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Abstract

Suppose you are given some dataset drawn from an underlying proba-
bility distribution and you want to estimate a “simple” subset of input
space such that the probability that a test point drawn from lies outside of
is bounded by some a priori specified between and .
We propose a method to approach this problem by trying to estimate a

function which is positive on and negative on the complement. The
functional form of is given by a kernel expansion in terms of a potentially
small subset of the training data; it is regularized by controlling the length of
the weight vector in an associated feature space. The expansion coefficients
are found by solving a quadratic programming problem, which we do by
carrying out sequential optimization over pairs of input patterns. We also
provide a preliminary theoretical analysis of the statistical performance of
our algorithm.

The algorithm is a natural extension of the support vector algorithm to
the case of unlabelled data.

Keywords. Support Vector Machines, Kernel Methods, Density Estima-
tion, Unsupervised Learning, Novelty Detection

1 Introduction
During recent years, a new set of kernel techniques for supervised learning has
been developed (Vapnik, 1995; Schölkopf et al., 1999a). Specifically, support vec-
tor (SV) algorithms for pattern recognition, regression estimation and solution of
inverse problems have received considerable attention.

There have been a few attempts to transfer the idea of using kernels to com-
pute inner products in feature spaces to the domain of unsupervised learning. The
problems in that domain are, however, less precisely specified. Generally, they can
be characterized as estimating functions of the data which tell you something in-
teresting about the underlying distributions. For instance, kernel PCA can be char-
acterized as computing functions which on the training data produce unit variance
outputs while having minimum norm in feature space (Schölkopf et al., 1999b).
Another kernel-based unsupervised learning technique, regularized principal man-
ifolds (Smola et al., 1999), computes functions which give a mapping onto a lower-
dimensional manifold minimizing a regularized quantization error. Clustering al-
gorithms are further examples of unsupervised learning techniques which can be
kernelized (Schölkopf et al., 1999b).

An extreme point of view is that unsupervised learning is about estimating
densities. Clearly, knowledge of the density of would then allow us to solve
whatever problem can be solved on the basis of the data.
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The present work addresses an easier problem: it proposes an algorithm which
computes a binary function which is supposed to capture regions in input space
where the probability density lives (its support), i.e. a function such that most of the
data will live in the region where the function is nonzero (Schölkopf et al., 1999).
In doing so, it is in line with Vapnik’s principle never to solve a problem which
is more general than the one we actually need to solve. Moreover, it is applicable
also in cases where the density of the data’s distribution is not even well-defined,
e.g. if there are singular components.

The article is organized as follows. After a review of some previous work in
Sec. 2, we propose SV algorithms for the considered problem. Sec. 4 gives de-
tails on the implementation of the optimization procedure, followed by theoretical
results characterizing the present approach. In Sec. 6, we apply the algorithm to
artificial as well as real-world data. We conclude with a discussion.

2 Previous Work
Part of the motivation for the present work was a paper of Ben-David and Lin-
denbaum (1997). It turns out that there is a considerable amount of prior work
in the statistical literature, and in this section we briefly summarise that. We do
not attempt a detailed comparison of the proof techniques of the specific results
achieved, but confine ourselves to placing the previous work in context.

In order to summarize the methods, it is convenient to introduce the following
definition of a (multi-dimensional) quantile function (introduced by Einmal and
Mason (1992)). Let be i.i.d. random variables in a set with distri-
bution . Let be a class of measurable subsets of and let be a real-valued
function defined on . The quantile function with respect to is

If is the empirical distribution ( ), the empirical quan-
tile function is

We denote by and the (not necessarily unique) that attains
the infimum (when it is achievable). The most common choice of is Lebesgue
measure, in which case is the minimum volume that contains at least
a fraction of the probability mass. We will assume is Lebesgue measure from
here on. Estimators of the form are called minimum volume estimators.
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Estimating the support of a density. Observe that for being all Borel mea-
surable sets, is the support of the density corresponding to , assuming it
exists. (Note that is well defined even when does not exist.) For smaller
classes , is the minimum volume containing the support of . The
problem of estimating appears to have first been studied by Geffroy (1964)
who considered with piecewise constant estimators. There have been a
number of works studying a natural nonparametric estimator of (e.g. Cheva-
lier (1976); Devroye and Wise (1980); Cuevas (1990); see (Gayraud, 1997) for
further references). The nonparametric estimator is simply

