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Abstract

Boosting �Schapire ����� Freund � Schapire ����� is one of the most important recent devel	
opments in classi
cation methodology� Boosting works by sequentially applying a classi
cation
algorithm to reweighted versions of the training data� and then taking a weighted majority vote
of the sequence of classi
ers thus produced� For many classi
cation algorithms� this simple strat	
egy results in dramatic improvements in performance� We show that this seemingly mysterious
phenomenon can be understood in terms of well known statistical principles� namely additive
modeling and maximum likelihood� For the two	class problem� boosting can be viewed as an
approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood
as a criterion� We develop more direct approximations and show that they exhibit nearly iden	
tical results to boosting� Direct multi	class generalizations based on multinomial likelihood are
derived that exhibit performance comparable to other recently proposed multi	class generaliza	
tions of boosting in most situations� and far superior in some� We suggest a minor modi
cation
to boosting that can reduce computation� often by factors of �� to ��� Finally� we apply these
insights to produce an alternative formulation of boosting decision trees� This approach� based
on best	
rst truncated tree induction� often leads to better performance� and can provide in	
terpretable descriptions of the aggregate decision rule� It is also much faster computationally�
making it more suitable to large scale data mining applications�

� Introduction

The starting point for this paper is an interesting procedure called �boosting�� which is a way of
combining the performance of many �weak� classi�ers to produce a powerful �committee�� Boosting
was proposed in the Computational Learning Theory literature �Schapire ���	� Freund ���
� Freund
� Schapire ����
 and has since received much attention�
While boosting has evolved somewhat over the years� we describe the most commonly used

version of the AdaBoost procedure �Freund � Schapire ����b
� which we call Discrete AdaBoost��
Here is a concise description of AdaBoost in the two�class classi�cation setting� We have train�
ing data �x�� y�
� � � � �xN � yN 
 with xi a vector valued feature and yi � �� or �� We de�ne

�Department of Statistics� Sequoia Hall� Stanford University� California ������ fjhf�hastie�tibsg�stat�stanford�edu
yStanford Linear Accelerator Center� Stanford� CA�����
zDivision of Biostatistics� Department of Health� Research and Policy� Stanford University� Stanford CA������
�Essentially the same as AdaBoost�M	 for binary data 
Freund � Schapire 	���b
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F �x
 �
PM

� cmfm�x
 where each fm�x
 is a classi�er producing values �� and cm are constants�
the corresponding prediction is sign�F �x

� The AdaBoost procedure trains the classi�ers fm�x
 on
weighted versions of the training sample� giving higher weight to cases that are currently misclassi�
�ed� This is done for a sequence of weighted samples� and then the �nal classi�er is de�ned to be a
linear combination of the classi�ers from each stage� A detailed description of Discrete AdaBoost
is given in the boxed display titled Algorithm ��

Discrete AdaBoost�Freund � Schapire ����b�

�� Start with weights wi � ��N � i � �� � � � � N �

�� Repeat for m � �� �� � � � �M �

�a
 Fit the classi�er fm�x
 � f��� �g using weights wi on the training data�

�b
 Compute errm � Ew���y ��fm�x���� cm � log���� errm
�errm
�

�c
 Set wi � wi exp�cm � ��yi ��fm�xi���� i � �� �� � � � N � and renormalize so that
P

iwi � ��

�� Output the classi�er sign�
PM

m�� cmfm�x
�

Algorithm �� Ew represents expectation over the training data with weights w 
 �w�� w�� � � � wn�� and
��S� is the indicator of the set S� At each iteration AdaBoost increases the weights of the observations
misclassi�ed by fm�x� by a factor that depends on the weighted training error�

Much has been written about the success of AdaBoost in producing accurate classi�ers� Many
authors have explored the use of a tree�based classi�er for fm�x
 and have demonstrated that it
consistently produces signi�cantly lower error rates than a single decision tree� In fact� Breiman
�NIPS workshop� ����
 called AdaBoost with trees the �best o��the�shelf classi�er in the world�
�see also Breiman �����b

� Interestingly� in many examples the test error seems to consistently
decrease and then level o� as more classi�ers are added� rather than ultimately increase� For some
reason� it seems that AdaBoost is resistant to over�tting�
Figure � shows the performance of Discrete AdaBoost on a synthetic classi�cation task� using

an adaptation of CARTTM�Breiman� Friedman� Olshen � Stone ����
 as the base classi�er� This
adaptation grows �xed�size trees in a �best��rst� manner �see Section �� page ��
� Included in
the �gure is the bagged tree �Breiman ����
 which averages trees grown on bootstrap resampled
versions of the training data� Bagging is purely a variance�reduction technique� and since trees
tend to have high variance� bagging often produces good results�
Early versions of AdaBoost used a resampling scheme to implement step � of Algorithm �� by

weighted sampling from the training data� This suggested a connection with bagging� and that a
major component of the success of boosting has to do with variance reduction�
However� boosting performs comparably well when�

� a weighted tree�growing algorithm is used in step � rather than weighted resampling� where
each training observation is assigned its weight wi� This removes the randomization compo�
nent essential in bagging�

� �stumps� are used for the weak learners� Stumps are single�split trees with only two terminal
nodes� These typically have low variance but high bias� Bagging performs very poorly with
stumps �Fig� ��top�right panel��


These observations suggest that boosting is capable of both bias and variance reduction� and thus
di�ers fundamentally from bagging�

�



Figure �� Test error for Bagging� Discrete AdaBoost and Real AdaBoost on a simulated two�class nested
spheres problem �see Section � on page ���	 There are ���� training data points in 
� dimensions� and the
Bayes error rate is zero� All trees are grown �best��rst� without pruning� The left�most iteration corresponds
to a single tree�
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The base classi�er in Discrete AdaBoost produces a classi�cation rule fm�x
 � X �� f��� �g�
where X is the domain of the predictive features x� Freund � Schapire �����b
� Breiman �����a
 and
Schapire � Singer �����
 have suggested various modi�cations to improve the boosting algorithms�
A generalization of Discrete AdaBoost appeared in Freund � Schapire �����b
� and was developed
further in Schapire � Singer �����
� that uses real�valued �con�dence�rated� predictions rather
than the f��� �g of Discrete AdaBoost� The weak learner for this generalized boosting produces
a mapping fm�x
 � X �� R� the sign of fm�x
 gives the classi�cation� and jfm�x
j a measure of
the �con�dence� in the prediction� This real valued contribution is combined with the previous
contributions with a multiplier cm as before� and a slightly di�erent recipe for cm is provided�
We present a generalized version of AdaBoost� which we call Real AdaBoost in Algorithm ��

in which the weak learner returns a class probability estimate pm�x
 � �Pw�y � �jx
 � �	� ��� The
contribution to the �nal classi�er is half the logit�transform of this probability estimate� One form
of Schapire and Singer�s generalized AdaBoost coincides with Real AdaBoost� in the special case
where the weak learner is a decision tree� Real AdaBoost tends to perform the best in our simulated
examples in Fig� �� especially with stumps� although we see with �		 node trees Discrete AdaBoost
overtakes Real AdaBoost after �		 iterations�

Real AdaBoost

�� Start with weights wi � ��N � i � �� �� � � � � N �

�� Repeat for m � �� �� � � � �M �

�a
 Fit the classi�er to obtain a class probability estimate pm�x
 � �Pw�y � �jx
 � �	� ���
using weights wi on the training data�

�b
 Set fm�x
�
�
� log

pm�x�
��pm�x� � R�

�c
 Set wi � wi exp��yifm�xi
�� i � �� �� � � � N � and renormalize so that
P

iwi � ��

�� Output the classi�er sign�
PM

m�� fm�x
�

Algorithm �� The Real AdaBoost algorithm uses class probability estimates pm�x� to construct real�valued
contributions fm�x��

In this paper we analyze the AdaBoost procedures from a statistical perspective� The main
result of our paper re�derives AdaBoost as a method for �tting an additive model

P
m fm�x
 in a

forward stagewise manner� This simple fact largely explains why it tends to outperform a single
base learner� By �tting an additive model of di�erent and potentially simple functions� it expands
the class of functions that can be approximated�
Given this fact� Discrete and Real AdaBoost appear unnecessarily complicated� A much simpler

way to �t an additive model would be to minimize squared�error loss E�y�
P
fm�x



� in a forward
stagewise manner� At the mth stage we �x f��x
 � � � fm���x
 and minimize squared error to obtain
fm�x
 � E�y �

Pm��
� fj�x
jx
� This is just ��tting of residuals� and is commonly used in linear

regression and additive modeling �Hastie � Tibshirani ���	
�
However squared error loss is not a good choice for classi�cation �see Figure �
 and hence

