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Discrete and continuous distributions

e Discrete distribution P =" | pidy,
Ex: Binomial, Poisson distributions
e Continuous distribution Q(dx) = f(x)dx.
Ex: Exponential distribution
e A distribution can be neither purely discrete, nor purely

continuous !
Ex: Z = min{X, 1}, where X ~ £(\)

Exercices
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Descriptive properties

Expectation p = E[X]
Variance o2 =R [(X - ,u)z} =E[X?] - 12

— )3
Skewness v = E[X 3 1]
o
Kurtosis K = w -3

Exercices
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Some remarkable distributions

Normal: scale- and shift- stable family
Chi-2: if Xy,..., X, is a N(0,1)-sample, then

Z e XE o+ X5~ X3 (n)

Student: if X ~ A(0,1) is independent of Z ~ x?(n), then

X ~
Z/n

Fischer: if X ~ x2(n) is independent of Y ~ x?(m), then

7(n)

_ X/n
Y/m

F ~ F(n, m)



One and Two-Sample Statistics

Empirical Distribution and statistics

o Let X7,..., X, be a P-sample
o Empirical mean: X, =157 X;
e Empirical variance:

Zﬁ:%Z( ZX2 (Xn)?
i=1

e Empirical distribution P, = = LS8 ox
e Unbiased variance estimator

N 1 < o\ 2 1 4 o\ 2
aﬁ:n_lz(x,-—xn) :n—1<;Xf2_”(X”)>

i=1

e If P=N(0,02), using Cochran’s Theorem we get

N(0,02/n) 1L z”: (Xi — )_(,,)2 ~ a?x3(n—1)
i=1
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Convergence properties

Theorem (LLN)
IfE[|Xi|] < oo, then (in probability, almost surely)

Xn—

e Application to S2 and 62, etc. ..

e Convergence of the empirical distribution P, — P under
appropriate hypotheses
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Central Limit Theorem

Theorem (CLT )
IFE[X?] < o0,

e By Slutsky’'s Lemma,

w —~ N(0,1)

e Student statistic: if X; ~ N (u,0?),

Vi (Xo — 1)

On

~T(n-1)

Exercices
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Confidence interval for the mean

e if o is known,

e if o is unknown,
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Confidence interval for the variance

2
o if puis known, as > ; <%) ~ x*(n)

n . 2 n . 2
— Io(0?) = [Z,-:1£X, ) ’lel(ifl 1) ]
Xl—a/2 Xa/2

o\ 2
e if pis unknown, as Y ; (%) ~x?(n—1)

A2 6‘2
Ia 0_2 _ On , n
= )= [xl NI (n—l)]
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Comparison of two variances

o let Xi1,...,X1,, beasample N(u1,0%), and Xo.1,..., Xo,n,
be an independant sample N (u2,03),

e in order to test Hy : “o1 = o} versus H; : “o1 # 0}, use
statistic

F= ~ 5 ~Ho F(nl—l,nz—l)
02



One and Two-Sample Statistics

Comparison of two means

Theorem
o let Xi1,...,X1,n be asample N'(u1,0?), and Xo.1,..., Xo,n,
be an independent sample N'(ji2,02),

e To estimate the common variance, use

1 m _ 5 ny _ 5
2= ——— [ (X - %)+ (X - X
2= (,-:1 (Xu,i 1) 2. (Xa,i 2)
2
g 2
~— —2
n1+n2—2X(n1+n2 )
e in order to test Hy : "1 = pb versus Hy @ "y # pf, use
statistic

nino ()_<1 —5(2)
T: = ~ T n +n _2
V i+ no 012 Ho Tm 2 )
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Generic formulation

o Yi=axt + 4 apxl +0Z;, Zy ~ N(0,1)
e Matrice form:

Y=X0+0Z, Z~NQOpl)

e Ex: ANOVA, regression, rupture in time series



Linear Gaussian Model

Cochran's Theorem

Theorem

o let X = (Xi,...,X,) be a standard centered normal sample

e let Eq,...,E, be a decomposition of R" by two-by-two
orthogonal subspaces of dimensions dim E; = d;

o forl1 <i<p,let v{, e VJI, be an orhogonal basis of E;

Then

e the components of X in base (v1,...,v,) form another
standard centered normal sample

e the random vectors Xg,, ..., Xg, obtained by projecting X on
Ei, ..., E, are independent

, and they satisfy:

e soare | Xgl|,-- ., || XE,

IXE|I? ~ x*(d))
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Generic solution

Theorem
o The Maximum-Likelihood estimator and the least-square
estimator are given by:
0= (*XX) T EXY ~ N (6,02 (FXX)T)

2

e The variance o is estimated (without bias) by:

o _ Y= X0 o
g = ~
n—p n—p

xX*(n - p)
e § and o2 are independent

Incremental Gramm-Schmidt procedure

Theorem (Gauss-Markov)

