Advanced Statistics I : Gaussian Linear Model (and beyond)

Aurélien Garivier

CNRS / Telecom ParisTech

Centrale

Outline

One and Two-Sample Statistics

Linear Gaussian Model

Model Reduction and model Selection

Exercices

Discrete and continuous distributions

- Discrete distribution $P = \sum_{i=1}^{n} p_i \delta_{x_i}$ Ex: Binomial, Poisson distributions
- Continuous distribution Q(dx) = f(x)dx.

Ex: Exponential distribution

 A distribution can be neither purely discrete, nor purely continuous!

Ex:
$$Z = \min\{X, 1\}$$
, where $X \sim \mathcal{E}(\lambda)$

Descriptive properties

Expectation
$$\mu = \mathbb{E}[X]$$

Variance $\sigma^2 = \mathbb{E}\left[(X - \mu)^2\right] = \mathbb{E}\left[X^2\right] - \mu^2$

Skewness $\gamma = \frac{\mathbb{E}[(X - \mu)^3]}{\sigma^3}$

Kurtosis $\kappa = \frac{\mathbb{E}[(X - \mu)^4]}{\sigma^4} - 3$

Some remarkable distributions

- Normal: scale- and shift- stable family
- Chi-2: if X_1, \ldots, X_n is a $\mathcal{N}(0,1)$ -sample, then

$$Z \sim X_1^2 + \cdots + X_n^2 \sim \chi^2(n)$$

• Student: if $X \sim \mathcal{N}(0,1)$ is independent of $Z \sim \chi^2(n)$, then

$$T = \frac{X}{\sqrt{Z/n}} \sim \mathcal{T}(n)$$

• Fischer: if $X \sim \chi^2(n)$ is independent of $Y \sim \chi^2(m)$, then

$$F = \frac{X/n}{Y/m} \sim \mathcal{F}(n, m)$$

Empirical Distribution and statistics

- Let X_1, \ldots, X_n be a P-sample
- Empirical mean: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- Empirical variance:

$$\Sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\bar{X}_n)^2$$

- Empirical distribution $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- Unbiased variance estimator

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n (\bar{X}_n)^2 \right)$$

• If $P = \mathcal{N}(0, \sigma^2)$, using Cochran's Theorem we get

$$ar{X}_n \sim \mathcal{N}(0, \sigma^2/n)$$
 \perp $\sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2 \sim \sigma^2 \chi^2(n-1)$

Convergence properties

Theorem (LLN)

If $\mathbb{E}[|X_i|] < \infty$, then (in probability, almost surely)

$$\bar{X}_n \rightarrow \mu$$

- Application to S_n^2 and $\hat{\sigma}_n^2$, etc. . .
- Convergence of the empirical distribution $P_n \rightharpoonup P$ under appropriate hypotheses

Central Limit Theorem

Theorem (CLT)

If
$$\mathbb{E}[X_i^2] < \infty$$
,

$$\frac{\sqrt{n}\left(\bar{X}_n-\mu\right)}{\sigma} \rightharpoonup \mathcal{N}(0,1)$$

• By Slutsky's Lemma,

$$\frac{\sqrt{n}\left(\bar{X}_n-\mu\right)}{\hat{\sigma}_n} \rightharpoonup \mathcal{N}(0,1)$$

• Student statistic: if $X_i \sim \mathcal{N}(\mu, \sigma^2)$,

$$rac{\sqrt{n}\left(ar{X}_{n}-\mu
ight)}{\hat{\sigma}_{n}}\sim\mathcal{T}(n-1)$$

Confidence interval for the mean

• if σ is known,

$$I_{\alpha}(\mu) = \left[\bar{X}_n \pm \frac{\sigma \phi_{1-\alpha/2}}{\sqrt{n}} \right]$$

• if σ is unknown,

$$I_{\alpha}(\mu) = \left[\bar{X}_n \pm \frac{\hat{\sigma}_n t_{1-\alpha/2}^{n-1}}{\sqrt{n}} \right]$$

