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Abstract

Suppose you are given some dataset drawn from an underlying probabil-
ity distributionP and you want to estimate a “simple” subsetS of input
space such that the probability that a test point drawn fromP lies outside
of S equals some a priori specified� between� and�.
We propose a method to approach this problem by trying to estimate a
functionf which is positive onS and negative on the complement. The
functional form off is given by a kernel expansion in terms of a poten-
tially small subset of the training data; it is regularized by controlling the
length of the weight vector in an associated feature space. We provide a
theoretical analysis of the statistical performance of our algorithm.
The algorithm is a natural extension of the support vector algorithm to
the case of unlabelled data.

1 INTRODUCTION

During recent years, a new set of kernel techniques for supervised learning has been devel-
oped [8]. Specifically, support vector (SV) algorithms for pattern recognition, regression
estimation and solution of inverse problems have received considerable attention. There
have been a few attempts to transfer the idea of using kernels to compute inner products
in feature spaces to the domain ofunsupervisedlearning. The problems in that domain
are, however, less precisely specified. Generally, they can be characterized as estimating
functionsof the data which tell you something interesting about the underlying distribu-
tions. For instance, kernel PCA can be characterized as computing functions which on the
training data produce unit variance outputs while having minimum norm in feature space
[4]. Another kernel-based unsupervised learning technique, regularized principal mani-
folds [6], computes functions which give a mapping onto a lower-dimensional manifold
minimizing a regularized quantization error. Clustering algorithms are further examples of
unsupervised learning techniques which can be kernelized [4].

An extreme point of view is that unsupervised learning is about estimating densities.
Clearly, knowledge of the density ofP would then allow us to solve whatever problem
can be solved on the basis of the data. The present work addresses an easier problem: it



proposes an algorithm which computes a binary function which is supposed to capture re-
gions in input space where the probability density lives (its support), i.e. a function such
that most of the data will live in the region where the function is nonzero [5]. In doing so,
it is in line with Vapnik’s principle never to solve a problem which is more general than the
one we actually need to solve. Moreover, it is applicable also in cases where the density
of the data’s distribution is not even well-defined, e.g. if there are singular components.
Part of the motivation for the present work was the paper [1]. It turns out that there is a
considerable amount of prior work in the statistical literature; for a discussion, cf. the full
version of the present paper [3].

2 ALGORITHMS

We first introduce terminology and notation conventions. We consider training data
x�� � � � �x� � X� where� � N is the number of observations, andX is some set. For
simplicity, we think of it as a compact subset ofRN . Let � be a feature mapX � F ,
i.e. a map into a dot product spaceF such that the dot product in the image of� can be
computed by evaluating some simple kernel [8]

k�x�y� � ���x� � ��y��� (1)

such as the Gaussian kernel
k�x�y� � e�kx�yk

��c� (2)

Indicesi and j are understood to range over�� � � � � � (in compact notation:i� j � ���).
Bold face greek letters denote�-dimensional vectors whose components are labelled using
normal face typeset.

In the remainder of this section, we shall develop an algorithm which returns a function
f that takes the value�� in a “small” region capturing most of the data points, and��
elsewhere. Our strategy is to map the data into the feature space corresponding to the
kernel, and to separate them from the origin with maximum margin. For a new pointx, the
valuef�x� is determined by evaluating which side of the hyperplane it falls on, in feature
space. Via the freedom to utilize different types of kernel functions, this simple geometric
picture corresponds to a variety of nonlinear estimators in input space.

To separate the data set from the origin, we solve the following quadratic program:

min
w�F���R����R

�
�kwk� � �

��

P
i �i � � (3)

subject to �w � ��xi�� � �� �i� �i � �� (4)

Here,� � ��� �� is a parameter whose meaning will become clear later. Since nonzero slack
variables�i are penalized in the objective function, we can expect that ifw and� solve this
problem, then the decision functionf�x� � sgn��w � ��x�� � �� will be positive for most
examplesxi contained in the training set, while the SV type regularization termkwk will
still be small. The actual trade-off between these two goals is controlled by�. Deriving the
dual problem, and using (1), the solution can be shown to have an SV expansion

f�x� � sgn

�X
i

�ik�xi�x�� �

�
(5)

(patternsxi with nonzero�i are called SVs), where the coefficients are found as the solu-
tion of the dual problem:

min
�

�

	

X
ij

�i�jk�xi�xj� subject to� � �i � �

��
�
X
i

�i � �� (6)



This problem can be solved with standard QP routines. It does, however, possess features
that sets it apart from generic QPs, most notably the simplicity of the constraints. This can
be exploited by applying a variant of SMO developed for this purpose [3].