(1)

where is the ball of radius centered at and is an appropri-
ately chosen decreasing sequence. Devroye and Wise (1980) showed the asymp-
totic consistency of (1) with respect to the symmetric difference between
and . Cuevas (1990) did the same, but for Hausdorff distance. Cuevas and
Fraiman (1997) studied the asymptotic consistency of a plug-in estimator of :

where is a kernel density estimator. In order to
avoid problems with they actually analyzed
where is an appropriately chosen sequence. Clearly for a given distribution,
is related to , but this connection can not be readily exploited by this type of

estimator.
The most recent work relating to the estimation of is by Gayraud (1997)

who has made an asymptotic minimax study of estimators of functionals of .
Two examples are or the center of . (See also (Korostelev and Tsy-
bakov, 1993, Chapter 8).)

Estimating high probability regions ( ). Turning to the case where ,
it seems the first work was reported by Sager (1977) and then Hartigan (1987)
who considered with being the class of closed convex sets in . (They
actually considered density contour clusters; see below for a definition.) Nolan
(1991) considered higher dimensions with being the class of ellipsoids.

Tsybakov (1997) has studied an estimator based on piecewise polynomial ap-
proximation of and has shown it attains the asymptotically minimax rate for
certain classes of densities .

Polonik (1997) has studied the estimation of by . He derived
asymptotic rates of convergence in terms of various measures of richness of . He
considers both VC classes and classes with a log -covering number with bracket-
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ing of order for . He also summarizes a number of other previous
works on minimum volume estimators which we have not mentioned here.

Polonik (1995b) has also studied the use of the “excess mass approach” (Müller,
1992) to construct an estimator of “generalized -clusters” which are related to

.
Define the excess mass over at level as

where and again denotes Lebesgue measure. Any set
such that

is called a generalized -cluster in . Replace by in these definitions to obtain
their empirical counterparts and . In other words, his estimator is

where the is not necessarily unique. Now whilst is clearly different to
, it is related to it in that it attempts to find small regions with as much excess

mass (which is similar to finding small regions with a given amount of probability
mass). Actually is more closely related to the determination of density
contour clusters at level :

Simultaneously, and independently, Ben-David and Lindenbaum (1997) stud-
ied the problem of estimating . They too made use of VC classes but stated
their results in a stronger form which is meaningful for finite sample sizes.

Finally we point out a curious connection between minimum volume sets of
a distribution and its differential entropy in the case that is one dimensional.
Suppose is a one dimensional random variable with density . Let be
the support of and define the differential entropy of by

For and , define the typical set with respect to by

where .
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If and are sequences, the notation means
(Cover and Thomas, 1991, p.227) show that for all , then

They point out that this result “indicates that the volume of the smallest set that con-
tains most of the probability is approximately . This is a -dimensional volume,
so the corresponding side length is . This provides an interpretation
of differential entropy.”

Applications. A number of applications have been suggested for these tech-
niques. They include problems in medical diagnosis (Tarassenko et al., 1995),
marketing (Ben-David and Lindenbaum, 1997), condition monitoring of machines
(Devroye and Wise, 1980), estimating manufacturing yields (Stoneking, 1999),
econometrics and generalized nonlinear principal curves (Tsybakov, 1997; Ko-
rostelev and Tsybakov, 1993), regression and spectral analysis (Polonik, 1997),
tests for multimodality and clustering (Polonik, 1995b) and others (Müller, 1992).

Polonik (1995a) has shown how one can use estimators of to construct
density estimators. The point of doing this is that it allows one to encode a range of
prior assumptions about the true density that would be impossible to do within the
traditional density estimation framework. He has shown asymptotic consistency
and rates of convergence for densities belonging to VC-classes or with a known
rate of growth of metric entropy with bracketing.

Relationship with the Present Work. The present paper describes an algorithm
which finds regions close to . Our class is defined implicitly via a kernel
and the smoothness of the boundary of can be controlled by the choice of .
We do not try and find the minimum volume such region. On the other hand, our
algorithm has tractable computational complexity, even in several variables. Our
theory, which uses very similar tools to those used by Polonik, gives results that
we expect will be of more use in a finite sample size setting.