Confidence interval for the variance

• if μ is known, as $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$

$$\implies I_{\alpha}(\sigma^2) = \left[\frac{\sum_{i=1}^n (X_i - \mu)^2}{\chi_{1-\alpha/2}^n}, \frac{\sum_{i=1}^n (X_i - \mu)^2}{\chi_{\alpha/2}^n}\right]$$

• if μ is unknown, as $\sum_{i=1}^n \left(\frac{\chi_i - \bar{\chi}_n}{\sigma}\right)^2 \sim \chi^2(n-1)$

$$\implies I_{\alpha}(\sigma^2) = \left[\frac{\hat{\sigma}_n^2}{\chi_{1-\alpha/2}^{n-1}/(n-1)}, \frac{\hat{\sigma}_n^2}{\chi_{\alpha/2}^{n-1}/(n-1)}\right]$$

- let $X_{1,1},\ldots,X_{1,n_1}$ be a sample $\mathcal{N}(\mu_1,\sigma_1^2)$, and $X_{2,1},\ldots,X_{2,n_2}$ be an independant sample $\mathcal{N}(\mu_2,\sigma_2^2)$,
- in order to test H_0 : " $\sigma_1 = \sigma_2''$ versus H_1 : " $\sigma_1 \neq \sigma_2''$, use statistic

$$F = \frac{\hat{\sigma_1}^2}{\hat{\sigma_2}^2} \sim_{H_0} F(n_1 - 1, n_2 - 1)$$

Theorem

- let $X_{1,1}, \ldots, X_{1,n_1}$ be a sample $\mathcal{N}(\mu_1, \sigma^2)$, and $X_{2,1}, \ldots, X_{2,n_2}$ be an independent sample $\mathcal{N}(\mu_2, \sigma^2)$,
- To estimate the common variance, use

$$\hat{\sigma}_{12} = \frac{1}{n_1 + n_2 - 2} \left(\sum_{i=1}^{n_1} (X_{1,i} - \bar{X}_1)^2 + \sum_{i=1}^{n_2} (X_{2,i} - \bar{X}_2)^2 \right)$$
$$\sim \frac{\sigma^2}{n_1 + n_2 - 2} \chi^2 (n_1 + n_2 - 2)$$

• in order to test H_0 : " $\mu_1 = \mu_2''$ versus H_1 : " $\mu_1 \neq \mu_2''$, use statistic

$$T = \sqrt{rac{n_1 n_2}{n_1 + n_2}} rac{\left(ar{X}_1 - ar{X}_2
ight)}{\hat{\sigma}_{12}} \sim_{H_0} T(n_1 + n_2 - 2)$$

Outline

Linear Gaussian Model

Generic formulation

- $Y_i = \alpha_1 x_i^1 + \cdots + \alpha_p x_i^p + \sigma Z_i, Z_i \sim \mathcal{N}(0,1)$
- Matrice form:

$$Y = X\theta + \sigma Z, \quad Z \sim \mathcal{N}(0_n, I_n)$$

• Ex: ANOVA, regression, rupture in time series

Cochran's Theorem

Theorem

- let $X = (X_1, ..., X_n)$ be a standard centered normal sample
- let $E_1, ..., E_p$ be a decomposition of R^n by two-by-two orthogonal subspaces of dimensions dim $E_j = d_j$
- for $1 \leq i \leq p$, let $v_1^i, \ldots, v_{j_i}^i$ be an orhogonal basis of E_j

Then

- the components of X in base (v_1, \ldots, v_n) form another standard centered normal sample
- the random vectors X_{E_1}, \ldots, X_{E_p} obtained by projecting X on E_1, \ldots, E_p are independent
- so are $||X_{E_1}||, \ldots, ||X_{E_n}||$, and they satisfy:

$$||X_{E_i}||^2 \sim \chi^2(d_i)$$

Generic solution

Theorem

 The Maximum-Likelihood estimator and the least-square estimator are given by:

$$\hat{\theta} = ({}^{t}XX)^{-1} {}^{t}XY \sim \mathcal{N}(\theta, \sigma^{2}({}^{t}XX)^{-1})$$

• The variance σ^2 is estimated (without bias) by:

$$\hat{\sigma}^2 = \frac{\|Y - X\hat{\theta}\|^2}{n - p} \sim \frac{\sigma^2}{n - p} \chi^2(n - p)$$

