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A random parameter

Theorem (Bayes)

P (A|B) =
P (B|A) P(A)

P(B)

• Probablities as a partial
belief
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An example: mamographies

• 1% of women at age forty who participate in routine screening
have breast cancer

• 80% of women with breast cancer will get positive
mammographies

• 9.6% of women without breast cancer will also get positive
mammographies

• What is the probability that a women with positive
mammography in a routine screening actually has breast
cancer?

7, 8%

• Two visions of the probabilities: from outside (frequency) and
from inside (partial belief).
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Generic formulation - prior and posterior

• model: experiment X ∼ dP(x |θ) = p(x |θ)dµ(x), θ ∈ Θ

• prior distribution: dπ(θ)
contains knowledge on θ anterior to the experiment

• posterior distribution dΠ(θ) with density:

Π(θ) = p(θ|X ) =
π(θ)p(X |θ)∫

θ π(θ)p(X |θ)dθ
∝ π(θ)p(X |θ)

• Idea: the experiment modifies the beliefs on θ

• conjugate prior: π(θ) and Π(θ|X ) have a common pattern
Example: X ∼ N (θ, σ2), θ ∼ N (m, τ).

• Confidence interval, tests. . .
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Example: Binomial variables

• Conjugate prior family: Beta(a, b)

π(θ) =
θa−1 (1− θ)b−1

β(a, b)

where

β(a, b) =
Γ(x)Γ(y)

Γ(x + y)
, Γ(x) =

∫ ∞
0

tx−1e−tdt

• E [Beta(a, b)] = a
a+b , Var [Beta(a, b)] = ab

(a+b)2(a+b+1)

• Posterior distribution:

Π(θ) ∼ Beta (x + a, n − x + b)

θ̂π(X ) =
X + a

n + a + b
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Consistency result

Definition
The posterior distribution Π is said to be consistent at θ0 if for
every neighbourhood U of θ0, Π(U|X1, . . . ,Xn) goes to 1 almost
surely as X1, . . . ,Xn ∼iid Pθ0 .

Theorem (Doob)

Suppose P(·|θ) 6= P(·|θ′) for θ 6= θ′. For any prior π, the posterior
is consistent at every θ except possibly on a set of π-measure zero.

Theorem (Bernstein - Von Mises)

Under appropriate conditions [see Bickel-Docksum Section 5.5],

L
(√

n
(
θ̂π − θ

)
|X1, . . . ,Xn

)
→ N (0,Var[Pθ])

almost-surely under Pθ for all θ.
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Risk, Bayesian and minimax approachs

Definition

• The (quadratic) risk of estimator θ̂ under paramater θ is:

R(θ, θ̂) = EX∼Pθ

∥∥∥θ̂ − θ∥∥∥2

• Frequentist approach: worst case

B worst case risk: R(θ̂) = supθ∈Θ R(θ, θ̂)

B minimax risk: R = inf θ̂ R(θ̂) ( =⇒ minimax estimator)

• Bayesian approach: prior π

B average risk under π: R(π, θ̂) = Eθ∼πR(θ, θ̂)
B bayesian risk under π: R(π) = inf θ̂ R(π, θ̂)
B maximin risk: R = supπ R(π) ( =⇒ least favorable prior)
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Properties

Lemma
The bayesian risk is always smaller than the minimax risk: R ≤ R

Lemma
The bayesian risk:

R(π) , min
θ̂

EΠ

[
‖θ̂ − θ‖2

]
is reached by the the posterior mean θ̂π = E [Π].

Theorem (“a Bayes rule with constant risk is minimax”)

If θ̂π is a Bayes estimator with respect to a prior π and if
R(θ, θ̂π) = R(π) for all θ, then θ̂π is minimax and π is a least
favorable prior.
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Minimax estimator in the Binomial setup

Theorem
Let X ∼ B(n, θ), θ ∈ [0, 1]

• The minimax estimator is

θ̂n(X ) =
X +

√
n/2

n +
√

n

• It has quadratic loss
R̄n = 1

4(1+
√

n)
2

• The least favorable prior is
πn = Beta

(√
n/2,
√

n/2
)
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