3 Algorithms
We first introduce terminology and notation conventions. We consider training data

(2)

where is the number of observations, and is some set. For simplicity,
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we think of it as a compact subset of . Let be a feature map , i.e.
a map into a dot product space such that the dot product in the image of can
be computed by evaluating some simple kernel (Boser et al., 1992; Vapnik, 1995;
Schölkopf et al., 1999a)

(3)

such as the Gaussian kernel

(4)

Indices and are understood to range over (in compact notation:
). Bold face greek letters denote -dimensional vectors whose components are

labelled using normal face typeset.
In the remainder of this section, we shall develop an algorithm which returns a

function that takes the value in a “small” region capturing most of the data
points, and elsewhere. Our strategy is to map the data into the feature space
corresponding to the kernel, and to separate them from the origin with maximum
margin. For a new point , the value is determined by evaluating which side
of the hyperplane it falls on, in feature space. Via the freedom to utilize different
types of kernel functions, this simple geometric picture corresponds to a variety of
nonlinear estimators in input space.

To separate the data set from the origin, we solve the following quadratic pro-
gram:

(5)

subject to (6)

Here, is a parameter whose meaning will become clear later.
Since nonzero slack variables are penalized in the objective function, we can

expect that if and solve this problem, then the decision function

sgn (7)

will be positive for most examples contained in the training set, while the SV
type regularization term will still be small. The actual trade-off between these
two goals is controlled by .

Using multipliers , we introduce a Lagrangian

(8)
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and set the derivatives with respect to the primal variables equal to zero,
yielding

(9)

(10)

In (9), all patterns are called Support Vectors. Together with
(3), the SV expansion transforms the decision function (7) into a kernel expansion

sgn (11)

Substituting (9) – (10) into (8), and using (3), we obtain the dual problem:

subject to (12)

One can show that at the optimum, the two inequality constraints (6) become equal-
ities if and are nonzero, i.e. if . Therefore, we can recover
by exploiting that for any such , the corresponding pattern satisfies

(13)

Note that if approaches , the upper boundaries on the Lagrange multipliers
tend to infinity, i.e. the second inequality constraint in (12) becomes void. The
problem then resembles the corresponding hard margin algorithm, since the penal-
ization of errors becomes infinite, as can be seen from the primal objective function
(5). It is still a feasible problem, since we have placed no restriction on , so can
become a large negative number in order to satisfy (6). If we had required
from the start, we would have ended up with the constraint instead
of the corresponding equality constraint in (12), and the multipliers could have
diverged.

To conclude this section, we note that one can also use balls to describe the
data in feature space, close in spirit to the algorithms of Schölkopf et al. (1995),
with hard boundaries, and Tax and Duin (1999), with “soft margins.” Again, we
try to put most of the data into a small ball by solving, for ,

subject to for (14)
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This leads to the dual

(15)

subject to (16)

and the solution
(17)

corresponding to a decision function of the form

sgn (18)

Similar to the above, is computed such that for any with
the argument of the sgn is zero.

For kernels which only depend on , is constant. In this
case, the equality constraint implies that the linear term in the dual target function
is constant, and the problem (15–16) turns out to be equivalent to (12). It can be
shown that the same holds true for the decision function, hence the two algorithms
coincide in that case.

4 Optimization
The last section has formulated quadratic programs (QPs) for computing regions
that capture a certain fraction of the data. These constrained optimization problems
can be solved via an off-the-shelf QP package to compute the solution. They do,
however, possess features that set them apart from generic QPs, most notably the
simplicity of the constraints. In the present section, we describe an algorithm which
takes advantage of these features and empirically scales better to large data set sizes
than a standard QP solver with time complexity of order (cf. Platt, 1999).
The algorithm is a modified version of SMO (Sequential Minimal Optimization),
an SV training algorithm originally proposed for classification (Platt, 1999), and
subsequently adapted to regression estimation (Smola and Schölkopf, 1998).

The strategy of SMO is to break up the constrained minimization of (12) into
the smallest optimization steps possible. Due to the constraint on the sum of the
dual variables, it is impossible to modify individual variables separately without
possibly violating the constraint. We therefore resort to optimizing over pairs of
variables.
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Elementary optimization step. For instance, consider optimizing over and
with all other variables fixed. Using the shorthand , (12) then

reduces to

(19)

with and , subject to

(20)

where .
We discard , which is independent of and , and eliminate to obtain

(21)

with the derivative

(22)

Setting this to zero and solving for , we get

(23)

Once is found, can be recovered from . If the new point
is outside of , the constrained optimum is found by projecting

from (23) into he region allowed by the constraints, and the re-computing .
The offset is recomputed after every such step.
Additional insight can be obtained by rewriting the last equation in terms of the

outputs of the kernel expansion on the examples and before the optimization
step. Let denote the values of their Lagrange parameter before the step.
Then the corresponding outputs (cf. (11)) read

(24)

Using the latter to eliminate the , we end up with an update equation for
which does not explicitly depend on ,

(25)

which shows that the update is essentially the fraction of first and second derivative
of the objective function along the direction of -constraint satisfaction.