The offset� can be recovered by exploiting that for any� i which is not at the upper or
lower bound, the corresponding patternx i satisfies� � �w ���xi�� �

P
j �jk�xj �xi�.

Note that if� approaches�, the upper boundaries on the Lagrange multipliers tend to infin-
ity, i.e. the second inequality constraint in (6) becomes void. The problem then resembles
the correspondinghard marginalgorithm, since the penalization of errors becomes infinite,
as can be seen from the primal objective function (3). It can be shown that if the data set
is separable from the origin, then this algorithm will find the unique supporting hyperplane
with the properties that it separates all data from the origin, and its distance to the origin is
maximal among all such hyperplanes [3]. If, on the other hand,� approaches 1, then the
constraints alone only allow one solution, that where all� i are at the upper bound������.
In this case, for kernels with integral�, such as normalized versions of (2), the decision
function corresponds to a thresholded Parzen windows estimator.

To conclude this section, we note that one can also useballs to describe the data in feature
space, close in spirit to the algorithms of [2], with hard boundaries, and [7], with “soft
margins.” For certain classes of kernels, such as Gaussian RBF ones, the corresponding
algorithm can be shown to be equivalent to the above one [3].

3 THEORY

In this section, we show that the parameter� characterizes the fractions of SVs and outliers
(Proposition 1). Following that, we state a robustness result for the soft margin (Proposition
2) and error bounds (Theorem 5). Further results and proofs are reported in the full version
of the present paper [3]. We will use italic letters to denote the feature space images of the
corresponding patterns in input space, i.e.x i 
� ��xi��

Proposition 1 Assume the solution of (4) satisfies� �� �. The following statements hold:
(i) � is an upper bound on the fraction of outliers.
(ii) � is a lower bound on the fraction of SVs.
(iii) Suppose the data were generated independently from a distributionP �x� which does
not contain discrete components. Suppose, moreover, that the kernel is analytic and non-
constant. With probability 1, asymptotically,� equals both the fraction of SVs and the
fraction of outliers.

The proof is based on the constraints of the dual problem, using the fact that outliers must
have Lagrange multipliers at the upper bound.

Proposition 2 Local movements of outliers parallel tow do not change the hyperplane.

We now move on to the subject of generalization. Our goal is to bound the probability
that a novel point drawn from the same underlying distribution lies outside of the estimated
region by a certain margin. We start by introducing a common tool for measuring the
capacity of a classF of functions that mapX toR.

Definition 3 Let �X� d� be a pseudo-metric space,1 let A be a subset ofX and� 	 �. A
setB � X is an�-coverfor A if, for everya � A, there existsb � B such thatd�a� b� � �.
The�-covering numberof A, Nd��� A�, is the minimal cardinality of an�-cover forA (if
there is no such finite cover then it is defined to be�).

1i.e. with a distance function that differs from a metric in that it is only semidefinite



The idea is thatB should be finite but approximate all ofAwith respect to the pseudometric
d. We will use thel� distance over a finite sampleX � �x�� � � � � x�� for the pseudo-
metric in the space of functions,dX �f� g� � maxi���� jf�xi� � g�xi�j� Let N���F� �� �
supX�X� NdX ���F�. Below, logarithms are to base 2.

Theorem 4 Consider any distributionP onX and any
 � R. Supposex �� � � � � x� are
generated i.i.d. fromP . Then with probability� � � over such an�-sample, if we find
f � F such thatf�xi� � 
 � � for all i � ���,

Pfx 
 f�x�  
 � �g � �
� �k � log ��

� ��

wherek � dlogN���F� 	��e.

We now consider the possibility that for a small number of pointsf�x i� fails to exceed

 � �. This corresponds to having a non-zero slack variable� i in the algorithm, where we
take
� � � ��kwk and use the class of linear functions in feature space in the application
of the theorem. There are well-known bounds for the log covering numbers of this class.