6 has minimal variance among all linear unbiased estimators of 0
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Y=X0+0Z

X0eM
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Y =X0+0Z

.0 Yy = X0y
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Y=X0+0Z

Ty v
1Y X0]° & ~ a%x?(n—p)
LI Yy = X0
;/M—XH 2~ ax%(p

; GT g | (p)

eeeecccccoce

N
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Simple regression: Y; = a + Ox; + 0Z;

Theorem

e The ML-estimators are given by:

Ao A o?E[x?]
a = Y—ﬁX'\‘N(OZ,W>

)

e They are correlated: Cov (o“z, B) =— n\(/j:r)_iX]

@
I

e The variance can be estimated by:

A 1 A~ A o2
on = n_QZ(W—OZ—ﬂxi)2NEX2(”—2)

e Smart reparameterization Y; = § + B(x; — X) + 0Z;

Exercices
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Polynomial regression

Can also be used for exponential growth models

Exercices

yi = exp(ax; + b; + ¢;) to determine (3 such that E[Y] = aX”, ...
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Student test on a regressor

Theorem
In order to test Hy = "0, = a” versus Hy = “0, # a"

e estimate the variance of O by
6% (Bi) = 2 {(xx) 7},

e use the statistic

By — a
T= 2 T p)
& (B)
e Generalization: to test Hy = "“tb0 = a" versus
Hy = “thl # 3", use
th3 — a

~p, T(n—
5/Th(EXX)1h (n=p)

Exercices
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Fischer Test “model vs submodel”

Theorem

e let HC ECR"”, dmH=gq,dmE =p
e to test Hy = "6 € H" versus H; = "0 € E\ H", use the
statistic

£ 1Ye = Yull?/(p — q)
1Y = Yel?/(n—p)

e reject if F > FP- 1P

~H, F(P—¢q,n—p)

Exercices
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Y=X0+0Z
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-

0 X0 € H Yy = XOuH

Reduction and model Selection

Y=X0+0Z

Ye = X0

Exercices
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Y=X0+0Z

Y = YE|[? ~ o?x?(n — p)

eeeccocoe

1Yh — X0|%_g Ve = X0e
~ 2xHgLe || Ye — Yul? ~ o®x3(p — q)
0 X0€H Yy = X0uH
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SSS-notations and R?

e For a model M (relative to a matrix X), define
total variance SSY = ||Y — Y1,||> = SSE(1,)
residual variance SSE(M) = ||Y — X4|?
explained variance SSR(M) = || X8 — Y1,

SSY = SSE(M) + SSR(M)
e The quality of fit is quantified by
SSR(M)
2 —
RE(M) = SSY
e The Fischer statistic can be written:
(SSE(H) — SSE(E))/(p — q)
SSE(E)/(n - p)
_ n—dim(E) y R2(E) — R?(H)
~ dim(E) — dim(H) 1— R2(E)

F=
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ANOVA

The model can be written:
Yik=0i+o€,,1<i<p 1< k< n

Let Yie = ,,l S VYikand Yoo =1 >ik Yik

n

The variance can be decomposed as:
SSY = SSR(M) + SSE(M)
= Z n; (’/i,o - Yo,o) + Z (’/i,k - \/i,o)

ik

To test Hy = "1 =--- = 9;,’ versus H; = Hp, the Fischer
statistic is:

F— n— PZ,‘ ni(yi,o — Yo,o)z
p—1 th(yi,k - Yi,o)2

~F(p—1,n—p)
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Exhaustive, Forward, Backward and Stepwise selection

e Exhaustive search: for all sizes 1 < k < p, find the
combination of directions with highest R?.
e Forward selection: at each step, add the direction most

correlated with Y. Stop when the Fischer test for this
direction is not rejected

e Backward selection: start with full model, and remove the
direction with smallest t-statistic. Stop when all remaining
t-statistics are significant

e Stepwise selection: like Forward selection, but after each
inclusion remove all directions with unsignificant F-statistic

e Note: unless specified, 1, is always included into the models.
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Quadratic Risk: Bias-Variance decomposition

e To simplify the discussion, we consider the model
Y=0+0Z

where @ is arbitrary but aims at be understood by the family
of models M

e The quadratic risk of model M € M is defined as
~ 112
r(M)=E [He - HMH ]

e It can be decomposed as:

r(M) = |0 — Op]]? + o2 dim(M)
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Risk Estimation and Mallow’s criterion

Goal: choose model M € M with minimal quadratic risk
r(M).