Clearly, the same elementary optimization step can be applied to any pair of
two variables, not just and . We next briefly describe how to do the overall
optimization.
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Initialization of the algorithm. We start by setting a random fraction of all
to . If is not an integer, then one of the examples is set to a value in

to ensure that . Moreover, we set the initial to
.

Optimization algorithm. We then select a first variable for the elementary opti-
mization step in one of the two following ways. Here, we use the shorthand
for the indices of variables which are not at bound, i.e.

. At the end, these correspond to points that will sit exactly on the
hyperplane, and that will therefore have a strong influence on its precise position.

(i) We scan over the entire data set1 until we find a variable violating a KKT
condition (Bertsekas, 1995, e.g.), i.e. a point such that or

. Once we have found one, say , we pick
according to

(26)

(ii) Same as (i), but the scan is only performed over .

In practice, one scan of type (i) is followed by multiple scans of type (ii), until
there are no KKT violators in , whereupon the optimization goes back to a
single scan of type (i). If the type (i) scan finds no KKT violators, the optimization
terminates.

In unusual circumstances, the choice heuristic (26) cannot make positive progress.
Therefore, a hierarchy of other choice heuristics is applied to ensure positive progress.
These other heuristics are the same as in the case of pattern recognition, cf. (Platt,
1999), and have been found to well in our experiments to be reported below.

In our experiments with SMO applied to distribution support estimation, we
have always found it to converge. However, to ensure convergence even in rare
pathological conditions, the algorithm can be modified slightly, cf. (Keerthi et al.,
1999).

We end this session by stating a trick which is of importance in practical im-
plementations. In practice, one has to use a nonzero accuracy tolerance such that
two quantities are considered equal if they differ by less than that. In particular,
comparisons of this type are used in determining whether a point lies on the mar-
gin. Since we want the final decision function to evaluate to for points which lie
on the margin, we need to subtract this constant from at the end.

1This scan can be accelerated by not checking patterns which are on the correct side of the hy-
perplane by a large margin, using the method of Joachims (1999).
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5 Theory
In this section, we analyse the algorithm theoretically, starting with the uniqueness
of the hyperplane (Proposition 2). We then describe the connection to binary clas-
sification (Proposition 3), and show that the parameter characterizes the fractions
of SVs and outliers (Proposition 4). Following that, we give a robustness result for
the soft margin (Proposition 5) and finally we briefly state error bounds (Theorem
9).

In this section, we will use italic letters to denote the feature space images of
the corresponding patterns in input space, i.e.

(27)

Definition 1 A data set
(28)

is called separable if there exists some such that for .

Proposition 2 If the data set (28) is separable, then there exists a unique support-
ing hyperplane with the properties that (1) it separates all data from the origin,
and (2) its distance to the origin is maximal among all such hyperplanes. For any

, it is given by

subject to (29)

Proof Due to the separability, the convex hull of the data does not contain the
origin. The existence and uniqueness of the hyperplane then follows from the
supporting hyperplane theorem (e.g. Bertsekas, 1995).

Moreover, separability implies that there actually exists some and
such that for (by rescaling , this can be seen to work
for arbitrarily large ). By the Cauchy-Schwartz inequality, the distance of the
hyperplane to the origin is . Therefore the optimal
hyperplane is obtained by minimizing subject to these constraints, i.e. by the
solution of (29).

The following result elucidates the relationship between single-class classification
and binary classification.
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Proposition 3 (i) Suppose parametrizes the supporting hyperplane for the
data (28). Then parametrizes the optimal separating hyperplane (passing
through the origin (Vapnik, 1995)) for the labelled data set

(30)

(ii) Suppose parametrizes the optimal separating hyperplane passing through
the origin for a labelled data set

for (31)

Suppose, moreover, that is aligned such that is positive whenever ,
and that is the margin of the optimal hyperplane. Then parametrizes
the supporting hyperplane for the unlabelled data set

(32)

Proof Ad (i). Observe that parametrizes the supporting hyperplane for
the data set reflected through the origin, and that it is parallel to the one given by

. This provides an optimal separation of the two sets, with distance , and
a separating hyperplane .
Ad (ii). By assumption, we have (cf. Vapnik, 1995), hence

for .