��tting of residuals� doesn�t work very well in that case� We show that AdaBoost �ts an additive
model using a better loss function for classi�cation� Speci�cally we show that AdaBoost �ts an
additive logistic regression model� using a criterion similar to� but not the same as� the binomial
log�likelihood� �If pm�x
 are the class probabilities� an additive logistic regression approximates
log pm�x
����pm�x

 by an additive function

P
m fm�x
�
 We then go on to derive a new boosting

�



procedure �LogitBoost� that directly optimizes the binomial log�likelihood�
The original boosting techniques �Schapire ���	� Freund ���

 provably improved or �boosted�

the performance of a single classi�er by producing a �majority vote� of similar classi�ers� These
algorithms then evolved into more adaptive and practical versions such as AdaBoost� whose success
was still explained in terms of boosting individual classi�ers by a �weighted majority vote� or
�weighted committee�� We believe that this view� along with the appealing name �boosting�
inherited by AdaBoost� may have led to some of the mystery about how and why the method
works� As mentioned above� we instead view boosting as a technique for �tting an additive model�
Section � gives a short history of the boosting idea� In Section � we brie�y review additive

modeling� Section � shows how boosting can be viewed as an additive model estimator� and
proposes some new boosting methods for the two class case� The multiclass problem is studied in
Section 
� Simulated and real data experiments are discussed in Sections � and �� Our tree�growing
implementation� using truncated best��rst trees� is described in Section �� Weight trimming to
speed up computation is discussed in Section �� and we brie�y describe generalizations of boosting
in Section �	� We end with a discussion in Section ���

� A brief history of boosting

Schapire ����	
 developed the �rst simple boosting procedure in the PAC�learning framework
�Valiant ����� Kearns � Vazirani ����
� Schapire showed that a weak learner could always improve
its performance by training two additional classi�ers on �ltered versions of the input data stream�
A weak learner is an algorithm for producing a two�class classi�er with performance guaranteed
�with high probability
 to be signi�cantly better than a coin�ip� After learning an initial classi�er
h� on the �rst N training points�

� h� is learned on a new sample of N points� half of which are misclassi�ed by h��

� h� is learned on N points for which h� and h� disagree

� The boosted classi�er is hB � Majority Vote�h�� h�� h�
�

Schapire�s �Strength of Weak Learnability� theorem proves that hB has improved performance over
h��
Freund ����

 proposed a �boost by majority� variation which combined many weak learners

simultaneously� and improved the performance of the simple boosting algorithm of Schapire� The
theory supporting both of these algorithms require the weak learner to produce a classi�er with a
�xed error rate� This led to the more adaptive and realistic AdaBoost �Freund � Schapire ����b

and its o�spring� where this assumption was dropped�
Freund � Schapire �����b
 and Schapire � Singer �����
 provide some theory to support their

algorithms� in the form of upper bounds on generalization error� This theory has evolved in
the Computational Learning community� initially based on the concepts of PAC learning� Other
theories attempting to explain boosting come from game theory �Freund � Schapire ����a� Breiman
����
� and VC theory �Schapire� Freund� Bartlett � Lee ����
� The bounds and the theory
associated with the AdaBoost algorithms are interesting� but tend to be too loose to be of practical
importance� In practice boosting achieves results far more impressive than the bounds would imply�






� Additive Models

We show in the next section that AdaBoost �ts an additive model F �x
 �
PM

m�� cmfm�x
� We
believe that viewing current boosting procedures as stagewise algorithms for �tting additive models
goes a long way towards understanding their performance� Additive models have a long history in
statistics� and so we �rst give some examples here�

��� Additive Regression Models

We initially focus on the regression problem� where the response y is quantitative� x and y have
some joint distribution� and we are interested in modeling the mean E�yjx
 � F �x
� The additive
model has the form

F �x
 �
pX

j��

fj�xj
� ��


Here there is a separate function fj�xj
 for each of the p input variables xj � More generally� each
component fj is a function of a small� pre�speci�ed subset of the input variables� The back�tting
algorithm �Friedman � Stuetzle ����� Buja� Hastie � Tibshirani ����
 is a convenient modular
�Gauss�Seidel� algorithm for �tting additive models� A back�tting update is

fj�xj
� E

�
�y �X

k ��j

fk�xk


�����xj
�
� for j � �� �� � � � � p� �� � � � ��


Any method or algorithm for estimating a function of xj can be used to obtain an estimate
of the conditional expectation in ��
� In particular� this can include nonparametric smoothing

algorithms� such as local regression or smoothing splines� In the right hand side� all the latest
versions of the functions fk are used in forming the partial residuals� The back�tting cycles are
repeated until convergence� Under fairly general conditions� back�tting can be shown to converge
to the minimizer of E�y � F �x

� �Buja et al� ����
�

��� Extended Additive Models

More generally� one can consider additive models whose elements ffm�x
g
M
� are functions of poten�

tially all of the input features x� Usually in this context the fm�x
 are taken to be simple functions
characterized by a set of parameters � and a multiplier �m�

fm�x
 � �mb�x � �m
� ��


The additive model then becomes

FM �x
 �
MX
m��

�mb�x � �m
� ��


For example� in single hidden layer neural networks b�x � �
 � ���tx
 where ���
 is a sigmoid function
and � parameterizes a linear combination of the input features� In signal processing� wavelets are
a popular choice with � parameterizing the location and scale shifts of a �mother� wavelet b�x
�
In these applications fb�x � �m
g

M
� are generally called �basis functions� since they span a function

subspace�

�



If least�squares is used as a �tting criterion� one can solve for an optimal set of parameters
through a generalized back��tting algorithm with updates

f�m� �mg � argmin
���

E

�
�y � X

k ��m

�kb�x � �k
� �b�x � �


�
�
�

�



for m � �� �� � � � �M in cycles until convergence� Alternatively� one can use a �greedy� forward
stepwise approach

f�m� �mg � argmin
���

E �y � Fm���x
� �b�x � �
�� ��


for m � �� �� � � � �M � where f�k� �kg
m��
� are �xed at their corresponding solution values at earlier

iterations� This is the approach used by Mallat � Zhang �����
 in �matching pursuit�� where the
b�x � �
 are selected from an over complete dictionary of wavelet bases� In the language of boosting�
f�x
 � �b�x � �
 would be called a �weak learner� and FM �x
 ��
 the �committee�� If decision trees
were used as the weak learner the parameters � would represent the splitting variables� split points�
the constants in each terminal node� and number of terminal nodes of each tree�
Note that the back��tting procedure �

 or its greedy cousin ��
 only require an algorithm

for �tting a single weak learner ��
 to data� This base algorithm is simply applied repeatedly to
modi�ed versions of the original data

ym � y �
X
k ��m

fk�x
�

In the forward stepwise procedure ��
 the modi�ed output ym at the mth iteration depends only
on its value ym�� and the solution fm���x
 at the previous iteration

ym � ym�� � fm���x
� ��


At each step m� the previous output values ym�� are modi�ed ��
 so that the previous model
fm���x
 has no explanatory power on the new outputs ym� One can therefore view this as a
procedure for boosting a weak learner f�x
 � �b�x � �
 to form a powerful committee FM �x
 ��
�

��� Classi�cation problems

For the classi�cation problem� we learn from Bayes theorem that all we need is P �y � jjx
� the
posterior or conditional class probabilities� One could transfer all the above regression machinery
across to the classi�cation domain by simply noting that E���y�j�jx
 � P �y � jjx
� where ��y�j�
is the 	�� indicator variable representing class j� While this works fairly well in general� several
problems have been noted �Hastie� Tibshirani � Buja ����
 for constrained regression methods�
The estimates are typically not con�ned to �	� ��� and severe masking problems can occur when
there are more than two classes� A notable exception is when trees are used as the regression
method� and in fact this is the approach used by Breiman et al� �����
�
Logistic regression is a popular approach used in statistics for overcoming these problems� For

a two class problem� an additive logistic model has the form

log
P �y � �jx


P �y � ��jx

�

MX
m��

fm�x
� ��


�



The monotone logit transformation on the left guarantees that for any values of F �x
 �
PM

m�� fm�x
 �
R� the probability estimates lie in �	� ��� inverting we get

p�x
 � P �y � �jx
 �
eF �x�

� � eF �x�
� ��


Here we have given a general additive form for F �x
� special cases exist that are well known
in statistics� In particular� linear logistic regression �McCullagh � Nelder ����� for example
 and
additive logistic regression �Hastie � Tibshirani ���	
 are popular� These models are usually �t by
maximizing the binomial log�likelihood� and enjoy all the associated asymptotic optimality features
of maximum likelihood estimation�
A generalized version of back�tting ��
� called �Local Scoring� in Hastie � Tibshirani ����	
�

can be used to �t the additive logistic model by maximum likelihood� Starting with guesses
f��x�
 � � � fp�xp
� F �x
 �

P
fk�xk
 and p�x
 de�ned in ��
� we form the working response�

z � F �x
 �
��y��� � p�x


p�x
�� � p�x


� ��	


We then apply back�tting to the response z with observation weights p�x
�� � p�x

 to obtain
new fk�xk
� This process is repeated until convergence� The forward stage�wise version ��
 of this
procedure bears a close similarity to the LogitBoost algorithm described later in the paper�

� AdaBoost � an Additive Logistic Regression Model

In this section we show that the AdaBoost algorithms �Discrete and Real
 can be interpreted as
stage�wise estimation procedures for �tting an additive logistic regression model� They optimize an
exponential criterion which to second order is equivalent to the binomial log�likelihood criterion�
We then propose a more standard likelihood�based boosting procedure�

��� An Exponential Criterion

Consider minimizing the criterion

J�F 
 � E�e�yF �x�
 ���


for estimation of F �x
�� Lemma � shows that the function F �x
 that minimizes J�F 
 is the
symmetric logistic transform of P �y � �jx


Lemma � E�e�yF �x�
 is minimized at

F �x
 �
�

�
log

P �y � �jx


P �y � ��jx

� ���


Hence

P �y � �jx
 �
eF �x�

e�F �x� � eF �x�
���


P �y � ��jx
 �
e�F �x�

e�F �x� � eF �x�
� ���


�
E represents expectation� depending on the context� this may be a population expectation 
with respect to a

probability distribution
 or else a sample average� Ew indicates a weighted expectation�

�



Proof

While E entails expectation over the joint distribution of y and x� it is su�cient to minimize the
criterion conditional on x�

E

�
e�yF �x�

�����x
�
� P �y � �jx
e�F �x� � P �y � ��jx
eF �x�

�E

�
e�yF �x�

�����x
�

�F �x

� �P �y � �jx
e�F �x� � P �y � ��jx
eF �x�

The result follows by setting the derivative to zero�
�

This exponential criterion appeared in Schapire � Singer �����
� motivated as an upper bound
on misclassi�cation error� Breiman �����
 also used this criterion in his results on AdaBoost and
prediction games� The usual logistic transform does not have the factor �

� as in ���
� by multiplying

the numerator and denominator in ���
 by eF �x�� we get the usual logistic model

p�x
 �
e�F �x�

� � e�F �x�
��



Hence the two models are equivalent up to a factor ��

Corollary � If E is replaced by averages over regions of x where F �x
 is constant �as in the

terminal node of a decision tree�� the same result applies to the sample proportions of y � � and

y � ���

Results � and � show that both Discrete and Real AdaBoost� as well as the Generalized Ad�
aBoost of Freund � Schapire �����b
� can be motivated as iterative algorithms for optimizing the
�population based
 exponential criterion� The results share the same format�

� given an imperfect F �x
� an update F �x
 � f�x
 is proposed based on the population version
of the criterion�

� the update� which involves population conditional expectations� is imperfectly approximated
for �nite data sets by some restricted class of estimators� such as averages in terminal nodes
of trees�

Hastie � Tibshirani ����	
 use a similar derivation of the local scoring algorithm used in �tting
generalized additive models� Many terms are typically required in practice� since at each stage
the approximation to conditional expectation is rather crude� Because of Lemma �� the resulting
algorithms can be interpreted as a stage�wise estimation procedure for �tting an additive logistic
regression model� The derivations are su�ciently di�erent to warrant separate treatment�

Result � The Discrete AdaBoost algorithm �population version� builds an additive logistic regres�

sion model via Newton�like updates for minimizing E�e�yF �x�
�

Derivation

�



Let J�F 
 � E�e�yF �x��� Suppose we have a current estimate F �x
 and seek an improved estimate
F �x
 � cf�x
� For �xed c �and x
� we expand J�F �x
 � cf�x

 to second order about f�x
 � 	

J�F � cf
 � E�e�y�F �x�	cf�x���

	 E�e�yF �x���� ycf�x
 � c�y�f�x
���
�

� E�e�yF �x���� ycf�x
 � c���
�

since y��� and f�x
� � �� Minimizing pointwise with respect to f�x
 � f��� �g� we write

f�x
 � argmin
f

Ew��� ycf�x
 � c���jx
 ���


Here the notation Ew��jx
 refers to a weighted conditional expectation� where w � w�x� y
 � e�yF �x��
and

Ew�g�x� y
jx�
def
�

E�w�x� y
g�x� y
jx�

E�w�x� y
jx�
�

For c � 	� minimizing ���
 is equivalent to maximizing

Ew�yf�x
� ���


The solution is

f�x
 �

�
� if Ew�yjx
 � Pw�y � �jx
� Pw�y � ��jx
 � 	
�� otherwise

���


Note that
�Ew�yf�x
� � Ew�y � f�x
���� � � ���


�again using f�x
� � y� � �
� Thus minimizing a quadratic approximation to the criterion leads
to a weighted least�squares choice of f�x
 � f��� �g� and this constitutes the Newton�like step�
Given f�x
 � f��� �g� we can directly minimize J�F � cf
 to determine c�

c � argmin
c

Ewe
�cyf�x� ��	


�
�

�
log
�� err

err

where err � Ew���y ��f�x���� Note that c can be negative if the weak learner does worse than 
	 �
in which case it automatically reverses the polarity� Combining these steps we get the update for
F �x


F �x
 � F �x
 �
�

�
log
�� err

err
f�x


In the next iteration the new contribution cf�x
 to F �x
 augments the weights�

w�x� y
� w�x� y
 � e�cf�x�y�

Since �yf�x
 � �
 ��y ��f�x�� � �� we see that the update is equivalent to

w�x� y
� w�x� y
 � exp

	
log

	
�� err

err



��y ��f�x��




�	



Thus the function and weight updates are of an identical form to those used in Discrete Ad�
aBoost�

�

This population version of AdaBoost translates naturally to a data version using trees� The
weighted conditional expectation in ���
 is approximated by the terminal�node weighted averages
in a tree� In particular� the weighted least squares criterion is used to grow the tree�based classi�er
f�x
� and given f�x
� the constant c is based on the weighted training error�
Note that after each Newton step� the weights change� and hence the tree con�guration will

change as well� This adds an adaptive twist to the data version of Newton�like algorithm�
Parts of this derivation for AdaBoost can be found in Breiman �����
 and Schapire � Singer

�����
� but without making the connection to additive logistic regression models�

Corollary � After each update to the weights� the weighted misclassi�cation error of the most

recent weak learner is 
	 �

Proof

This follows by noting that the c that minimizes J�F � cf
 satis�es

�J�F � cf


�c
� �E�e�y�F �x�	cf�x��yf�x
� � 	 ���


The result follows since yf�x
 is � for a correct and �� for an incorrect classi�cation�
�

Schapire � Singer �����
 give the interpretation that the weights are updated to make the new
weighted problem maximally di�cult for the next weak learner�
The Discrete AdaBoost algorithm expects the tree or other �weak learner� to deliver a classi�er

f�x
 � f��� �g� Result � requires minor modi�cations to accommodate f�x
 � R� as in the
generalized AdaBoost algorithms �Freund � Schapire ����b� Schapire � Singer ����
� the estimate
for cm di�ers� Fixing f � we see that the minimizer of ��	
 must satisfy

Ew�yf�x
e
�cyf�x�� � 	� ���


If f is not discrete� this equation has no closed�form solution for c� and requires an iterative solution
such as Newton�Raphson�
We now derive the Real AdaBoost algorithm� which uses weighted probability estimates to

update the additive logistic model� rather than the classi�cations themselves� Again we derive
the population updates� and then apply it to data by approximating conditional expectations by
terminal�node averages in trees�

Result � The Real AdaBoost algorithm �ts an additive logistic regression model by stage�wise and
approximate optimization of J�F 
 � E�e�yF �x��

Derivation

Suppose we have a current estimate F �x
 and seek an improved estimate F �x
�f�x
 by minimizing
J�F �x
 � f�x

 at each x�

J�F �x
 � f�x

 � E�e�yF �x�e�yf�x�jx


� e�f�x�E�e�yF �x���y���jx� � ef�x�E�e�yF �x���y����jx�

��



Dividing through by E�e�yF �x�jx� and setting the derivative w�r�t� f�x
 to zero we get

f�x
 �
�

�
log

Ew���y���jx�

Ew���y����jx�
���


�
�

�
log

Pw�y � �jx


Pw�y � ��jx

���


where w�x� y
 � exp��yF �x

� The weights get updated by

w�x� y
� w�x� y
 � e�yf�x�

The algorithm as presented would stop after one iteration� In practice we use crude approxi�
mations to conditional expectation� such as decision trees or other constrained models� and hence
many steps are required�

�

Corollary 	 At the optimal F �x
� the weighted conditional mean of y is 	�

Proof

If F �x
 is optimal� we have
�J�F �x



F �x

� �Ee�yF �x�y � 	 ��



�

We can think of the weights as providing an alternative to residuals for the binary classi�cation
problem� At the optimal function F � there is no further information about F in the weighted
conditional distribution of y� If there is� we use it to update F �
At iteration M in either the Discrete or Real AdaBoost algorithms� we have composed an

additive function of the form

F �x
 �
MX
m��

fm�x
 ���


where each of the components are found in a greedy forward stage�wise fashion� �xing the earlier
components� Our term �stage�wise� refers to a similar approach in Statistics�

� Variables are included sequentially in a stepwise regression�

� The coe�cients of variables already included receive no further adjustment�

��� Why Ee
�yF �x��

So far the only justi�cation for this exponential criterion is that it has a sensible population mini�
mizer� and the algorithm described above performs well on real data� In addition

� Schapire � Singer �����
 motivate e�yF �x� as a di�erentiable upper�bound to misclassi�cation
error ��yF�
� �see Fig� �
�

� the AdaBoost algorithm that it generates is extremely modular� requiring at each iteration
the retraining of a classi�er on a weighted training database�

��



Let y� � �y � �
��� taking values 	� �� and parametrize the binomial probabilities by

p�x
 �
eF �x�

eF �x� � e�F �x�

The binomial log�likelihood is

	�y�� p�x

 � y� log�p�x

 � ��� y�
 log��� p�x



� � log�� � e��yF �x�
 ���


Figure �� A variety of loss functions for estimating a function F �x� for classi�cation� The horizontal axis is
yF � which is negative for errors and positive for correct classi�cations� All the loss functions are monotone
in yF � and are centered and scaled to match e�yF at F 
 �� The curve labeled �Log�likelihood� is the
binomial log�likelihood or cross�entropy y� log p� ��� y�� log��� p�� The curve labeled �Squared Error�p	�
is �y� � p��� The curve labeled �Squared Error�F	� is �y � F ��� and increases once yF exceeds �� thereby
increasingly penalizing classi�cations that are �too correct��

Hence we see that�

� The population minimizers of �E	�y�� p�x

 and Ee�yF �x� coincide� This is easily seen be�
cause the expected log�likelihood is maximized at the true probabilities p�x
 � P �y� � �jx
�
which de�ne the logit F �x
� By Lemma � we see that this is exactly the minimizer of Ee�yF �x��

In fact� the exponential criterion and the �negative
 log�likelihood are equivalent to second
order in a Taylor series around F � 	�

�	�y�� p
 	 exp��yF 
 � log��
� � ���


Graphs of exp��yF 
 and log�� � e��yF �x�
 are shown in Fig� �� as a function of yF !
positive values of yF imply correct classi�cation� Note that � exp��yF 
 itself is not a proper
log�likelihood� as it does not equal the log of any probability mass function on ���

��



� There is another way to view the criterion J�F 
� It is easy to show that

e�yF �x� �
jy� � p�x
jp
p�x
��� p�x



� ���


with F �x
 � �
� log�p�x
��� � p�x


� The right�hand side is known as the 
 statistic in the

statistical literature� 
� is a quadratic approximation to the log�likelihood� and so 
 can be
considered a �gentler� alternative�

One feature of both the exponential and log�likelihood criteria is that they are monotone and
smooth� Even if the training error is zero� the criteria will drive the estimates towards purer
solutions �in terms of probability estimates
�
Why not estimate the fm by minimizing the squared error E�y � F �x

�" If Fm���x
 �Pm��

� fj�x
 is the current prediction� this leads to a forward stage�wise procedure that does an
unweighted �t to the response y�Fm���x
 at step m as in ��
� Empirically we have found that this
approach works quite well� but is dominated by those that use monotone loss criteria� We believe
that the non�monotonicity of squared error loss �Fig� �
 is the reason� Correct classi�cations� but
with yF �x
 � �� incur increasing loss for increasing values of jF �x
j� This makes squared�error
loss an especially poor approximation to misclassi�cation error rate� Classi�cations that are �too
correct� are penalized as much as misclassi�cation errors�

��� Direct optimization of the binomial log�likelihood

In this section we explore algorithms for �tting additive logistic regression models by stage�wise
optimization of the Bernoulli log�likelihood� Here we focus again on the two�class case� and will
use a 	�� response y� to represent the outcome� We represent the probability of y� � � by p�x
�
where

p�x
 �
eF �x�

eF �x� � e�F �x�
��	


Algorithm � gives the details�

Result 	 The LogitBoost algorithm �� classes� population version� uses Newton steps for �tting

an additive symmetric logistic model by maximum likelihood�

Derivation

Consider the update F �x
 � f�x
 and the expected log�likelihood

E	�F � f
 � E��y��F �x
 � f�x

� log�� � e��F �x�	f�x���� ���


Conditioning on x� we compute the �rst and second derivative at f�x
 � 	�

s�x
 �
�E	�F �x
 � f�x



�f�x

jf�x��


� �E�y� � p�x
jx
 ���


H�x
 �
��E	�F �x
 � f�x



�f�x
�

���
f�x��


� ��E�p�x
�� � p�x

jx
 ���


��



LogitBoost �� classes�

�� Start with weights wi � ��N i � �� �� � � � � N � F �x
 � 	 and probability estimates p�xi
 �
�
� �

�� Repeat for m � �� �� � � � �M �

�a
 Compute the working response and weights

zi �
y�i � p�xi


p�xi
��� p�xi



wi � p�xi
��� p�xi



�b
 Fit the function fm�x
 by a weighted least�squares regression of zi to xi using weights
wi�

�c
 Update F �x
� F �x
 � �
�fm�x
 and p�x
�

eF �x�

eF �x�	e�F �x�
�

�� Output the classi�er sign�F �x
� � sign�
PM

m�� fm�x
�

Algorithm 	� An adaptive Newton algorithm for �tting an additive logistic regression model�

where p�x
 is de�ned in terms of F �x
� The Newton update is then

F �x
 � F �x
�H�x
��s�x


� F �x
 �
�

�

E�y� � p�x
jx


E�p�x
�� � p�x

jx

���


� F �x
 �
�

�
Ew

	
y� � p�x


p�x
�� � p�x


jx



��



where w�x
 � p�x
�� � p�x

� Equivalently� the Newton update f�x
 solves the weighted least�
squares approximation �about F �x

 to the log�likelihood

min
f�x�

Ew�x�

	
F �x
 �

�

�

y� � p�x


p�x
��� p�x


� �F �x
 � f�x




�
���


�

The population algorithm described here translates immediately to an implementation on data
when E��jx
 is replaced by a regression method� such as regression trees �Breiman et al� ����
�
While the role of the weights are somewhat arti�cial in the population case� they are not in any
implementation� w�x
 is constant when conditioned on x� but the w�xi
 in a terminal node of a
tree� for example� depend on the current values F �xi
� and will typically not be constant�
Sometimes the w�x
 get very small in regions of �x
 perceived �by F �x

 to be pure!that is�

when p�x
 is close to 	 or �� This can cause numerical problems in the construction of z� and led
to the following crucial implementation protections�

� If y� � �� then compute z � y��p
p���p� as

�
p
� Since this number can get large if p is small�

threshold this ratio at zmax� The particular value chosen for zmax is not crucial� we have
found empirically that zmax � ��� �� works well� Likewise� if y� � 	� compute z � ��

���p� with
a lower threshold of �zmax�

� Enforce a lower threshold on the weights� w � max�w� � 
machine�zero
�

�




��� Optimizing Ee
�yF �x� by Newton stepping

The population version of the Real AdaBoost procedure �Algorithm �
 optimizes Ee�y�F �x�	f�x��

exactly with respect to f at each iteration� In Algorithm � we propose the �Gentle AdaBoost� pro�
cedure that instead takes adaptive Newton steps much like the LogitBoost algorithm just described�

Gentle AdaBoost

�� Start with weights wi � ��N � i � �� �� � � � � N � F �x
 � 	�

�� Repeat for m � �� �� � � � �M �

�a
 Fit the regression function fm�x
 by weighted least�squares of yi to xi with weights wi�

�b
 Update F �x
� F �x
 � fm�x


�c
 Update wi � wie
�yifm�xi� and renormalize�

�� Output the classi�er sign�F �x
� � sign�
PM

m�� fm�x
�

Algorithm 
� A modi�ed version of the Real AdaBoost algorithm� using Newton stepping rather than
exact optimization at each step

Result 
 The Gentle AdaBoost algorithm �population version� uses Newton steps for minimizing

Ee�yF �x��

Derivation

�J�F �x
 � f�x



�f�x


���
f�x��


� �E�e�yF �x�yjx


��J�F �x
 � f�x



�f�x
�

���
f�x��


� E�e�yF �x�jx
 since y� � �

Hence the Newton update is

F �x
 � F �x
 �
E�e�yF �x�yjx


E�e�yF �x�jx


� F �x
 �Ew�yjx


where w�x� y
 � e�yF �x��
�

The main di�erence between this and the Real AdaBoost algorithm is how it uses its estimates
of the weighted class probabilities to update the functions� Here the update is fm�x
 � Pw�y �

�jx
�Pw�y � ��jx
� rather than half the log�ratio as in ���
� fm�x
 �
�
� log

Pw�y��jx�
Pw�y���jx�

� Log�ratios

can be numerically unstable� leading to very large updates in pure regions� while the update here
lies in the range ���� ��� Empirical evidence suggests �see Section �
 that this more conservative
algorithm has similar performance to both the Real AdaBoost and LogitBoost algorithms� and
often outperforms them both� especially when stability is an issue�

��



There is a strong similarity between the updates for the Gentle AdaBoost algorithm and those

for the LogitBoost algorithm� Let P � P �y � �jx
� and p�x
 � eF �x�

eF �x�	e�F �x�
� Then

E�e�yF �x�yjx


E�e�yF �x�jx

�

e�F �x�P � eF �x���� P 


e�F �x�P � eF �x���� P 


�
P � p�x


��� p�x

P � p�x
��� P 

���


The analogous expression for LogitBoost from ���
 is

�

�

P � p�x


p�x
��� p�x


���


At p�x
 	 �
� these are nearly the same� but they di�er as the p�x
 become extreme� For example�

if P 	 � and p�x
 	 	� ���
 blows up� while ���
 is about � �and always falls in ���� ���


� Multiclass procedures

Here we explore extensions of boosting to classi�cation with multiple classes� We start o� by
proposing a natural generalization of the two�class symmetric logistic transformation� and then
consider speci�c algorithms� In this context Schapire � Singer �����
 de�ne J responses yj for a J
class problem� each taking values in f��� �g� Similarly the indicator response vector with elements
y�j is more standard in the statistics literature� Assume the classes are mutually exclusive�

De�nition � For a J class problem let pj�x
 � P �yj � �jx
� We de�ne the symmetric multiple

logistic transformation

Fj�x
 � log pj�x
�
�

J

JX
k��

log pk�x
 ���


Equivalently�

pj�x
 �
eFj�x�PJ
k�� e

Fk�x�
�
PJ

k�� Fk�x
 � 	 ��	


The centering condition in ��	
 is for numerical stability only� it simply pins the Fj down� else we
could add an arbitrary constant to each Fj and the probabilities remain the same� The equivalence
of these two de�nitions is easily established� as well as the equivalence with the two�class case�
Schapire � Singer �����
 provide several generalizations of AdaBoost for the multiclass case�

and also refer to other proposals �Freund � Schapire ����� Schapire ����
� we describe their
AdaBoost�MH algorithm �see boxed Algorithm 