• $\hat{\theta}$ and σ^2 are independent

Incremental Gramm-Schmidt procedure

Theorem (Gauss-Markov)

 $\hat{\theta}$ has minimal variance among all linear unbiased estimators of θ

Simple regression: $Y_i = \alpha + \beta x_i + \sigma Z_i$

Theorem

The ML-estimators are given by:

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{x} \sim \mathcal{N}\left(\alpha, \frac{\sigma^2 \mathbb{E}[x^2]}{n \text{Var}(x)}\right)$$

$$\hat{\beta} = \frac{\text{Cov}(x, Y)}{\text{Var}(x)} \sim \mathcal{N}\left(\beta, \frac{\sigma^2}{n \text{Var}(x)}\right)$$

- They are correlated: Cov $(\hat{\alpha}, \hat{\beta}) = -\frac{\sigma^2 \bar{x}}{n \text{Var}[x]}$
- The variance can be estimated by:

$$\hat{\sigma}_n^2 = \frac{1}{n-2} \sum (Y_i - \hat{\alpha} - \hat{\beta} x_i)^2 \sim \frac{\sigma^2}{n-2} \chi^2 (n-2)$$

• Smart reparameterization $Y_i = \delta + \beta(x_i - \bar{x}) + \sigma Z_i$

Polynomial regression

$$\left(\begin{array}{c} Y \end{array}\right) = \left(\begin{array}{cccc} 1 & x & x^2 & \dots & x^p \end{array}\right) \times \left(\begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_p \end{array}\right)$$

Can also be used for exponential growth models $y_i = \exp(ax_i + b_i + \epsilon_i)$ to determine β such that $\mathbb{E}[Y] = \alpha X^{\beta}$

Outline

One and Two-Sample Statistics

Linear Gaussian Model

Model Reduction and model Selection

Exercices

Student test on a regressor

Theorem

In order to test $H_0 = "\theta_k = a"$ versus $H_1 = "\theta_k \neq a"$

• estimate the variance of $\hat{\theta}_k$ by

$$\hat{\sigma}^2 \left(\hat{\beta}_k \right) = \hat{\sigma}^2 \left\{ (^t X X)^{-1} \right\}_{k,k}$$

use the statistic

$$T = \frac{\hat{\beta}_k - a}{\hat{\sigma}\left(\hat{\beta}_k\right)} \sim_{H_0} T(n-p)$$

• Generalization: to test $H_0 = {}^{"t}b\theta = a''$ versus $H_1 = {}^{"t}b\theta \neq a''$, use

$$T = rac{{}^t b \hat{eta} - a}{\hat{\sigma} \sqrt{{}^t b ({}^t X X)^{-1} b}} \sim_{H_0} T (n - p)$$

Fischer Test "model vs submodel"

Theorem

- *let* $H \subset E \subset \mathbb{R}^n$, dim H = q, dim E = p
- to test $H_0 = "\theta \in H"$ versus $H_1 = "\theta \in E \setminus H"$, use the statistic

$$F = \frac{\|Y_E - Y_H\|^2/(p-q)}{\|Y - Y_E\|^2/(n-p)} \sim_{H_0} \mathcal{F}(p-q, n-p)$$

• reject if $F > \mathcal{F}_{1-\alpha}^{p-q,n-p}$

SSS-notations and R^2

• For a model M (relative to a matrix X), define

total variance
$$SSY = \|Y - \bar{Y}1_n\|^2 = SSE(1_n)$$
 residual variance $SSE(M) = \|Y - X\hat{\theta}\|^2$ explained variance $SSR(M) = \|X\hat{\theta} - \bar{Y}1_n\|^2$

$$SSY = SSE(M) + SSR(M)$$

The quality of fit is quantified by

$$R^2(M) = \frac{SSR(M)}{SSY}$$

The Fischer statistic can be written:

$$F = \frac{(SSE(H) - SSE(E))/(p - q)}{SSE(E)/(n - p)}$$
$$= \frac{n - \dim(E)}{\dim(E) - \dim(H)} \times \frac{R^2(E) - R^2(H)}{1 - R^2(E)}$$