Note that this relationship holds true also if we consider nonseparable problems. In
that case, margin errors in binary classification (i.e. points which are either on the
wrong side of the separating hyperplane or which fall inside the margin) translate
into outliers in single-class classification, i.e. into points which fall on the wrong
side of the hyperplane. Proposition 3 then holds, cum grano salis, for the training
sets with margin errors and outliers, respectively, removed.

The utility of Proposition 3 lies in the fact that it allows us to recycle cer-
tain results proven for binary classification (Schölkopf et al., 1999c) for use in the
single-class scenario. The following, explaining the significance of the parameter
, is such a case.

Proposition 4 Assume the solution of (6) satises . The following statements
hold:
(i) is an upper bound on the fraction of outliers.
(ii) is a lower bound on the fraction of SVs.
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(iii) Suppose the data (28) were generated independently from a distribution
which does not contain discrete components. Suppose, moreover, that the kernel
is analytic and non-constant. With probability 1, asymptotically, equals both the
fraction of SVs and the fraction of outliers.

Parts (i) and (ii) follow directly from Proposition 3 and the fact that outliers are
dealt with in exactly the same way as margin errors in the optimization problem
for the binary classification case (Schölkopf et al., 1999c). The basic idea is that
(10) imposes constraints on the fraction of patterns that can have ,
upper bounding the fraction of outliers, and on the fraction of patterns that must
have , the SVs. Alternatively, the result can be proven directly based on
the primal objective function (5), as sketched presently: to this end, note that when
changing , the term will change proportionally to the number of points that
have a nonzero (the outliers), plus, when changing in the positive direction,
the number of points which are just about to get a nonzero , i.e. which sit on the
hyperplane (the SVs). At the optimum of (5), we therefore have (i) and (ii).

Part (iii) can be proven by a uniform convergence argument showing that since
the covering numbers of kernel expansions regularized by a norm in some feature
space are well-behaved, the fraction of points which lie exactly on the hyperplane
is asymptotically negligible (cf. Schölkopf et al., 1999c).

Proposition 5 (Resistance) Local movements of outliers parallel to do not change
the hyperplane.

Proof Suppose is an outlier, i.e. , hence by the KKT conditions (e.g.
Bertsekas, 1995) . Transforming it into , where

, leads to a slack which is still nonzero, i.e. , hence we still
have . Therefore, is still feasible, as is the primal solution

. Here, we use for , , and
as computed from (13). Finally, the KKT conditions are still satisfied, as still

. Thus (Bertsekas, 1995, e.g.), is still the optimal solution.

Note that although the hyperplane does not change, its parametrization in
and does.

We now move on to the subject of generalization. Our goal is to bound the
probability that a novel point drawn from the same underlying distribution lies
outside of the estimated region by a certain margin. We start by introducing a
common tool for measuring the capacity of a class of functions that map to .

13



Definition 6 Let be a pseudo-metric space,2 let be a subset of and
. A set is an -cover for if, for every , there exists such

that . The -covering number of , , is the minimal cardinality
of an -cover for (if there is no such nite cover then it is dened to be ).

The idea is that should be finite but approximate all of with respect to the
pseudometric . We will use the distance over a finite sample
for the pseudo-metric in the space of functions,

(33)

Let . Below, logarithms are to base 2.

Theorem 7 Consider any distribution on and any . Suppose
are generated i.i.d. from . Then with probability over such an -sample, if
we nd such that for all ,

where .

The basis of the proof is (Shawe-Taylor et al., 1998, Lemma 3.9).
We now consider the possibility that for a small number of points fails

to exceed . This corresponds to having a non-zero slack variable in the
algorithm, where we take and use the class of linear functions in
feature space in the application of the theorem. There are well-known bounds for
the log covering numbers of this class. We first introduce notation for the size of
the shortfall in .

Definition 8 Let be a real valued function on a space . Fix . For ,
dene

Similarly for a training sequence , we dene

Theorem 9 Fix . Consider a xed but unknown probability distribution
on the input space and a class of real valued functions with range . Then

2i.e. with a distance function that differs from a metric in that it is only semidefinite
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with probability over randomly drawn training sequences of size , for all
and any ,

and

where

The proof is based on similar proofs for the classification case in (Shawe-Taylor
and Cristianini, 1999, Theorem 3). The theorem bounds the probability of a new
point falling in the region for which has value less than , this being the
complement of the estimate for the support of the distribution. In the algorithm
described in this paper, one would use the hyperplane shifted by towards
the origin to define the region. Note that there is no restriction placed on the class
of functions though these functions could be probability density functions.

