
it easy for users to obtain high-quality, reliable results, with
the best outcomes being obtained with values of DC
between 0.7 and 0.9. Although there is variation in response
across the DC values, the performance of LCE is always
better than any of the other clustering methods included in

this assessment. Another important observation is that the
effectiveness of the link-based measure decreases as DC
becomes smaller. Intuitively, the significance of disclosed
associations becomes trivial when DC is low. Hence, they
may be overlooked by a consensus function and the quality
of the resulting data partition is not improved.

Another parameter that may determine the quality of
data partition generated by a cluster ensemble technique is
the ensemble size (M). Intuitively, the larger an ensemble is,
the better the performance becomes. According to Fig. 8
which is obtained with a DC of 0.9, this heuristic is
generally applicable to LCE with Type-II and Type-III
ensembles, where its average quality measures (across all
validity indices and six data sets) gradually incline to the
increasing value of M 2 f10; 20; . . . ; 100g. Furthermore, LCE
performs consistently better than its competitors with all
different ensemble sizes, while CO+SL is apparently the
least effective. Note that a bigger ensemble leads to an
improved accuracy, but with the trade-off of runtime—but,
again, even the worst results of LCE are better than the best
results of the other methods.

Besides previous quality assessments, computational
requirements of the link-based method are discussed here.
Primarily, the time complexity of creating the RM is
OðP 2 þNP Þ, where N is the number of data points. While
P denotes the number of clusters in a Type-II or Type-III
ensemble, it represents the cardinality of all categorical
values in a direct ensemble (i.e., Type-I). Please consult
Section III in the online supplementary for the details of the
scalability evaluation.
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Fig. 7. The relations between DC 2 f0:1; 0:2; . . . ; 0:9g and the perfor-
mance of the LCE models (the averages across all validity indices and
six data sets), whose values are presented in X-axis and Y-axis,
respectively. Note that the performance of other clustering methods is
also included for a comparison purpose. (a) Ensemble Type I.
(b) Ensemble Type II-Fixed-k. (c) Ensemble Type II-Random-k.
(d) Ensemble Type III-Fixed-k. (e) Ensemble Type III-Random-k.

Fig. 8. Performance of different cluster ensemble methods in accor-
dance with ensemble size (M 2 f10; 20; . . . ; 100g), as the averages of
validity measures (CA, NMI, and AR) across six data sets. (a) Ensemble
Type II-Fixed-k. (b) Ensemble Type II-Random-k. (c) Ensemble Type III-
Fixed-k. (d) Ensemble Type III-Random-k.



5 DISCUSSION

The difficulty of categorical data analysis is characterized
by the fact that there is no inherent distance (or similarity)
between attribute values. The RM matrix that is generated
within the LCE approach allows such measure between
values of the same attribute to be systematically quantified.
The concept of link analysis [34], [35], [36] is uniquely
applied to discover the similarity among attribute values,
which are modeled as vertices in an undirected graph. In
particular, two vertices are similar if the neighboring
contexts in which they appear are similar. In other words,
their similarity is justified upon values of other attributes
with which they co-occur. While the LCE methodology is
novel for the problem of cluster ensemble, the concept of
defining similarity among attribute values (especially with
the case of “direct” ensemble, Type-I) has been analogously
adopted by several categorical data clustering algorithms.

Initially, the problem of defining a context-based
similarity measure has been investigated in [61] and [62].
In particular, an iterative algorithm, called “Iterated
Contextual Distances (ICD),” is introduced to compute the
proximity between two values. Similar to LCE, the under-
lying distance metric is based on the occurrence statistics of
attribute values. However, the fundamental information
model that is used by ICD and LCE to capture the
associations between data points and attribute values are
notably different: a sequential probabilistic chain and a link
network for ICD and LCE, respectively. Note that LCE
makes use of WTQ that is a single-pass similarity algorithm,
while ICD requires the chain model to be randomly
initialized and iteratively updated to a fixed point.

Despite pursuing an objective analogous to that of the
LCE approach, several categorical data clustering methods
have been developed using different mechanisms to specify
a distance between attribute values: STIRR, ROCK, and
CACTUS, for instance. STIRR [13] is an iterative algorithm
based on nonlinear dynamical systems. A database is
encoded into a graph structure, where each weighted node
stands for a specific attribute value. STIRR iteratively
updates the weight configuration until a stable point (called
“basin”) is reached. This is achieved using a user-defined
“combiner function” to estimate a node weight from those
of others that associate to the same data records. Unlike
LCE, the similarity between any node pair cannot be
explicitly measured here. In fact, STIRR only divides nodes
of each attribute into two groups (one with large positive
weights and the other with small negative weights) that
correspond to projections of clusters on the attribute. Yet,
the postprocessing required to generate the actual clusters
is nontrivial and not addressed in the original work. While
LCE is generally robust to parameter settings, it is hard to
analyze the stability of the STIRR system for any useful
combiner function [63]. Rigorous experimentation and fine
tuning of parameters are needed for the generation of a
meaningful clustering [64].

