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Discrete and continuous distributions

• Discrete distribution P =
∑n

i=1 piδxi

Ex: Binomial, Poisson distributions

• Continuous distribution Q(dx) = f (x)dx .
Ex: Exponential distribution

• A distribution can be neither purely discrete, nor purely
continuous !

Ex: Z = min{X , 1}, where X ∼ E(λ)
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Descriptive properties

Expectation µ = E[X ]

Variance σ2 = E

[

(X − µ)2
]

= E
[

X 2
]

− µ2

Skewness γ =
E[(X − µ)3]

σ3

Kurtosis κ =
E[(X − µ)4]

σ4
− 3
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Some remarkable distributions

• Normal: scale- and shift- stable family

• Chi-2: if X1, . . . ,Xn is a N (0, 1)-sample, then

Z ∼ X 2
1 + · · · + X 2

n ∼ χ2(n)

• Student: if X ∼ N (0, 1) is independent of Z ∼ χ2(n), then

T =
X

√

Z/n
∼ T (n)

• Fischer: if X ∼ χ2(n) is independent of Y ∼ χ2(m), then

F =
X/n

Y /m
∼ F(n,m)
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Empirical Distribution and statistics

• Let X1, . . . ,Xn be a P-sample

• Empirical mean: X̄n = 1
n

∑n
i=1 Xi

• Empirical variance:

Σ2
n =

1

n

n
∑

i=1

(

Xi − X̄n

)2
=

1

n

n
∑

i=1

X 2
i −

(

X̄n

)2

• Empirical distribution Pn = 1
n

∑n
i=1 δXi

• Unbiased variance estimator

σ̂2
n =

1

n − 1

n
∑

i=1

(

Xi − X̄n

)2
=

1

n − 1

(

n
∑

i=1

X 2
i − n

(

X̄n

)2

)

• If P = N (0, σ2), using Cochran’s Theorem we get

X̄n ∼ N (0, σ2/n) ⊥⊥
n
∑

i=1

(

Xi − X̄n

)2 ∼ σ2χ2(n − 1)
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Convergence properties

Theorem (LLN)

If E[|Xi |] < ∞, then (in probability, almost surely)

X̄n → µ

• Application to S2
n and σ̂2

n, etc. . .

• Convergence of the empirical distribution Pn ⇀ P under
appropriate hypotheses
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Central Limit Theorem

Theorem (CLT )

If E[X 2
i ] < ∞, √

n
(

X̄n − µ
)

σ
⇀ N (0, 1)

• By Slutsky’s Lemma,

√
n
(

X̄n − µ
)

σ̂n

⇀ N (0, 1)

• Student statistic: if Xi ∼ N (µ, σ2),

√
n
(

X̄n − µ
)

σ̂n

∼ T (n − 1)
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Confidence interval for the mean

• if σ is known,

Iα(µ) =

[

X̄n ±
σφ1−α/2√

n

]

• if σ is unknown,

Iα(µ) =

[

X̄n ±
σ̂nt

n−1
1−α/2√
n

]
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Confidence interval for the variance

• if µ is known, as
∑n

i=1

(

Xi−µ
σ

)2
∼ χ2(n)

=⇒ Iα(σ2) =

[

∑n
i=1(Xi − µ)2

χn
1−α/2

,

∑n
i=1(Xi − µ)2

χn
α/2

]

• if µ is unknown, as
∑n

i=1

(

Xi−X̄n

σ

)2
∼ χ2(n − 1)

=⇒ Iα(σ2) =

[

σ̂2
n

χn−1
1−α/2/(n − 1)

,
σ̂2

n

χn−1
α/2 /(n − 1)

]
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Comparison of two variances

• let X1,1, . . . ,X1,n1 be a sample N (µ1, σ
2
1), and X2,1, . . . ,X2,n2

be an independant sample N (µ2, σ
2
2),

• in order to test H0 : “σ1 = σ′′
2 versus H1 : “σ1 6= σ′′

2 , use
statistic

F =
σ̂1

2

σ̂2
2
∼H0

F (n1 − 1, n2 − 1)
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Comparison of two means