Let f be a real valued function on a spaceX. Fix 
 � R. Forx � X, define

d�x� f� �� � maxf�� 
 � � � f�x�g�
Similarly for a training sequenceX , we defineD�X� f� �� �

P
x�X d�x� f� ���

Theorem 5 Fix 
 � R. Consider a fixed but unknown probability distributionP on the
input spaceX and a class of real valued functionsFwith range�a� b�. Then with probability
�� � over randomly drawn training sequencesx of size�, for all � 	 � and anyf � F,

P fx
 f�x�  
 � � andx �� Xg � �
� �k � log ��

� ��

wherek �
l
logN���	�F� 	��� ���b�a�D�X�f���

�� log
�

e��
�D�X�f���

�
log
�

	���b�a��

��

�m
�

The theorem bounds the probability of a new point falling in the region for whichf�x�
has value less than
 � �, this being the complement of the estimate for the support of the
distribution. The choice of� gives a trade-off between the size of the region over which the
bound holds (increasing� increases the size of the region) and the size of the probability
with which it holds (increasing� decreases the size of the log covering numbers).

The result shows that we can bound the probability of points falling outside the region of
estimated support by a quantity involving the ratio of the log covering numbers (which can
be bounded by the fat shattering dimension at scale proportional to�) and the number of
training examples, plus a factor involving the 1-norm of the slack variables. It is stronger
than related results given by [1], since their bound involves the square root of the ratio of
the Pollard dimension (the fat shattering dimension when� tends to 0) and the number of
training examples.

The output of the algorithm described in Sec. 2 is a functionf�x� �
P

i �ik�xi� x� which
is greater than or equal to�� �i on examplexi. Though non-linear in the input space, this
function is in fact linear in the feature space defined by the kernelk. At the same time the
2-norm of the weight vector is given byB �

p
�TK�, and so we can apply the theorem

with the function classF being those linear functions in the feature space with 2-norm
bounded byB. If we assume that
 is fixed, then� � � � 
, hence the support of the
distribution is the setfx 
 f�x� � 
� � � 	
� �g, and the bound gives the probability of
a randomly generated point falling outside this set, in terms of the log covering numbers of
the function classF and the sum of the slack variables� i. Since the log covering numbers



at scale��	 of the classF can be bounded byO� R
�B�

�� log� �� this gives a bound in terms
of the 2-norm of the weight vector.

Ideally, one would like to allow
 to be chosen after the value of� has been determined,
perhaps as a fixed fraction of that value. This could be obtained by another level of struc-
tural risk minimisation over the possible values of� or at least a mesh of some possible
values. This result is beyond the scope of the current preliminary paper, but the form of the
result would be similar to Theorem 5, with larger constants and log factors.

Whilst it is premature to give specific theoretical recommendations for practical use yet,
one thing is clear from the above bound. To generalize to novel data, the decision function
to be used should employ a threshold� � �, where�  � (this corresponds to a nonzero�).

4 EXPERIMENTS

We apply the method to artificial and real-world data. Figure 1 displays 2-D toy examples,
and shows how the parameter settings influence the solution.

Next, we describe an experiment on the USPS dataset of handwritten digits. The database
contains�	�� digit images of size�	 � � 	�; the last	��� constitute the test set. We
trained the algorithm, using a Gaussian kernel (2) of widthc � ��� � 	� (a common value
for SVM classifiers on that data set, cf. [2]), on the test set and used it to identify outliers
— it is folklore in the community that the USPS test set contains a number of patterns
which are hard or impossible to classify, due to segmentation errors or mislabelling. In the
experiment, we augmented the input patterns by ten extra dimensions corresponding to the
class labels of the digits. The rationale for this is that if we disregarded the labels, there
would be no hope to identifymislabelledpatterns as outliers. Fig. 2 shows the 20 worst
outliers for the USPS test set. Note that the algorithm indeed extracts patterns which are
very hard to assign to their respective classes. In the experiment, which took� seconds on
a Pentium II running at��� MHz, we used a� value of��.

�, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin��kwk 0.84 0.70 0.62 0.48

Figure 1:First two pictures:A single-class SVM applied to two toy problems;� � c � ���,
domain:���� ���. Note how in both cases, at least a fraction of� of all examples is in the
estimated region (cf. table). The large value of� causes the additional data points in the
upper left corner to have almost no influence on the decision function. For smaller values of
�, such as��� (third picture), the points cannot be ignored anymore. Alternatively, one can
force the algorithm to take these ‘outliers’ into account by changing the kernel width (2):
in the fourth picture, usingc � ���� � � ���, the data is effectively analyzed on a different
length scale which leads the algorithm to consider the outliers as meaningful points.