Problem: the bias ||# — 0| is unknown

Idea: penalize complexity dim(M)

Mallow's criterion: choose model M minimizing
Cp(M) = SSE(M) + 252 dim(M)
Heuristic: r(M) = [|0]|? — ||0m]|? + o dim(M), but
E [||9M||2] = 0w + o2 dim(M), hence
F(M) = [|0]]% - (||éM||2 P dim(M)) + 02 dim(M) has

expectation r(M), but maximizing F(M) over M is equivalent
to maximizing

F(M) = 1617+ 1Y]? = Y = 8u|* + 202 dim(M)
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s Y=0+0Z
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0

Model Reduction and model Selection

Y=0+0cZ

Om = Ny(Y)

Om = Mp(6)

Exercices
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Y=0+0cZ

0
02 O = Np(Y)

Om = Mp(6)

o
=~
e )
>
=8

Exercices
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Y=0+0cZ

o

—
e )
d)

Exercices
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Y=0+0cZ

2
0 ?oy

6 £

~ Variance A

01 01

Exercices
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Y=0+0cZ

0
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Y=0+0cZ

S /) = =)
0240*\ 6\ @ \l a‘-‘%(\c 0
&7 fs/ )

~ Variance ~

0 01 01

Exercices
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Other Criteria

e Adjusted R? :

n—1
n —dim(M)
n—1 SSE(M)
— - X
n —dim(M) SSy

RI(M) =1~ (1 R*(M))

e Bayesian Information Criterion:

BIC(M) = SSE(M) + o dim(M) log n
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Application: denoising a signal

o discretized and noisy version of f : [0,1] — R :

Yi =f(k/n)+0Zk,0< k<n-1

e choice of an orthogonal basis of R”: Fourier

Q- [sin (27rk/>} 1<k< {n—lJﬂ
n 0<I<N—1 2
[cos <27rk/>] ,0< k< LEJ
n 0<I<N—1 2

e nested models with increasing number of non-zero Fourier
coefficients

Exercices
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Logistic Regression

e The Gaussian model does obviously not apply everywhere;
think e.g. of a regression age/heart disease.

e Logistic model:
\/i ~ B (/’L(txle)) 5

where u(n) = li);z(pn()n) is the inverse logit function.

e Maximum likelihood estimation is possible numerically
(Newton-Raphson method)
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Discovery of R

e Understand and modify the source codes available on the
website.

e The data frame called 'cars’ contains two arrays: cars$dist
and cars$speed. lIts gives the speed of cars and the distances
taken to stop (recorded in the 1920s).

A relation dist = A x speed? is expected. How to estimate A
and B 7
Test if B =0, and then if B = 1.

e Find out how logistic regression can be done with R. lllustrate

on some data you choose.
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Simple Exercices

Show that if Xi,..., X, is a N(0,1)-sample, then

Xn ~N(0,1/n) 1L Z (X — Xa)® ~ xP(n—1)
i=1

Re-compute the formula giving & and B in the simple
regression model by analytic minimization of the total squared

errors Y i (i — a — fx;)%.
Compute the squared prediction error E [(f/* —a— Bx*)2] for
a new observation at point x* in the simple regression model.

Same exercices for the general gaussian linear model.
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Exercice: weighting methods
A two plate weighing machine is called unbiased with precision o
if, an object of true weight m on the left plate is balanced by a
random weight y such that y = m+ oe on the right plate, where €
is a centered standard normal variable.
Mister M. has three objects of mass a, b and ¢ to weigh with such
a machine, and he is allowed to proceed to three measurements.
He thinks of three possibilities
e weighting each object separately : (a — ), (b — ), (c —);
e weighting the objects two at a time : (ab — ), (ac — ) and
(bc —);
e putting each object one time on the right plate alone and two
times with another on the right plate (ab — c), (ac — b), (bc
— a).

What would you advice him?

2
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Exercice: weighting methods
A two plate weighing machine is called unbiased with precision o
if, an object of true weight m on the left plate is balanced by a
random weight y such that y = m+ oe on the right plate, where €
is a centered standard normal variable.
Mister M. has three objects of mass a, b and ¢ to weigh with such
a machine, and he is allowed to proceed to three measurements.
He thinks of three possibilities
e weighting each object separately : (a — ), (b — ), (c —);
e weighting the objects two at a time : (ab — ), (ac — ) and
(bc —);
e putting each object one time on the right plate alone and two
times with another on the right plate (ab — c), (ac — b), (bc
— a).
What would you advice him?
More precisely: compute the individual variance for each possibility
and give a first conclusion. Does it hold if one is interested in
linear combinations of the weight?

2
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Exercice: multi-intercept regression

Botanists want to quantify the average difference of height
between the trees of two forests A and B. In their model, the
height of a tree is the sum of three terms:

e a term g depending on the quality of the ground, which is
assumed to be constant in each forest: g4 for the trees of
forest A, gg for the trees of forest B;

e an unknown biological constant times the quantity of humus
around the tree;

e a random term proper to each tree.

Precisely, they want to estimate the difference D = g4 — gg. For
their study, they have collected the height of ny trees in forest A,
ng trees in forest B, as well as the quantities (h,-A)lg‘gnA and
(h,B)ls/'Sns of humus at the basis of all thoses trees.

Tell them how to do it.
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