Theorem

• let X1,1, . . . ,X1,n1 be a sample N (µ1, σ
2), and X2,1, . . . ,X2,n2

be an independent sample N (µ2, σ
2),

• To estimate the common variance, use

σ̂12 =
1

n1 + n2 − 2

(

n1
∑

i=1

(

X1,i − X̄1

)2
+

n2
∑

i=1

(

X2,i − X̄2

)2

)

∼ σ2

n1 + n2 − 2
χ2(n1 + n2 − 2)

• in order to test H0 : “µ1 = µ′′
2 versus H1 : “µ1 6= µ′′

2 , use
statistic

T =

√

n1n2

n1 + n2

(

X̄1 − X̄2

)

σ̂12
∼H0

T (n1 + n2 − 2)
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Generic formulation

• Yi = α1x
1
i + · · · + αpx

p
i + σZi , Zi ∼ N (0, 1)

• Matrice form:

Y = Xθ + σZ , Z ∼ N (0n, In)

• Ex: ANOVA, regression, rupture in time series
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Cochran’s Theorem

Theorem

• let X = (X1, . . . ,Xn) be a standard centered normal sample

• let E1, . . . ,Ep be a decomposition of Rn by two-by-two
orthogonal subspaces of dimensions dimEj = dj

• for 1 ≤ i ≤ p, let v i
1, . . . , v

i
ji

be an orhogonal basis of Ej

Then

• the components of X in base (v1, . . . , vn) form another
standard centered normal sample

• the random vectors XE1
, . . . ,XEp

obtained by projecting X on
E1, . . . ,Ep are independent

• so are ‖XE1
‖, . . . , ‖XEp

‖, and they satisfy:

‖XEi
‖2 ∼ χ2(di )
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Generic solution

Theorem

• The Maximum-Likelihood estimator and the least-square
estimator are given by:

θ̂ =
(

tXX
)−1 tXY ∼ N (θ, σ2

(

tXX
)−1

)

• The variance σ2 is estimated (without bias) by:

σ̂2 =
‖Y − X θ̂‖2

n − p
∼ σ2

n − p
χ2(n − p)

• θ̂ and σ2 are independent

Incremental Gramm-Schmidt procedure

Theorem (Gauss-Markov)

θ̂ has minimal variance among all linear unbiased estimators of θ
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0
M

b Y = Xθ + σZ

Xθ ∈ M
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0
M

b Y = Xθ + σZ

Xθ ∈ M

YM = Xθ̂M
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0
M

b Y = Xθ + σZ

Xθ ∈ M

YM = Xθ̂M

‖Y − YM‖2

∼ σ2χ2(n − p)

‖YM − Xθ‖2 ∼ σ2χ2(p)

‖Y − Xθ‖2

∼ σ2χ2(n)
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Simple regression: Yi = α + βxi + σZi

Theorem

• The ML-estimators are given by:

α̂ = Ȳ − β̂x̄ ∼ N
(

α,
σ2

E[x2]

nVar(x)

)

β̂ =
Cov(x ,Y )

Var(x)
∼ N

(

β,
σ2

nVar(x)

)

• They are correlated: Cov
(

α̂, β̂
)

= − σ2x̄
nVar[x ]

• The variance can be estimated by:

σ̂2
n =

1

n − 2

∑

(Yi − α̂ − β̂xi )
2 ∼ σ2

n − 2
χ2(n − 2)

• Smart reparameterization Yi = δ + β(xi − x̄) + σZi



One and Two-Sample Statistics Linear Gaussian Model Model Reduction and model Selection Exercices

Polynomial regression



 Y



 =



 1 x x2 . . . xp



×















α0

α1

α2
...

