Advanced Statistics III: Bayesian Ideas

Aurélien Garivier

ParisTech

March 3, 2011

Outline

Introduction

Somes Results

A random parameter

Theorem (Bayes)

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

- Probablities as a partial belief

An example: mamographies

- 1% of women at age forty who participate in routine screening have breast cancer
- 80% of women with breast cancer will get positive mammographies
- 9.6% of women without breast cancer will also get positive mammographies
- What is the probability that a women with positive mammography in a routine screening actually has breast cancer?

An example: mamographies

- 1% of women at age forty who participate in routine screening have breast cancer
- 80% of women with breast cancer will get positive mammographies
- 9.6% of women without breast cancer will also get positive mammographies
- What is the probability that a women with positive mammography in a routine screening actually has breast cancer? 7,8\%

An example: mamographies

- 1% of women at age forty who participate in routine screening have breast cancer
- 80% of women with breast cancer will get positive mammographies
- 9.6% of women without breast cancer will also get positive mammographies
- What is the probability that a women with positive mammography in a routine screening actually has breast cancer? 7, 8%
- Two visions of the probabilities: from outside (frequency) and from inside (partial belief).

Generic formulation - prior and posterior

- model: experiment $X \sim d P(x \mid \theta)=p(x \mid \theta) d \mu(x), \theta \in \Theta$
- prior distribution: $d \pi(\theta)$
contains knowledge on θ anterior to the experiment
- posterior distribution $d \Pi(\theta)$ with density:

$$
\Pi(\theta)=p(\theta \mid X)=\frac{\pi(\theta) p(X \mid \theta)}{\int_{\theta} \pi(\theta) p(X \mid \theta) d \theta} \propto \pi(\theta) p(X \mid \theta)
$$

- Idea: the experiment modifies the beliefs on θ
- conjugate prior: $\pi(\theta)$ and $\Pi(\theta \mid X)$ have a common pattern Example: $X \sim \mathcal{N}\left(\theta, \sigma^{2}\right), \theta \sim \mathcal{N}(m, \tau)$.
- Confidence interval, tests...

Example: Binomial variables

- Conjugate prior family: $\operatorname{Beta}(a, b)$

$$
\pi(\theta)=\frac{\theta^{a-1}(1-\theta)^{b-1}}{\beta(a, b)}
$$

where

$$
\beta(a, b)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}, \quad \Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

- $\mathbb{E}[\operatorname{Beta}(a, b)]=\frac{a}{a+b}, \operatorname{Var}[\operatorname{Beta}(a, b)]=\frac{a b}{(a+b)^{2}(a+b+1)}$
- Posterior distribution:

$$
\begin{gathered}
\Pi(\theta) \sim \operatorname{Beta}(x+a, n-x+b) \\
\hat{\theta}_{\pi}(X)=\frac{X+a}{n+a+b}
\end{gathered}
$$

Outline

Somes Results

Consistency result

Definition

The posterior distribution Π is said to be consistent at θ_{0} if for every neighbourhood U of $\theta_{0}, \Pi\left(U \mid X_{1}, \ldots, X_{n}\right)$ goes to 1 almost surely as $X_{1}, \ldots, X_{n} \sim^{\text {iid }} P_{\theta_{0}}$.

Theorem (Doob)
Suppose $\mathbb{P}(\cdot \mid \theta) \neq \mathbb{P}\left(\cdot \mid \theta^{\prime}\right)$ for $\theta \neq \theta^{\prime}$. For any prior π, the posterior is consistent at every θ except possibly on a set of π-measure zero.

Theorem (Bernstein - Von Mises)
Under appropriate conditions [see Bickel-Docksum Section 5.5],

$$
\mathcal{L}\left(\sqrt{n}\left(\hat{\theta}_{\pi}-\theta\right) \mid X_{1}, \ldots, X_{n}\right) \rightarrow \mathcal{N}\left(0, \operatorname{Var}\left[P_{\theta}\right]\right)
$$

almost-surely under P_{θ} for all θ.

Risk, Bayesian and minimax approachs

Definition

- The (quadratic) risk of estimator $\hat{\theta}$ under paramater θ is:

$$
R(\theta, \hat{\theta})=\mathbb{E}_{X \sim P_{\theta}}\|\hat{\theta}-\theta\|^{2}
$$

- Frequentist approach: worst case
\triangleright worst case risk: $\bar{R}(\hat{\theta})=\sup _{\theta \in \Theta} R(\theta, \hat{\theta})$
\triangleright minimax risk: $\bar{R}=\inf _{\hat{\theta}} \bar{R}(\hat{\theta})(\Longrightarrow$ minimax estimator $)$
- Bayesian approach: prior π
\triangleright average risk under $\pi: \underline{R}(\pi, \hat{\theta})=\mathbb{E}_{\theta \sim \pi} R(\theta, \hat{\theta})$
\triangleright bayesian risk under $\pi: \underline{R}(\pi)=\inf _{\hat{\theta}} \underline{R}(\pi, \hat{\theta})$
\triangleright maximin risk: $\underline{R}=\sup _{\pi} \underline{R}(\pi)(\Longrightarrow$ least favorable prior $)$

Properties

Lemma

The bayesian risk is always smaller than the minimax risk: $\underline{R} \leq \bar{R}$
Lemma
The bayesian risk:

$$
\underline{R}(\pi) \triangleq \min _{\hat{\theta}} \mathbb{E}_{\Pi}\left[\|\hat{\theta}-\theta\|^{2}\right]
$$

is reached by the the posterior mean $\hat{\theta}_{\pi}=\mathbb{E}[\Pi]$.
Theorem ("a Bayes rule with constant risk is minimax")
If $\hat{\theta}_{\pi}$ is a Bayes estimator with respect to a prior π and if $R\left(\theta, \hat{\theta}_{\pi}\right)=\underline{R}(\pi)$ for all θ, then $\hat{\theta}_{\pi}$ is minimax and π is a least favorable prior.

Minimax estimator in the Binomial setup

Theorem
Let $X \sim \mathcal{B}(n, \theta), \theta \in[0,1]$

- The minimax estimator is

$$
\hat{\theta}_{n}(X)=\frac{X+\sqrt{n} / 2}{n+\sqrt{n}}
$$

- It has quadratic loss

$$
\bar{R}_{n}=\frac{1}{4(1+\sqrt{n})^{2}}
$$

- The least favorable prior is

$$
\pi_{n}=\operatorname{Beta}(\sqrt{n} / 2, \sqrt{n} / 2)
$$