The choice of gives a trade-off between the size of the region over which
the bound holds (increasing increases the size of the region) and the size of the
probability with which it holds (increasing decreases the size of the log covering
numbers).

The result shows that we can bound the probability of points falling outside the
region of estimated support by a quantity involving the ratio of the log covering
numbers (which can be bounded by the fat shattering dimension at scale propor-
tional to ) and the number of training examples, plus a factor involving the 1-norm
of the slack variables.

The result is stronger than related results given by Ben-David and Lindenbaum
(1997), since their bound involves the square root of the ratio of the Pollard dimen-
sion (the fat shattering dimension when tends to 0) and the number of training
examples.

The above bounds are, nevertheless, not entirely satisfactory, and their inclu-
sion here is much more as a sanity check than as a “closed-case” theory for the
algorithm presented. Whilst most of the apparent technical gaps can be readily
filled (for example determining the covering numbers for the class of functions in-
duced by use of a particular kernel using methods as in Williamson et al. (1999)),
there are still considerable gaps. These gaps do not invalidate the algorithm; they
simply indicate an incomplete theory, one we hope to complete at some stage. The
key difficulty is relating the margin achieved by the algorithm to the parameter
. Unlike in the support vector machine case, there is no natural linkage imposed
by the problem itself. Furthermore, whilst not immediately apparent, the results
stated do not actually give guidance as to how to chose the kernel parameter, al-
though they would if a connection between and the margin achieved were forced.
The latter connection is not necessary, but it could be motivated by noting that it
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, width 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin 0.84 0.70 0.62 0.48

Figure 1: First two pictures: A single-class SVM applied to two toy problems;
, domain: . Note how in both cases, at least a fraction of of

all examples is in the estimated region (cf. table). The large value of causes the
additional data points in the upper left corner to have almost no influence on the
decision function. For smaller values of , such as (third picture), the points
cannot be ignored anymore. Alternatively, one can force the algorithm to take these
‘outliers’ (OLs) into account by changing the kernel width (4): in the fourth picture,
using , the data is effectively analyzed on a different length scale
which leads the algorithm to consider the outliers as meaningful points.

seems plausible that if we obtain a very large margin of separation to the origin,
we would be more likely to accept a large (with the associated risk of ending up
with more false positives from the “unknown” class). Measuring relative to the
margin would then lead to bounds which depend on the margin, and which justify
our algorithm that tries to maximize the margin.

Equivalently, we could argue that we try to maximize the margin in order to
have the freedom to use a large , leading to smaller values of the error bounds,
while still not including the “unknown” class. Evidently, this argument implicitly
makes prior assumptions about the unknown class, in particular that it is in some
sense centered around the origin from which we try to separate the data. The
algorithm could be modified to accomodate this case, but presently, we shall not
go into further detail on that matter.

6 Experiments
We apply the method to artificial and real-world data. Figure 1 displays 2-D toy
examples, and shows how the parameter settings influence the solution.

Figure 2 shows a plot of the outputs on training and test sets of the
US postal service database of handwritten digits. The database contains digit
images of size ; the last constitute the test set. We fed our
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test     
train    
other    
threshold

test     
train    
other    
threshold

Figure 2: Experiments on the US postal service OCR dataset. Recognizer for
digit ; output histogram for the exemplars of in the training/test set, and on test
exemplars of other digits. The -axis gives the output values, i.e. the argument of
the sgn function in (11). For (top), we get SVs and outliers
(consistent with Proposition 4), true positive test examples, and zero false
positives from the “other” class. For (bottom), we get and for
SVs and outliers, respectively. In that case, the true positive rate is improved to

, while the false positive rate increases to . The threshold is marked in
the graphs.
Note, finally, that the plots show a Parzen windows density estimate of the output
histograms. In reality, many examples sit exactly at the threshold value (the non-
bound SVs). Since this peak is smoothed out by the estimator, the fractions of
outliers in the training set appear slightly larger than it should be.
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algorithm, using a Gaussian kernel (4) of width (a common value
for SVM classifiers on that data set, cf. Schölkopf et al. (1995)), with the training
instances of digit only. Testing was done on both digit and on all other digits.
As shown in figure 2, leads to zero false positives (i.e. even though the
learning machine has not seen any non- -s during training, it correctly identifies
all non- -s as such), while still recognizing of the digits in the test set.
Higher recognition rates can be achieved using smaller values of : for ,
we get correct recognition of digits in the test set, with a fairly moderate
false positive rate of .