αp















Can also be used for exponential growth models
yi = exp(axi + bi + ǫi ) to determine β such that E[Y ] = αX β, . . .
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Student test on a regressor

Theorem
In order to test H0 = “θk = a′′ versus H1 = “θk 6= a′′

• estimate the variance of θ̂k by

σ̂2
(

β̂k

)

= σ̂2
{

(tXX )−1
}

k,k

• use the statistic

T =
β̂k − a

σ̂
(

β̂k

) ∼H0
T (n − p)

• Generalization: to test H0 = “tbθ = a′′ versus
H1 = “tbθ 6= a′′, use

T =
tbβ̂ − a

σ̂
√

tb(tXX )−1b
∼H0

T (n − p)



One and Two-Sample Statistics Linear Gaussian Model Model Reduction and model Selection Exercices

Fischer Test “model vs submodel”

Theorem

• let H ⊂ E ⊂ R
n, dimH = q, dimE = p

• to test H0 = “θ ∈ H ′′ versus H1 = “θ ∈ E \ H ′′, use the
statistic

F =
‖YE − YH‖2/(p − q)

‖Y − YE‖2/(n − p)
∼H0

F(p − q, n − p)

• reject if F > Fp−q,n−p
1−α
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0
E

H

b Y = Xθ + σZ

YE = Xθ̂E

b

Xθ ∈ H
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0
E

H

b Y = Xθ + σZ

YE = Xθ̂E

b

Xθ ∈ H
b

YH = X θ̂H



One and Two-Sample Statistics Linear Gaussian Model Model Reduction and model Selection Exercices

0
E

H

b Y = Xθ + σZ

YE = Xθ̂E

b

Xθ ∈ H
b

YH = X θ̂H

‖YE − YH‖2 ∼ σ2χ2(p − q)

‖Y − YE‖2 ∼ σ2χ2(n − p)

‖YH − Xθ‖2

∼ σ2χ2(q)
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SSS-notations and R
2

• For a model M (relative to a matrix X ), define

total variance SSY = ‖Y − Ȳ 1n‖2 = SSE (1n)

residual variance SSE (M) = ‖Y − X θ̂‖2

explained variance SSR(M) = ‖X θ̂ − Ȳ 1n‖2

SSY = SSE (M) + SSR(M)

• The quality of fit is quantified by

R2(M) =
SSR(M)

SSY
• The Fischer statistic can be written:

F =
(SSE (H) − SSE (E ))/(p − q)

SSE (E )/(n − p)

=
n − dim(E )

dim(E ) − dim(H)
× R2(E ) − R2(H)

1 − R2(E )
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ANOVA

• The model can be written:

Yi ,k = θi + σǫi ,k , 1 ≤ i ≤ p, 1 ≤ k ≤ ni

• Let Yi ,• = 1
ni

∑

k Yi ,k and Y•,• = 1
n

∑

i ,k Yi ,k

• The variance can be decomposed as:

SSY = SSR(M) + SSE (M)

=
∑

i

ni (Yi ,• − Y•,•) +
∑

i ,k

(Yi ,k − Yi ,•)

• To test H0 = “θ1 = · · · = θ′′p versus H1 = H̄0, the Fischer
statistic is:

F =
n − p

p − 1

∑

i ni (Yi ,• − Y•,•)
2

∑

i ,k(Yi ,k − Yi ,•)2
∼ F (p − 1, n − p)
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Exhaustive, Forward, Backward and Stepwise selection

• Exhaustive search: for all sizes 1 ≤ k ≤ p, find the
combination of directions with highest R2.

• Forward selection: at each step, add the direction most
correlated with Y . Stop when the Fischer test for this
direction is not rejected

• Backward selection: start with full model, and remove the
direction with smallest t-statistic. Stop when all remaining
t-statistics are significant

• Stepwise selection: like Forward selection, but after each
inclusion remove all directions with unsignificant F -statistic

• Note: unless specified, 1n is always included into the models.
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Quadratic Risk: Bias-Variance decomposition

• To simplify the discussion, we consider the model

Y = θ + σZ

where θ is arbitrary but aims at be understood by the family
of models M

• The quadratic risk of model M ∈ M is defined as

r(M) = E

[

∥

∥

∥
θ − θ̂M

∥

∥

∥

2
]

• It can be decomposed as:

r(M) = ‖θ − θM‖2 + σ2 dim(M)



One and Two-Sample Statistics Linear Gaussian Model Model Reduction and model Selection Exercices

Risk Estimation and Mallow’s criterion

• Goal: choose model M ∈ M with minimal quadratic risk
r(M).