ANOVA

The model can be written:

$$Y_{i,k} = \theta_i + \sigma \epsilon_{i,k}, 1 \le i \le p, 1 \le k \le n_i$$

- Let $Y_{i,\bullet} = \frac{1}{n_i} \sum_k Y_{i,k}$ and $Y_{\bullet,\bullet} = \frac{1}{n} \sum_{i,k} Y_{i,k}$
- The variance can be decomposed as:

$$SSY = SSR(M) + SSE(M)$$

$$= \sum_{i} n_{i} (Y_{i,\bullet} - Y_{\bullet,\bullet}) + \sum_{i,k} (Y_{i,k} - Y_{i,\bullet})$$

• To test $H_0 = "\theta_1 = \cdots = \theta_p"$ versus $H_1 = \bar{H}_0$, the Fischer statistic is:

$$F = \frac{n-p}{p-1} \frac{\sum_{i} n_i (Y_{i,\bullet} - Y_{\bullet,\bullet})^2}{\sum_{i,k} (Y_{i,k} - Y_{i,\bullet})^2} \sim F(p-1, n-p)$$

Exhaustive, Forward, Backward and Stepwise selection

- Exhaustive search: for all sizes $1 \le k \le p$, find the combination of directions with highest R^2 .
- Forward selection: at each step, add the direction most correlated with Y. Stop when the Fischer test for this direction is not rejected
- Backward selection: start with full model, and remove the direction with smallest t-statistic. Stop when all remaining t-statistics are significant
- Stepwise selection: like Forward selection, but after each inclusion remove all directions with unsignificant F-statistic
- Note: unless specified, 1_n is always included into the models.

Quadratic Risk: Bias-Variance decomposition

To simplify the discussion, we consider the model

$$Y = \theta + \sigma Z$$

where θ is arbitrary but aims at be understood by the family of models ${\cal M}$

• The quadratic risk of model $M \in \mathcal{M}$ is defined as

$$r(M) = \mathbb{E}\left[\left\|\theta - \hat{\theta}_M\right\|^2\right]$$

It can be decomposed as:

$$r(M) = \|\theta - \theta_M\|^2 + \sigma^2 \dim(M)$$

Risk Estimation and Mallow's criterion

- Goal: choose model $M \in \mathcal{M}$ with minimal quadratic risk r(M).
- Problem: the bias $\|\theta \theta_M\|^2$ is unknown
- Idea: penalize complexity dim(M)
- Mallow's criterion: choose model M minimizing

$$C_p(M) = SSE(M) + 2\sigma^2 \dim(M)$$

Heuristic: $r(M) = \|\theta\|^2 - \|\theta_M\|^2 + \sigma^2 \dim(M)$, but $\mathbb{E}\left[\|\hat{\theta}_M\|^2\right] = \|\theta_M\|^2 + \sigma^2 \dim(M)$, hence $\tilde{r}(M) = \|\theta\|^2 - \left(\|\hat{\theta}_M\|^2 - \sigma^2 \dim(M)\right) + \sigma^2 \dim(M)$ has expectation r(M), but maximizing $\tilde{r}(M)$ over M is equivalent to maximizing

$$\tilde{r}(M) - \|\theta\|^2 + \|Y\|^2 = \|Y - \hat{\theta}_M\|^2 + 2\sigma^2 \dim(M)$$

Other Criteria

• Adjusted R²:

$$R_a^2(M) = 1 - \frac{n-1}{n-\dim(M)} (1 - R^2(M))$$

= $1 - \frac{n-1}{n-\dim(M)} \times \frac{SSE(M)}{SSY}$

Bayesian Information Criterion:

$$BIC(M) = SSE(M) + \sigma^2 \dim(M) \log n$$

Application: denoising a signal

• discretized and noisy version of $f:[0,1] \to \mathbb{R}$:

$$Y_k = f(k/n) + \sigma Z_k, 0 \le k \le n-1$$

• choice of an orthogonal basis of \mathbb{R}^n : Fourier

$$\Omega_{n} = \left\{ \left[\sin \left(\frac{2\pi k I}{n} \right) \right]_{0 \le l \le N-1}, 1 \le k \le \left\lfloor \frac{n-1}{2} \right\rfloor, \\ \left[\cos \left(\frac{2\pi k I}{n} \right) \right]_{0 \le l \le N-1}, 0 \le k \le \left\lfloor \frac{n}{2} \right\rfloor \right\}$$