9−513 1−507 0−458 1−377 7−282 2−216 3−200 9−186 5−179 0−162

3−153 6−143 6−128 0−123 7−117 5−93 0−78 7−58 6−52 3−48

Figure 2: Outliers identified by the proposed algorithm, ranked by the negative output of
the SVM (the argument of the sgn in the decision function). The outputs (for convenience
in units of���
) are written underneath each image in italics, the (alleged) class labels are
given in bold face. Note that most of the examples are “difficult” in that they are either
atypical or even mislabelled.

5 DISCUSSION

One could view the present work as an attempt to provide an algorithm which is in line
with Vapnik’s principle never to solve a problem which is more general than the one that
one is actually interested in. E.g., in situations where one is only interested in detecting
novelty, it is not always necessary to estimate a full density model of the data. Indeed,
density estimation is more difficult than what we are doing, in several respects.

Mathematically speaking, a density will only exist if the underlying probability measure
possesses an absolutely continuous distribution function. The general problem of estimat-
ing the measure for a large class of sets, say the sets measureable in Borel’s sense, is not
solvable (for a discussion, see e.g. [8]). Therefore we need to restrict ourselves to making
a statement about the measure ofsomesets. Given a small class of sets, the simplest esti-
mator accomplishing this task is the empirical measure, which simply looks at how many
training points fall into the region of interest. Our algorithm does the opposite. It starts
with the number of training points that are supposed to fall into the region, and then esti-
mates a region with the desired property. Often, there will be many such regions — the
solution becomes unique only by applying a regularizer, which in our case enforces that
the region be small in a feature space associated to the kernel. This, of course, implies, that
the measure of smallness in this sense depends on the kernel used, in a way that is no dif-
ferent to any other method that regularizes in a feature space. A similar problem, however,
appears in density estimation already when done in input space. Letp denote a density on
X. If we perform a (nonlinear) coordinate transformation in the input domainX, then the
density values willchange; loosely speaking, what remains constant isp�x� � dx, while dx
is transformed, too. When directly estimating the probabilitymeasureof regions, we are
not faced with this problem, as the regions automatically change accordingly.

An attractive property of the measure of smallness that we chose to use is that it can also
be placed in the context of regularization theory, leading to an interpretation of the solution
as maximally smooth in a sense which depends on the specific kernel used [3].

The main inspiration for our approach stems from the earliest work of Vapnik and collab-
orators. They proposed an algorithm for characterizing a set of unlabelled data points by
separating it from the origin using a hyperplane [9]. However, they quickly moved on to
two-class classification problems, both in terms of algorithms and in the theoretical devel-
opment of statistical learning theory which originated in those days. From an algorithmic
point of view, we can identify two shortcomings of the original approach which may have
caused research in this direction to stop for more than three decades. Firstly, the original



algorithm in was limited to linear decision rules in input space, secondly, there was no way
of dealing with outliers. In conjunction, these restrictions are indeed severe — a generic
dataset need not be separable from the origin by a hyperplane in input space. The two mod-
ifications that we have incorporated dispose of these shortcomings. Firstly, the kernel trick
allows for a much larger class of functions by nonlinearly mapping into a high-dimensional
feature space, and thereby increases the chances of separability from the origin. In partic-
ular, using a Gaussian kernel (2), such a separation exists for any data setx �� � � � �x�: to
see this, note thatk�xi�xj� 	 � for all i� j, thus all dot products are positive, implying that
all mapped patterns lie inside the same orthant. Moreover, sincek�x i�xi� � � for all i,
they have unit length. Hence they are separable from the origin. The second modification
allows for the possibility of outliers. We have incorporated this ‘softness’ of the decision
rule using the�-trick and thus obtained a direct handle on the fraction of outliers.

We believe that our approach, proposing a concrete algorithm with well-behaved compu-
tational complexity (convex quadratic programming) for a problem that so far has mainly
been studied from a theoretical point of view has abundant practical applications. To turn
the algorithm into an easy-to-use black-box method for practicioners, questions like the
selection of kernel parameters (such as the width of a Gaussian kernel) have to be tackled.
It is our expectation that the theoretical results which we have briefly outlined in this paper
will provide a foundation for this formidable task.
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