ROCK [14] makes use of a link graph, in which nodes
and links represent data points (or tuples) and their
similarity, respectively. Two tuples are similar if they
shared a large number of attribute values. Note that the
link connecting two nodes is included only when the

corresponding similarity exceeds a user-defined threshold.
With tuples being initially regarded as singleton clusters,
ROCK merges clusters in an agglomerative hierarchical
fashion, while optimizing a cluster quality that is defined in
terms of the number of links across clusters. Note that the
graph models used by ROCK and LCE are dissimilar—the
graph of data points and that of attribute values (or
clusters), respectively. Since the number of data points is
normally greater than that of attribute values, ROCK is less
efficient than LCE. As a result, it is unsuitable for large data
sets [15]. Also, the selection of a “smooth function” that is
used to estimate a cluster quality is a delicate and difficult
task for average users [17].

CACTUS [16] also relies on the co-occurrence among
attribute values. In essence, two attribute values are
strongly connected if their support (i.e., the proportion of
tuples in which the values co-occur) exceeds a prespecified
value. By extending this concept to all attributes, CACTUS
searches for the “distinguishing sets,” which are attribute
value sets that uniquely occur within only one cluster.
These sets correspond to cluster projections that can be
combined to formulate the final clusters. Unlike LCE, the
underlying problem is not designed using a graph based
concept. It is also noteworthy that CACTUS and its recent
extension [65] assume each cluster to be identified by a set
of attribute values that occur in no other cluster. While such
conjecture may hold true for some data sets, it is unnatural
and unnecessary for the clustering process [15]. This rigid
constraint is not implemented by the LCE method.

Besides these approaches, traditional categorical data
analysis also utilizes the “market-basket” numerical repre-
sentation of the nominal data matrix [50], [51]. This
transformed matrix is similar to the BM, which has been
refined to the RM counterpart by LCE. A similar attempt in
[66] identifies the connection between “category utility” of
the conceptual clustering (Cobweb) [12] and the classical
objective function of k-means. As a result, the so-called
market-basket matrix used by the former is transformed to a
variation that can be efficiently utilized by the latter. The
intuitions of creating this rescaled matrix and the RM are
fairly similar. However, the methods used to generate them
are totally different. LCE discovers unknown entries (i.e.,
“0”) in the original BM from known entries (“1”), which are
preserved and left unchanged. On the other hand, the
method in [66] maps the attribute-value-specific “1” and
“0” entries to the unique, standardized values. Unlike the
RM, this matrix does not conserve the known fact (“1”
entries), whose values are now different from one to
another attribute.

Despite the fact that many clustering algorithms and
LCE are developed with the capability of comparing
attribute values in mind, they achieve the desired metric
differently, using specific information models. LCE un-
iquely and explicitly models the underlying problem as the
evaluation of link-based similarity among graph vertices,
which stand for specific attribute values (for Type-I
ensemble) or generated clusters (for Type-II and Type-III).
The resulting system is more efficient and robust, as
compared to other clustering techniques emphasized thus
far. In addition to SPEC, many other classical clustering
techniques, k-means and PAM among others, can be
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directly used to generate the final data partition from the

proposed RM. The LCE framework is generic such that it

can be adopted for analyzing other types of data.

6 CONCLUSION

This paper presents a novel, highly effective link-based

cluster ensemble approach to categorical data clustering. It

transforms the original categorical data matrix to an

information-preserving numerical variation (RM), to which

an effective graph partitioning technique can be directly

applied. The problem of constructing the RM is efficiently

resolved by the similarity among categorical labels (or

clusters), using the Weighted Triple-Quality similarity

algorithm. The empirical study, with different ensemble

types, validity measures, and data sets, suggests that the

proposed link-based method usually achieves superior

clustering results compared to those of the traditional

categorical data algorithms and benchmark cluster ensem-

ble techniques. The prominent future work includes an

extensive study regarding the behavior of other link-based

similarity measures within this problem context. Also, the

new method will be applied to specific domains, including

tourism and medical data sets.
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