� since it seemed to dominate the others in their
empirical studies� We then connect it to the models presented here� We will refer to the augmented
variable in Algorithm 
 as the �class� variable C� We make a few observations�

� The population version of this algorithm minimizes
PJ

j��Ee
�yjFj�x�� which is equivalent

to running separate population boosting algorithms on each of the J problems of size N
obtained by partitioning the N 
 J samples in the obvious fashion� This is seen trivially by
�rst conditioning on C � j� and then xjC � j� when computing conditional expectations�

� The same is almost true for a tree�based algorithm� We see this because

��



AdaBoost�MH �Schapire � Singer ���
�

�� Expand the original N observations into N 
 J pairs
��xi� �
� yi�
� ��xi� �
� yi�
� � � � � ��xi� J
� yiJ 
� i � �� � � � � N� Here yij is the f��� �g response for
class j and observation i�

�� Apply Real AdaBoost to the augmented dataset� producing a function F � X
��� � � � � J
 �� R�
F �x� j
 �

P
m fm�x� j
�

�� Output the classi�er argmaxjF �x� j
�

Algorithm �� The AdaBoost�MH algorithm converts the J class problem into that of estimating a � class
classi�er on a training set J times as large� with an additional �feature� de�ned by the set of class labels�

�� If the �rst split is on C ! either a J�nary split if permitted� or else J � � binary splits
! then the sub�trees are identical to separate trees grown to each of the J groups� This
will always be the case for the �rst tree�

�� If a tree does not split on C anywhere on the path to a terminal node� then that
node returns a function fm�x� j
 � gm�x
 that contributes nothing to the classi�cation
decision� However� as long as a tree includes a split on C at least once on every path to
a terminal node� it will make a contribution to the classi�er for all input feature values�

The advantage#disadvantage of building one large tree using class label as an additional input
feature is not clear� No motivation is provided� We therefore implement AdaBoost�MH using
the more traditional direct approach of building J separate trees to minimize

PJ
j��Ee

�yjFj�x�

We have thus shown

Result � The AdaBoost�MH algorithm for a J�class problem �ts J uncoupled additive logistic

models� Gj�x
 �
�
� log pj�x
��� � pj�x

� each class against the rest�

In principal this parametrization is �ne� since Gj�x
 is monotone in pj�x
� However� we are esti�
mating the Gj�x
 in an uncoupled fashion� and there is no guarantee that the implied probabilities
sum to �� We give some examples where this makes a di�erence� and AdaBoost�MH performs more
poorly than an alternative coupled likelihood procedure�
Schapire and Singer�s AdaBoost�MH was also intended to cover situations where observations

can belong to more than one class� The �MH� represents �Multi�Label Hamming�� Hamming loss
being used to measure the errors in the space of �J possible class labels� In this context �tting a
separate classi�er for each label is a reasonable strategy� However� Schapire and Singer also propose
using AdaBoost�MH when the class labels are mutually exclusive� which is the focus in this paper�
Algorithm � is a natural generalization of algorithm � for �tting the J�class logistic regression

model ��	
�

Result � The LogitBoost algorithm �J classes� population version� uses quasi�Newton steps for

�tting an additive symmetric logistic model by maximum�likelihood

Derivation

� We �rst give the score and Hessian for the population Newton algorithm corresponding to a
standard multi�logit parametrization

Gj�x
 � log
P �y�j � �jx


P �y�J � �jx


��



LogitBoost �J classes�

�� Start with weights wij � ��N � i � �� � � � � N� j � �� � � � � J � Fj�x
 � 	 and pj�x
 � ��J �j�

�� Repeat for m � �� �� � � � �M �

�a
 Repeat for j � �� � � � � J �

i� Compute working responses and weights in the jth class

zij �
y�ij � pj�xi


pj�xi
��� pj�xi



wij � pj�xi
��� pj�xi



ii� Fit the function fmj�x
 by a weighted least�squares regression of zij to xi with
weights wij �

�b
 Set fmj�x
�
J��
J
�fmj�x
�

�
J

PJ
k�� fmk�x

� and Fj�x
� Fj�x
 � fmj�x


�c
 Update pj�x
 via ��	
�

�� Output the classi�er argmaxjFj�x


Algorithm �� An adaptive Newton algorithm for �tting an additive multiple logistic regression model�

with GJ�x
 � 	 �and the choice of J for the base class is arbitrary
� The expected conditional
log�likelihood is

E �	�G� g
jx
 �
J��X
j��

E�y�j jx
�Gj�x
 � gj�x

� log�� �
J��X
k��

eGk�x�	gk�x�


sj�x
 � E�y�j � pj�x
jx
� j � �� � � � � J � �

Hj�k�x
 � �pj�x
��jk � pk�x

� j� k � �� � � � � J � �

� Our quasi�Newton update amounts to using a diagonal approximation to the Hessian� pro�
ducing updates�

gj�x
�
E�y�j � pj�x
jx


pj�x
�� � pj�x


� j � �� � � � � J � �

� To convert to the symmetric parametrization� we would note that gJ � 	� and set fj�x
 �
gj�x
�

�
J

PJ
k�� gk�x
� However� this procedure could be applied using any class as the base�

not just the Jth� By averaging over all choices for the base class� we get the update

fj�x
 �

	
J � �

J


�
E�y�j � pj�x
jx


pj�x
�� � pj�x


�
�

J

JX
k��

E�y�k � pk�x
jx


pk�x
�� � pk�x



�

�

For more rigid parametric models and full Newton stepping� this symmetrization would be redun�
dant� With quasi�Newton steps and adaptive �tree based
 models� the symmetrization removes the
dependence on the choice of the base class�

��



� Simulation studies

In this section the four �avors of boosting outlined above are applied to several arti�cially con�
structed problems� Comparisons based on real data are presented in Section ��
An advantage of comparisons made in a simulation setting is that all aspects of each example

are known� including the Bayes error rate and the complexity of the decision boundary� In addition�
the population expected error rates achieved by each of the respective methods can be estimated to
arbitrary accuracy by averaging over a large number of di�erent training and test data sets drawn
from the population� The four boosting methods compared here are�

DAB� Discrete AdaBoost ! Algorithm ��

RAB� Real AdaBoost ! Algorithm ��

LB� LogitBoost ! Algorithms � and ��

GAB� Gentle AdaBoost ! Algorithm ��

DAB� RAB and GAB handle multiple classes using the AdaBoost�MH approach�
In an attempt to di�erentiate performance� all of the simulated examples involve fairly complex

decision boundaries� The ten input features for all examples are randomly drawn from a ten�
dimensional standard normal distribution x � N�
�	� I
� For the �rst three examples the decision
boundaries separating successive classes are nested concentric ten�dimensional spheres constructed
by thresholding the squared�radius from the origin

r� �
�
X
j��

x�j � ���


Each class Ck �� 
 k 
 K
 is de�ned as the subset of observations

Ck � fxi j tk�� 
 r�i � tkg ���


with t
 � 	 and tK � �� The ftkg
K��
� for each example were chosen so as to put approximately

equal numbers of observations in each class� The training sample size is N � K � �			 so that
approximately �			 training observations are in each class� An independently drawn test set of
�				 observations was used to estimate error rates for each training set� Averaged results over
ten such independently drawn training#test set combinations were used for the �nal error rate
estimates� The corresponding statistical uncertainties �standard errors
 of these �nal estimates
�averages
 are approximately a line width on each plot�
Figure � �top�left� compares the four algorithms in the two�class �K � �
 case using a two�

terminal node decision tree ��stump�
 as the base classi�er� Shown is error rate as a function of
number of boosting iterations� The upper �black
 line represents DAB and the other three nearly
coincident lines are the other three methods �dotted red � RAB� short�dashed green � LB� and
long�dashed blue�GAB
 Note that the somewhat erratic behavior of DAB� especially for less that
�		 iterations� is not due to statistical uncertainty� For less than �		 iterations LB has a minuscule
edge� after that it is a dead heat with RAB and GAB� DAB shows substantially inferior performance
here with roughly twice the error rate at all iterations�
Figure � �lower�left� shows the corresponding results for three classes �K � �
 again with two�

terminal node trees� Here the problem is more di�cult as represented by increased error rates for
all four methods� but their relationship is roughly the same� the upper �black
 line represents DAB

�	



Figure �� Test error curves for the simulation experiment with an additive decision boundary� as described
in �
�	 on page ��� In all panels except the the top right� the solid curve �representing Discrete AdaBoost	
lies alone above the other three curves�

��



and the other three nearly coincident lines are the other three methods� The situation is somewhat
di�erent for larger number of classes� Figure � �lower�right� shows results for K � 
 which are
typical for K � �� As before� DAB incurs much higher error rates than all the others� and RAB
and GAB have nearly identical performance� However� the performance of LB relative to RAB and
GAB has changed� Up to about �	 iterations it has the same error rate� From �	 to about �		
iterations LB�s error rates are slightly higher than the other two� After �		 iterations the error
rate for LB continues to improve whereas that for RAB and GAB level o�� decreasing much more
slowly� By �		 iterations the error rate for LB is 	��� whereas that for RAB and GAB is 	����
Speculation as to the reason for LB�s performance gain in these situations is presented below�
In the above examples a stump was used as the base classi�er� One might expect the use of

larger trees would do better for these rather complex problems� Figure � �top�right� shows results
for the two�class problem� here boosting trees with eight terminal nodes� These results can be
compared to those for stumps in Fig� � �top�left�� Initially� error rates for boosting eight node
trees decrease much more rapidly than for stumps� with each successive iteration� for all methods�
However� the error rates quickly level o� and improvement is very slow after about �		 iterations�
The overall performance of DAB is much improved with the bigger trees� coming close to that
of the other three methods� As before RAB� GAB� and LB exhibit nearly identical performance�
Note that at each iteration the eight�node tree model consists of four�times the number of additive
terms as does the corresponding stump model� This is why the error rates decrease so much more
rapidly in the early iterations� In terms of model complexity �and training time
� a �		 iteration
model using eight�terminal node trees is equivalent to a �		 iteration stump model �
Comparing the top�two panels in Fig� � one sees that for RAB� GAB� and LB the error rate

using the bigger trees ��	��
 is in fact �� higher than that for stumps ��	
�
 at �		 iterations�
even though the former is four times more complex� This seemingly mysterious behavior is easily
understood by examining the nature of the decision boundary separating the classes� The Bayes
decision boundary between two classes is the set�

�
x � log

P �y � �jx


P �y � ��jx

� 	

�
���


or simply fx � B�x
 � 	g� To approximate this set it is su�cient to estimate the logit B�x
� or any
monotone transformation of B�x
� as closely as possible� As discussed above� boosting produces
an additive logistic model whose component functions are represented by the base classi�er� With
stumps as the base classi�er� each component function has the form

fm�x
 � cLm��xj�tm� � cRm��xj�tm� ���


� fm�xj
 ��



if the mth stump chose to split on coordinate j� Here tm is the split�point� and c
L
m and c

R
m are the

weighted means of the response in the left and right terminal nodes� Thus the model produced by
boosting stumps is additive in the original features

F �x
 �
pX

j��

gj�xj
� ���


where gj�xj
 adds together all those stumps involving xj �and is 	 if none exist
�
Examination of ���
 and ���
 reveals that an optimal decision boundary for the above examples

is also additive in the original features� with fj�xj
 � x�j � constant� Thus� in the context of

��



decision trees� stumps are ideally matched to these problems� larger trees are not needed� However
boosting larger trees need not be counter productive in this case if all of the splits in each individual
tree are made on the same predictor variable� This would also produce an additive model in the
original features ���
� However� due to the forward greedy stage�wise strategy used by boosting�
this is not likely to happen if the decision boundary function involves more than one predictor�
each individual tree will try to do its best to involve all of the important predictors� Owing to the
nature of decision trees� this will produce models with interaction e�ects� most terms in the model
will involve products in more than one variable� Such non�additive models are not as well suited
for approximating truly additive decision boundaries such as ���
 and ���
� This is re�ected in
increased error rate as observed in Fig� ��
The above discussion also suggests that if the decision boundary separating pairs of classes were

inherently non�additive in the predictors� then boosting stumps would be less advantageous than
using larger trees� A tree with m terminal nodes can produce basis functions with a maximum
interaction order of min�m � �� p
 where p is the number of predictor features� These higher
order basis functions provide the possibility to more accurately estimate those decision boundaries
B�x
 with high order interactions� The purpose of the next example is to verify this intuition�
There are two classes �K � �
 and 
			 training observations with the fxig

�



� drawn from a ten�

dimensional normal distribution as in the previous examples� Class labels were randomly assigned
to each observation with log�odds

log

	
Pr�y � � j x�

Pr�y � �� j x�



� �	

�X
j��

xj

�
� �

�X
l��

���
lxl

�
� ���


Approximately equal numbers of observations are assigned to each of the two classes� and the
Bayes error rate is 	�	��� The decision boundary for this problem is a complicated function of the
�rst six predictor variables involving all of them in second order interactions of equal strength� As
in the above examples� test sets of �				 observations was used to estimate error rates for each
training set� and �nal estimates were averages over ten replications�
Figure � �top�left� shows test�error rate as a function of iteration number for each of the four

boosting methods using stumps� As in the previous examples� RAB and GAB track each other very
closely� DAB begins very slowly� being dominated by all of the others until around ��	 iterations�
where it passes below RAB and GAB� LB mostly dominates� having the lowest error rate until
about �
	 iterations� At that point DAB catches up and by �		 iterations it may have a very slight
edge� However� none of these boosting methods perform well with stumps on this problem� the
best error rate being 	��
�
Figure � �top�right� shows the corresponding plot when four terminal node trees are boosted�

Here there is a dramatic improvement with all of the four methods� For the �rst time there is some
small di�erentiation between RAB and GAB� At nearly all iterations the performance ranking is
LB best� followed by GAB� RAB� and DAB in order� At �		 iterations LB achieves an error rate
of 	����� Figure � �lower�left� shows results when eight terminal node trees are boosted� Here�
error rates are generally further reduced with LB improving the least �	���	
� but still dominating�
The performance ranking among the other three methods changes with increasing iterations� DAB
overtakes RAB at around �
	 iterations and GAB at about ��	 becoming fairly close to LB by
�		 iterations with an error rate of 	�����
Although limited in scope� these simulation studies suggest several trends� They explain why

boosting stumps can sometimes be superior to using larger trees� and suggest situations where this
is likely to be the case� that is when decision boundaries B�x
 can be closely approximated by
functions that are additive in the original predictor features� When higher order interactions are

��



Figure �� Test error curves for the simulation experiment with a non�additive decision boundary� as described
in �
�	 on page ���

��



required stumps exhibit poor performance� These examples illustrate the close similarity between
RAB and GAB� In all cases the di�erence in performance between DAB and the others decreases
when larger trees and more iterations are used� sometimes overtaking the others� More generally�
relative performance of these four methods depends on the problem at hand in terms of the nature of
the decision boundaries� the complexity of the base classi�er� and the number of boosting iterations�
The superior performance of LB in Fig� � �lower�right� appears to be a consequence of the multi�

class logistic model �Algorithm �
� All of the other methods use the asymmetric AdaBoost�MH
strategy �Algorithm 

 of building separate two�class models for each individual class against
the pooled complement classes� Even if the decision boundaries separating all class pairs are
relatively simple� pooling classes can produce complex decision boundaries that are di�cult to
approximate �Friedman ����
� By considering all of the classes simultaneously� the symmetric
multi�class model is better able to take advantage of simple pairwise boundaries when they exist
�Hastie � Tibshirani ����
� As noted above� the pairwise boundaries induced by ���
 and ���
 are
simple when viewed in the context of additive modeling� whereas the pooled boundaries are more
complex� they cannot be well approximated by functions that are additive in the original predictor
variables�
The decision boundaries associated with these examples were deliberately chosen to be geomet�

rically complex in an attempt to illicit performance di�erences among the methods being tested�
Such complicated boundaries are not likely to often occur in practice� Many practical problems
involve comparatively simple boundaries �Holte ����
� in such cases performance di�erences will
still be situation dependent� but correspondingly less pronounced�

� Some experiments with Real World Data

In this section we show the results of running the four �tting methods� LogitBoost� Discrete
AdaBoost� Real AdaBoost� and Gentle AdaBoost on a collection of datasets from the UC�Irvine
machine learning archive� plus a popular simulated dataset� The base learner is a tree in each case�
with either � or � terminal nodes� For comparison� a single decision tree was also �t�� with the tree
size determined by 
�fold cross�validation�
The datasets are summarized in Table �� The test error rates are shown in Table � for the smaller

datasets� and in Table � for the larger ones� The vowel� sonar� satimage and letter datasets
come with a pre�speci�ed test set� The waveform data is simulated� as described in �Breiman
et al� ����
� For the others� 
�fold cross�validation was used to estimate the test error�
It is di�cult to discern trends on the small data sets �Table �
 because all but quite large

observed di�erences in performance could be attributed to sampling �uctuations� On the vowel�
breast cancer� ionosphere� sonar� and waveform data� purely additive stump models seem to
perform comparably to the larger �eight�node
 trees� The glass data seems to bene�t a little from
larger trees� There is no clear di�erentiation in performance among the boosting methods�
On the larger data sets �Table �
 clearer trends are discernible� For the satimage data the

eight�node tree models are only slightly� but signi�cantly� more accurate than the purely additive
models� For the letter data there is no contest� Boosting stumps is clearly inadequate� There is no
clear di�erentiation among the boosting methods for eight�node trees� For the stumps� LogitBoost�
Real AdaBoost� and Gentle AdaBoost have comparable performance� distinctly superior to Discrete
AdaBoost� This is consistent with the results of the simulation study �Section �
�
Except perhaps for Discrete AdaBoost� the real data examples fail to demonstrate performance

�using the tree function in Splus

�




Table �� Datasets used in the experiments

Data set � Train � Test � Inputs � Classes

vowel ��� ��� �� ��
breast cancer ��� �	fold CV � �
ionosphere ��� �	fold CV �� �
glass ��� �	fold CV �� �
sonar ��� �	fold CV �� �
waveform ��� ���� �� �

satimage ���� ���� �� �
letter ����� ���� �� ��

di�erences between the various boosting methods� This is in contrast to the simulated data sets
of Section �� There LogitBoost generally dominated� although often by a small margin� The
inability of the real data examples to discriminate may re�ect statistical di�culties in estimating
subtle di�erences with small samples� Alternatively� it may be that the their underlying decision
boundaries are all relatively simple �Holte ����
 so that all reasonable methods exhibit similar
performance�

	 Additive Logistic Trees

In most applications of boosting the base classi�er is considered to be a primitive� repeatedly called
by the boosting procedure as iterations proceed� The operations performed by the base classi�er are
the same as they would be in any other context given the same data and weights� The fact that the
�nal model is going to be a linear combination of a large number of such classi�ers is not taken into
account� In particular� when using decision trees� the same tree growing and pruning algorithms
are generally employed� Sometimes alterations are made �such as no pruning
 for programming
convenience and speed�
When boosting is viewed in the light of additive modeling� however� this greedy approach can

be seen to be far from optimal in many situations� As discussed in Section � the goal of the �nal
classi�er is to produce an accurate approximation to the decision boundary function B�x
� In the
context of boosting� this goal applies to the �nal additive model� not to the individual terms �base
classi�ers
 at the time they were constructed� For example� it was seen in Section � that if B�x

was close to being additive in the original predictive features� then boosting stumps was optimal
since it produced an approximation with the same structure� Building larger trees increased the
error rate of the �nal model because the resulting approximation involved high order interactions
among the features� The larger trees optimized error rates of the individual base classi�ers� given
the weights at that step� and even produced lower unweighted error rates in the early stages� But�
after a su�cient number of boosts� the stump based model achieved superior performance�
More generally� one can consider an expansion of the of the decision boundary function in a

functional ANOVA decomposition �Friedman ����


B�x
 �
X
j

fj�xj
 �
X
j�k

fjk�xj� xk
 �
X
j�k�l

fjkl�xj � xk� xl
 � ��� ���


The �rst sum represents the closest function to B�x
 that is additive in the original features� the
�rst two represent the closest approximation involving at most two�feature interactions� the �rst
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Table �� Test error rates on small real examples

Method � Terminal Nodes � Terminal Nodes

Iterations �
 �

 �

 �
 �

 �



Vowel CART error� 
���

LogitBoost 
��� 
��� 
��� 
��� 
��� 
���
Real AdaBoost 
��� 
��� 
��� 
��� 
��� 
���
Gentle AdaBoost 
��� 
��� 
��� 
��� 
��� 
���
Discrete AdaBoost 
��� 
��� 
��� 
��� 
�

 
�



Breast CART error� 

��

LogitBoost 

�� 

�� 

�� 

�� 

�� 

��
Real AdaBoost 

�� 

�� 

�
 

�� 

�� 

��
Gentle AdaBoost 

�� 

�� 

�� 

�� 

�� 

��
Discrete AdaBoost 

�� 

�
 

�
 

�� 

�� 

��

Ion CART error� 

��

LogitBoost 

�� 

�� 

�� 

�� 

�� 

��
Real AdaBoost 

�� 

�� 

�� 

�� 

�� 

��
Gentle AdaBoost 

�� 

�� 

�� 

�� 

�� 

��
Discrete AdaBoost 

�� 

�
 

�
 

�� 

�� 

��

Glass CART error� 
�



LogitBoost 
��� 
��� 
��� 
��� 
��� 
���
Real AdaBoost 
��� 
��� 
��� 
��� 
��� 
���
Gentle AdaBoost 
��� 
��� 
��� 
��� 
��� 
���
Discrete AdaBoost 
��� 
��� 
��� 
��� 
��� 
���

Sonar CART error� 
���

LogitBoost 
��� 
��� 
�
� 
��� 
��� 
���
Real AdaBoost 
��� 
��� 
�
� 
��� 
��� 
���
Gentle AdaBoost 
��� 
��� 
��� 
��� 
��� 
���
Discrete AdaBoost 
��� 
��� 
��� 
��� 
��� 
���

Waveform CART error� 
���

LogitBoost 
��� 
��� 
�
� 
��� 
��� 
���
Real AdaBoost 
��� 
��� 
��� 
��� 
��� 
���
Gentle AdaBoost 
��
 
��� 
��� 
��� 
��� 
���
Discrete AdaBoost 
��� 
��� 
��� 
��� 
��� 
���

��



Table �� Test error rates on larger data examples�

Method Terminal Iterations Fraction

Nodes �
 �
 �

 �



Satimage CART error � 
���

LogitBoost � 
��
 
��
 
��� 
�
�
Real AdaBoost � 
��� 
��� 
��� 
���
Gentle AdaBoost � 
��� 
��� 
��� 
���
Discrete AdaBoost � 
��� 
��� 
��
 
���

LogitBoost � 

�� 

�� 

�� 

��
Real AdaBoost � 
�
� 
�
� 

�� 

��
Gentle AdaBoost � 
�
� 
�
� 

�� 

��
Discrete AdaBoost � 
��� 
�
� 
�

 

��

Letter CART error � 
���

LogitBoost � 
��
 
��� 
��� 
��� 

�
Real AdaBoost � 
��� 
��� 
��
 
��
 
��
Gentle AdaBoost � 
��� 
��� 
��� 
��� 
��
Discrete AdaBoost � 
��
 
��� 
��� 
��� 
��

LogitBoost � 

�� 

�� 

�� 

�� 

�
Real AdaBoost � 

�� 

�� 

�� 

�� 

�
Gentle AdaBoost � 

�� 

�
 

�
 

�� 

�
Discrete AdaBoost � 

�
 

�� 

�� 

�� 

�

three represent three�feature interactions� and so on� If B�x
 can be accurately approximated by
such an expansion� truncated at low interaction order� then allowing the base classi�er to produce
higher order interactions can reduce the accuracy of the �nal boosted model� In the context of
decision trees� higher order interactions are produced by deeper trees�
In situations where the true underlying decision boundary function admits a low order ANOVA

decomposition� one can take advantage of this structure to improve accuracy by restricting the
depth of the base decision trees to be not much larger than the actual interaction order of B�x
�
Since this is not likely to be known in advance for any particular problem� this maximum depth
becomes a �meta�parameter� of the procedure to be estimated by some model selection technique�
such as cross�validation�
One can restrict the depth of an induced decision tree by using its standard pruning procedure�

starting from the largest possible tree� but requiring it to delete enough splits to achieve the desired
maximum depth� This can be computationally wasteful when this depth is small� The time required
to build the tree is proportional to the depth of the largest possible tree before pruning� Therefore�
dramatic computational savings can be achieved by simply stopping the growing process at the
maximum depth� or alternatively at a maximum number of terminal nodes� The standard heuristic
arguments in favor of growing large trees and then pruning do not apply in the context of boosting�
Shortcomings in any individual tree can be compensated by trees grown later in the boosting
sequence�
If a truncation strategy based on number of terminal nodes is to be employed� it is necessary to

de�ne an order in which splitting takes place� We adopt a �best��rst� strategy� An optimal split
is computed for each currently terminal node� The node whose split would achieve the greatest

��



reduction in the tree building criterion is then actually split� This increases the number of terminal
nodes by one� This continues until a maximum number M of terminal notes is induced� Stan�
dard computational tricks can be employed so that inducing trees in this order requires no more
computation than other orderings commonly used in decision tree induction�
The truncation limit M is applied to all trees in the boosting sequence� It is thus a meta�

parameter of the entire boosting procedure� An optimal value can be estimated through standard
model selection techniques such as minimizing cross�validated error rate of the �nal boosted model�
We refer to this combination of truncated best��rst trees� with boosting� as �additive logistic trees�

Figure 
� Coordinate functions for the additive logistic tree obtained by boosting �Logitboost	 with stumps�
for the two�class nested sphere example from Section ��

�ALT
� Best��rst trees were used in all of the simulated and real examples� One can compare results
on the latter �Tables � and �
 to corresponding results reported by Dietterich ������ Table �
 on
common data sets� Error rates achieved by ALT with very small truncation values are seen to
compare quite favorably with other committee approaches using much larger trees at each boosting
step� Even when error rates are the same� the computational savings associated with ALT can be
quite important in data mining contexts where large data sets cause computation time to become
an issue�
Another advantage of low order approximations is model visualization� In particular� for models

additive in the input features ���
� the contribution of each feature xj can be viewed as a graph
of gj�xj
 plotted against xj� Figure 
 shows such plots for the ten features of the two�class nested
spheres example of Fig� �� The functions are shown for the �rst class concentrated near the origin�
the corresponding functions for the other class are the negatives of these functions�
The plots in Fig� 
 clearly show that the contribution to the log�odds of each individual feature

is approximately quadratic� which matches the generating model ���
 and ���
�
When there are more than two classes plots similar to Fig� 
 can be made for each class� and

analogously interpreted� Higher order interaction models are more di�cult to visualize� If there are
at most two�feature interactions� the two�variable contributions can be visualized using contour
or perspective mesh plots� Beyond two�feature interactions� visualization techniques are even less
e�ective� Even when non�interaction �stump
 models do not achieve the highest accuracy� they can
be very useful as descriptive statistics owing to the interpretability of the resulting model�

��




 Weight trimming

In this section we propose a simple idea and show that it can dramatically reduce computation
for boosted models without sacri�cing accuracy� Despite its apparent simplicity this approach
does not appear to be in common use �although similar ideas have been proposed before �Schapire
���	� Freund ���

�
 At each boosting iteration there is a distribution of weights over the training
sample� As iterations proceed this distribution tends to become highly skewed towards smaller
weight values� A larger fraction of the training sample becomes correctly classi�ed with increasing
con�dence� thereby receiving smaller weights� Observations with very low relative weight have
little impact on training of the base classi�er� only those that carry the dominant proportion of the
weight mass are in�uential� The fraction of such high weight observations can become very small in
later iterations� This suggests that at any iteration one can simply delete from the training sample
the large fraction of observations with very low weight without having much e�ect on the resulting
induced classi�er� However� computation is reduced since it tends to be proportional to the size of
the training sample� regardless of weights�
At each boosting iteration� training observations with weight wi less than a threshold wi � t��


are not used to train the classi�er� We take the value of t��
 to be the �th quantile of the weight
distribution over the training data at the corresponding iteration� That is� only those observations
that carry the fraction ��� of the total weight mass are used for training� Typically � � �	�	�� 	���
so that the data used for training carries from �	 to �� percent of the total weight mass� Note that
the weights for all training observations are recomputed at each iteration� Observations deleted
at a particular iteration may therefore re�enter at later iterations if their weights subsequently
increase relative to other observations�
Figure � �left panel� shows test�error rate as a function of iteration number for the letter

recognition problem described in Section �� here using Gentle AdaBoost and eight node trees
as the base classi�er� Two error rate curves are shown� The black solid one represents using
the full training sample at each iteration �� � 	
� whereas the blue dashed curve represents the
corresponding error rate for � � 	��� The two curves track each other very closely especially at
the later iterations� Figure � �right panel� shows the corresponding fraction of observations used
to train the base classi�er as a function of iteration number� Here the two curves are not similar�
With � � 	�� the number of observations used for training drops very rapidly reaching roughly 
 
of the total at �	 iterations� By 
	 iterations it is down to about � where it stays throughout
the rest of the boosting procedure� Thus� computation is reduced by over a factor of �	 with no
apparent loss in classi�cation accuracy� The reason why sample size in this case decreases for � � 	
after �
	 iterations� is that if all of the observations in a particular class are classi�ed correctly
with very high con�dence �Fk � �
 � log�N

 training for that class stops� and continues only for
the remaining classes� At �		 iterations� �� classes remained of the original �� classes�
The last column labeled fraction in Table � for the letter�recognition problem shows the average

fraction of observations used in training the base classi�ers over the �		 iterations� for all boosting
methods and tree sizes� For eight�node trees� all methods behave as shown in Fig� �� With stumps�
LogitBoost uses considerably less data than the others and is thereby correspondingly faster�
This is a genuine property of LogitBoost that sometimes gives it an advantage with weight

trimming� Unlike the other methods� the LogitBoost weights wi � pi�� � pi
 do not in any way
involve the class outputs yi� they simply measure nearness to the currently estimated decision
boundary FM �x
 � 	� Discarding small weights thus retains only those training observations that
are estimated to be close to the boundary� For the other three procedures the weight is monotone
in �yiFM �xi
� This gives highest weight to currently misclassi�ed training observations� especially

�	



Figure �� The left panel shows the test error for the letter recognition problem as a function of

iteration number� The black solid curve uses all the training data� the red dashed curve uses a

subset based on weight thresholding� The right panel shows the percent of training data used for

both approaches� The upper curve steps down� because training can stop for an entire class if it is

�t su	ciently well �see text��

��



those far from the boundary� If after trimming the fraction of observations remaining is less than
the error rate� the subsample passed to the base learner will be highly unbalanced containing very
few correctly classi�ed observations� This imbalance seems to inhibit learning� No such imbalance
occurs with LogitBoost since near the decision boundary� correctly and misclassi�ed observations
appear in roughly equal numbers�
As this example illustrates� very large reductions in computation for boosting can be achieved by

this simple trick� A variety of other examples �not shown
 exhibit similar behavior with all boosting
methods� Note that other committee approaches to classi�cation such as bagging �Breiman ����

and randomized trees �Dietterich ����
� while admitting parallel implementations� cannot take
advantage of this approach to reduce computation�

�� Further generalizatons of boosting

We have shown above that AdaBoost �ts an additive model� optimizing a criterion similar to
binomial log�likelihood� via an adaptive Newton method� This suggests ways in which the boosting
paradigm may be generalized� First� the Newton step can be replaced by a gradient step� slowing
down the �tting procedure� This can reduce susceptibility to over�tting and lead to improved
performance� Second� any smooth loss function can be used� for regression� squared error is
natural� leading to the ��tting of residuals� boosting algorithm mentioned in the introduction� But
other loss functions might have bene�ts� for example tapered squared error based on Huber�s robust
in�uence function �Huber ����
� The resulting procedure is a fast� convenient method for resistant
�tting of additive models� Details of these generalizations may be found in Friedman �����
�

�� Concluding remarks

In order to understand a learning procedure statistically it is necessary to identify two important
aspects� its structural model and its error model� The former is most important since it determines
the function space of the approximator� thereby characterizing the class of functions or hypotheses
that can be accurately approximated with it� The error model speci�es the distribution of random
departures of sampled data from the structural model� It thereby de�nes the criterion to be
optimized in the estimation of the structural model�
We have shown that the structural model for boosting is additive on the logistic scale with

the base learner providing the additive components� This understanding alone explains many
of the properties of boosting� It is no surprise that a large number of such �jointly optimized

components de�nes a much richer class of learners than one of them alone� It reveals that in the
context of boosting all base learners are not equivalent� and there is no universally best choice
over all situations� As illustrated in Section � the base learners need to be chosen so that the
resulting additive expansion matches the particular decision boundary encountered� Even in the
limited context of boosting decision trees the interaction order� as characterized by the number of
terminal nodes� needs to be chosen with care� Purely additive models induced by decision stumps
are sometimes� but not always� the best� However� we conjecture that boundaries involving very
high order interactions will rarely be encountered in practice� This motivates our additive logistic
trees �ALT
 procedure described in Section ��
The error model for two�class boosting is the obvious one for binary variables� namely the

Bernoulli distribution� We show that the AdaBoost procedures maximize a criterion that is closely
related to expected log�Bernoulli likelihood� having the identical solution in the distributional

��



�L�
 limit of in�nite data� We derived a more direct procedure for maximizing this log�likelihood
�LogitBoost
 and show that it exhibits properties nearly identical to those of Real AdaBoost�
In the multi�class case� the AdaBoost procedures maximize a separate Bernoulli likelihood for

each class versus the others� This is a natural choice and is especially appropriate when observations
can belong to more than one class �Schapire � Singer ����
� In the more usual setting of a unique
class label for each observation� the symmetric multinomial distribution is a more appropriate
error model� We develop a multi�class LogitBoost procedure that maximizes the corresponding
log�likelihood by quasi�Newton stepping� We show through simulated examples that there exist
settings where this approach leads to superior performance� although none of these situations seems
to have been encountered in the set of real data examples used for illustration� the performance of
both approaches had quite similar performance over these examples�
The concepts developed in this paper suggest that there is very little� if any� connection be�

tween �deterministic
 weighted boosting and other �randomized
 ensemble methods such as bagging
�Breiman ����
 and randomized trees �Dietterich ����
� In the language of least squares regression�
the latter are purely �variance� reducing procedures intended to mitigate instability� especially that
associated with decision trees� Boosting on the other hand seems fundamentally di�erent� It ap�
pears to be mainly a �bias� reducing procedure� intended to increase the �exibility of stable �highly
biased
 weak learners by incorporating them in a jointly �tted additive expansion�
The distinction becomes less clear �Breiman ����a
 when boosting is implemented by �nite

weighted random sampling instead of weighted optimization� The advantages#disadvantages of
introducing randomization into boosting by drawing �nite samples is not clear� If there turns out
to be an advantage with randomization in some situations� then the degree of randomization� as
re�ected by the sample size� is an open question� It is not obvious that the common choice of using
the size of the original training sample is optimal in all �or any
 situations�
One fascinating issue not covered in this paper is the fact that boosting� whatever �avor� seems

resistant to over�tting� Some possible explanations are�

� As the LogitBoost iterations proceed� the overall impact of changes introduced by fm�x

reduces� Only observations with appreciable weight determine the new functions ! those
near the decision boundary� By de�nition these observations have F �x
 near zero and can be
a�ected by changes� while those in pure regions have large values of jF �x
j and are less likely
to be modi�ed�

� The stage�wise nature of the boosting algorithms does not allow the full collection of param�
eters to be jointly �t� and thus has far lower variance than the full parameterization might
suggest� In the Computational Learning Theory literature this is explained in terms of VC
dimension of the ensemble compared to that of each weak learner�

� Classi�ers are hurt less by over�tting than other function estimators �e�g� the famous risk
bound of the ��nearest�neighbor classi�er �Cover � Hart ����

�

Figure � shows a case where boosting does over�t� The data are generated from two �	�dimensional
spherical gaussians with the same mean� and variances chosen so that the Bayes error is �
 ��		
samples per class
� We used Real AdaBoost and stumps �the results were similar for all the boosting
algorithms
� After about 
	 iterations the test error �slowly
 increases�
Schapire et al� �����
 suggest that the properties of AdaBoost� including its resistance to over�

�tting� can be understood in terms of classi�cation margins� However� Breiman �����
 presents
evidence counter to this explanation� Whatever the explanation� the empirical evidence is strong�

��



Figure �� Real AdaBoost �stumps� on a noisy concentric�sphere problem� with 
�� observations per

class and Bayes error �
 � The test error �upper curve� increases after about �fty iterations�

the introduction of boosting by Schapire� Freund and colleagues has brought an exciting and im�
portant set of new ideas to the table�
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