Whilst leading to encouraging results, this experiment did not really address
the actual task the algorithm was designed for. Therefore, we next focussed on
a problem of novelty detection. Again, we utilized the USPS set; however, this
time we trained the algorithm on the test set and used it to identify outliers —
it is folklore in the community that the USPS test set (Fig. 3) contains a number
of patterns which are hard or impossible to classify, due to segmentation errors
or mislabelling (e.g. Vapnik, 1995). In the experiment, we augmented the input
patterns by ten extra dimensions corresponding to the class labels of the digits.
The rationale for this is that if we disregarded the labels, there would be no hope to
identify mislabelled patterns as outliers. Vice versa, with the labels, the algorithm
has the chance to identify both unusual patterns and usual patterns with unusual
labels. Fig. 4 shows the 20 worst outliers for the USPS test set, respectively. Note
that the algorithm indeed extracts patterns which are very hard to assign to their
respective classes. In the experiment, we used the same kernel width as above, and
a value of .

In the last experiment, we tested the scaling behaviour of the proposed SMO
solver which is used for training the learning machine (Fig. 5). It was found to
depend on the value of utilized. For the small values of which are typically
used in outlier detection tasks, the algorithm scales very well to larger data sets,
with a dependency of training times on the sample size which is at most quadratic.

6 9 2 8 1 8 8 6 5 3

2 3 8 7 0 3 0 8 2 7

Figure 3: A subset of examples randomly drawn from the USPS test set, with
class labels.
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fraction of OLs fraction of SVs training time
1% 0.0% 10.0% 36
2% 0.0% 10.0% 39
3% 0.1% 10.0% 31
4% 0.6% 10.1% 40
5% 1.4% 10.6% 36
6% 1.8% 11.2% 33
7% 2.6% 11.5% 42
8% 4.1% 12.0% 53
9% 5.4% 12.9% 76
10% 6.2% 13.7% 65
20% 16.9% 22.6% 193
30% 27.5% 31.8% 269
40% 37.1% 41.7% 685
50% 47.4% 51.2% 1284
60% 58.2% 61.0% 1150
70% 68.3% 70.7% 1512
80% 78.5% 80.5% 2206
90% 89.4% 90.1% 2349

Table 1: Experimental results for various values of the outlier control constant .
Note that bounds the fractions of outliers and support vectors from above and
below, respectively (cf. Proposition 4). As we are not in the asymptotic regime,
there is some slack in the bounds; nevertheless, can be used to control the above
fractions. Note, moreover, that training times (CPU time in seconds on a Pentium
II running at 450 MHz) increase as approaches . This is related to the fact that
almost all Lagrange multipliers will be at the upper bound in that case (cf. Sec. 4).
The system used in the outlier detection experiments is shown in bold face.
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9513 1507 0458 1377 7282 2216 3200 9186 5179 0162

3153 6143 6128 0123 7117 593 078 758 652 348

Figure 4: Outliers identified by the proposed algorithm, ranked by the negative
output of the SVM (the argument of (11)). The outputs (for convenience in units
of ) are written underneath each image in italics, the (alleged) class labels are
given in bold face. Note that most of the examples are “difficult” in that they are
either atypical or even mislabelled.

7 Discussion
One could view the present work as an attempt to provide a new algorithm which
is in line with Vapnik’s principle never to solve a problem which is more general
than the one that one is actually interested in. E.g., in situations where one is only
interested in detecting novelty, it is not always necessary to estimate a full density
model of the data. Indeed, density estimation is more difficult than what we are
doing, in several respects.

Mathematically speaking, a density will only exist if the underlying probability
measure possesses an absolutely continuous distribution function. However, the
general problem of estimating the measure for a large class of sets, say the sets
measureable in Borel’s sense, is not solvable (for a discussion, see e.g. Vapnik,
1998). Therefore we need to restrict ourselves to making a statement about the
measure of some sets. Given a small class of sets, the simplest estimator which
accomplishes this task is the empirical measure, which simply looks at how many
training points fall into the region of interest. Our algorithm does the opposite. It
starts with the number of training points that are supposed to fall into the region,
and then estimates a region with the desired property. Often, there will be many
such regions — the solution becomes unique only by applying a regularizer, which
in our case enforces that the region be small in a feature space associated to the
kernel.