nested models with increasing number of non-zero Fourier coefficients

Logistic Regression

- The Gaussian model does obviously not apply everywhere; think e.g. of a regression age/heart disease.
- Logistic model:

$$Y_i \sim \mathcal{B}\left(\mu(^tX_i\theta)\right)$$
,

where $\mu(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)}$ is the inverse logit function.

Maximum likelihood estimation is possible numerically (Newton-Raphson method)

Outline

One and Two-Sample Statistics

Linear Gaussian Model

Model Reduction and model Selection

Exercices

Discovery of R

- Understand and modify the source codes available on the website.
- The data frame called 'cars' contains two arrays: cars\$dist and cars\$speed. Its gives the speed of cars and the distances taken to stop (recorded in the 1920s).
 A relation dist = A × speed^B is expected. How to estimate A

A relation dist = $A \times \text{speed}^{\circ}$ is expected. How to estimate A and B?

Test if B = 0, and then if B = 1.

 Find out how logistic regression can be done with R. Illustrate on some data you choose.

Simple Exercices

• Show that if X_1, \ldots, X_n is a $\mathcal{N}(0,1)$ -sample, then

$$ar{X}_n \sim \mathcal{N}(0, 1/n)$$
 \perp $\sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2 \sim \chi^2(n-1)$

- Re-compute the formula giving $\hat{\alpha}$ and $\hat{\beta}$ in the simple regression model by analytic minimization of the total squared errors $\sum_{i=1}^{n} (y_i \alpha \beta x_i)^2$.
- Compute the squared prediction error $\mathbb{E}\left[(\hat{y}^* \alpha \beta x^*)^2\right]$ for a new observation at point x^* in the simple regression model.
- Same exercices for the general gaussian linear model.

Exercice: weighting methods

A two plate weighing machine is called unbiased with precision σ^2 if, an object of true weight m on the left plate is balanced by a random weight y such that $y=m+\sigma\epsilon$ on the right plate, where ϵ is a centered standard normal variable.

Mister M. has three objects of mass a, b and c to weigh with such a machine, and he is allowed to proceed to three measurements. He thinks of three possibilities

- weighting each object separately : (a), (b), (c —);
- weighting the objects two at a time : (ab), (ac) and (bc —);
- putting each object one time on the right plate alone and two times with another on the right plate (ab — c), (ac — b), (bc — a).

What would you advice him?

Exercice: weighting methods

A two plate weighing machine is called unbiased with precision σ^2 if, an object of true weight m on the left plate is balanced by a random weight y such that $y=m+\sigma\epsilon$ on the right plate, where ϵ is a centered standard normal variable.

Mister M. has three objects of mass a, b and c to weigh with such a machine, and he is allowed to proceed to three measurements. He thinks of three possibilities

- weighting each object separately : (a), (b), (c —);
- weighting the objects two at a time : (ab), (ac) and (bc —);
- putting each object one time on the right plate alone and two times with another on the right plate (ab — c), (ac — b), (bc — a).

What would you advice him?

More precisely: compute the individual variance for each possibility and give a first conclusion. Does it hold if one is interested in linear combinations of the weight?

Exercice: multi-intercept regression

Botanists want to quantify the average difference of height between the trees of two forests A and B. In their model, the height of a tree is the sum of three terms:

- a term q depending on the quality of the ground, which is assumed to be constant in each forest: q_A for the trees of forest A, q_B for the trees of forest B;
- an unknown biological constant times the quantity of humus around the tree:
- a random term proper to each tree.

Precisely, they want to estimate the difference $D = q_A - q_B$. For their study, they have collected the height of n_A trees in forest A, n_B trees in forest B, as well as the quantities $(h_i^A)_{1 \le i \le n_A}$ and $(h_i^B)_{1 \le i \le n_B}$ of humus at the basis of all thoses trees. Tell them how to do it.