Therefore, we must keep in mind that the measure of smallness in this sense
depends on the kernel used, in a way that is no different to any other method that
regularizes in a feature space. A similar problem, however, appears in density
estimation already when done in input space. Let denote a density on . If we
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Figure 5: Training times vs. data set sizes (both axes depict logs at base 2; CPU
time in seconds on a Pentium II running at 450 MHz). As in Table 1, it can be seen
that larger values of generally lead to longer training times (note that the plots use
different y-axis ranges). However, they also differ in their scaling with the sample
size. For large values of , training times are roughly proportional to the sample
size raised to the power of (right plot). For values (left plot), i.e.
those typically used in outlier detection experiments (in Fig. 4, we used ),
the scaling exponent is below (the exponents can be directly read off from the
slope of the graphs, as they are plotted in log scale with equal axis spacing). Note
that the scalings are better than the cubic one that one would expect when solving
the optimization problem using all patterns at once, cf. Sec. 4. As in the other
experiments, we used , however we only trained on subsets of the
USPS test set.
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perform a (nonlinear) coordinate transformation in the input domain , then the
density values will change; loosely speaking, what remains constant is ,
while is transformed, too. When directly estimating the probability measure of
regions, we are not faced with this problem, as the regions automatically change
accordingly.

An attractive property of the measure of smallness that we chose to use is
that it can also be placed in the context of regularization theory, leading to an
interpretation of the solution as maximally smooth in a sense which depends on
the specific kernel used. More specifically, let us assume that is Green’s function
of for an operator mapping into some dot product space (Smola et al., 1998;
Girosi, 1998), and take a look at the dual objective function that we minimize,

using . The regularization operators of common kernels
can be shown to correspond to derivative operators (Poggio and Girosi, 1990) —
therefore, minimizing the dual objective function corresponds to maximizing the
smoothness of the function (which is, up to a thresholding operation, the function
we estimate). This, in turn, is related to a prior on the function
space.

Interestingly, as the minimization of the dual objective function also corre-
sponds to a maximization of the margin in feature space, an equivalent interpreta-
tion is in terms of a prior on the distribution of the unknown other class (the “novel”
class in a novelty detection problem) — trying to separate the data from the origin
amounts to assuming that the novel examples lie around the origin.

The main inspiration for our approach stems from the earliest work of Vapnik
and collaborators. In 1962, they proposed an algorithm for characterizing a set of
unlabelled data points by separating it from the origin using a hyperplane (Vapnik
and Lerner, 1963; Vapnik and Chervonenkis, 1974). However, they quickly moved
on to two-class classification problems, both in terms of algorithms and in terms of
the theoretical development of statistical learning theory which originated in those
days.
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From an algorithmic point of view, we can identify two shortcomings of the
original approach which may have caused research in this direction to stop for more
than three decades. Firstly, the original algorithm in (Vapnik and Chervonenkis,
1974) was limited to linear decision rules in input space, secondly, there was no
way of dealing with outliers. In conjunction, these restrictions are indeed severe
— a generic dataset need not be separable from the origin by a hyperplane in input
space.

The two modifications that we have incorporated dispose of these shortcom-
ings. First, the kernel trick allows for a much larger class of functions by non-
linearly mapping into a high-dimensional feature space, and thereby increases the
chances of a separation from the origin being possible. In particular, using a Gaus-
sian kernel (4), such a separation exists for any data set : to see this,
note that for all , thus all dot products between mapped patterns
are positive, implying that all patterns lie inside the same orthant. Moreover, since

for all , they all have unit length. Hence they are separable from the
origin. The second modification directly allows for the possibility of outliers. We
have incorporated this ‘softness’ of the decision rule using the -trick (Schölkopf
et al., 1999c) and thus obtained a direct handle on the fraction of outliers.

We believe that our approach, proposing a concrete algorithm with well-behaved
computational complexity (convex quadratic programming) for a problem that so
far has mainly been studied from a theoretical point of view has abundant practi-
cal applications. To turn the algorithm into an easy-to-use black-box method for
practicioners, questions like the selection of kernel parameters (such as the width
of a Gaussian kernel) have to be tackled. It is our expectation that the theoretical
results which we have briefly outlined in this paper will provide a solid foundation
for this formidable task.
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