• Problem: the bias ‖θ − θM‖2 is unknown

• Idea: penalize complexity dim(M)

• Mallow’s criterion: choose model M minimizing

Cp(M) = SSE (M) + 2σ2 dim(M)

Heuristic: r(M) = ‖θ‖2 − ‖θM‖2 + σ2 dim(M), but

E

[

‖θ̂M‖2
]

= ‖θM‖2 + σ2 dim(M), hence

r̃(M) = ‖θ‖2 −
(

‖θ̂M‖2 − σ2 dim(M)
)

+ σ2 dim(M) has

expectation r(M), but maximizing r̃(M) over M is equivalent
to maximizing

r̃(M) − ‖θ‖2 + ‖Y ‖2 = ‖Y − θ̂M‖2 + 2σ2 dim(M)
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0
M

b Y = θ + σZ

b
θ
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0
M

b Y = θ + σZ

b
θ

θ̂M = ΠM(Y )

θM = ΠM(θ)
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0
M

b Y = θ + σZ

b
θ

θ̂M = ΠM(Y )

θM = ΠM(θ)

b

θ1

b

θ̂1

bθ2

b
θ̂2



One and Two-Sample Statistics Linear Gaussian Model Model Reduction and model Selection Exercices

0
M

b Y = θ + σZ

b
θ

θ̂M = ΠM(Y )

θM = ΠM(θ)

b

θ1

b

θ̂1

bθ2

b
θ̂2 B

ia
s

Vari
anc

e

Risk
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0
M

b Y = θ + σZ

b
θ

b

θ1

b

θ̂1

B
ia
s

Variance

R
is
k
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0
M

b Y = θ + σZ

b
θ

bθ2

b
θ̂2

Bias
V
ar
ia
n
ce

Risk
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0
M

b Y = θ + σZ

b
θ

θ̂M = ΠM(Y )

θM = ΠM(θ)

b

θ1

b

θ̂1

bθ2

b
θ̂2 B

ia
s

Vari
anc

e

Risk
B
ia
s

Variance

R
is
k

Bias
V
ar
ia
n
ce

Risk
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Other Criteria

• Adjusted R2 :

R2
a (M) = 1 − n − 1

n − dim(M)
(1 − R2(M))

= 1 − n − 1

n − dim(M)
× SSE (M)

SSY

• Bayesian Information Criterion:

BIC(M) = SSE (M) + σ2 dim(M) log n
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Application: denoising a signal

• discretized and noisy version of f : [0, 1] → R :

Yk = f (k/n) + σZk , 0 ≤ k ≤ n − 1

• choice of an orthogonal basis of R
n: Fourier

Ωn =

{

[

sin

(

2πkl

n

)]

0≤l≤N−1

, 1 ≤ k ≤
⌊

n − 1

2

⌋

,

[

cos

(

2πkl

n

)]

0≤l≤N−1

, 0 ≤ k ≤
⌊n

2

⌋

}

• nested models with increasing number of non-zero Fourier
coefficients
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Logistic Regression

• The Gaussian model does obviously not apply everywhere;
think e.g. of a regression age/heart disease.

• Logistic model:
Yi ∼ B

(

µ(tXiθ)
)

,

where µ(η) = exp(η)
1+exp(η) is the inverse logit function.

• Maximum likelihood estimation is possible numerically
(Newton-Raphson method)
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Discovery of R

• Understand and modify the source codes available on the
website.

• The data frame called ’cars’ contains two arrays: cars$dist
and cars$speed. Its gives the speed of cars and the distances
taken to stop (recorded in the 1920s).
A relation dist = A × speedB is expected. How to estimate A
and B ?
Test if B = 0, and then if B = 1.

• Find out how logistic regression can be done with R. Illustrate
on some data you choose.
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Simple Exercices

• Show that if X1, . . . ,Xn is a N (0, 1)-sample, then

X̄n ∼ N (0, 1/n) ⊥⊥
n
∑

i=1

(

Xi − X̄n

)2 ∼ χ2(n − 1)

• Re-compute the formula giving α̂ and β̂ in the simple
regression model by analytic minimization of the total squared
errors

∑n
i=1(yi − α − βxi )

2.

• Compute the squared prediction error E
[

(ŷ∗ − α − βx∗)2
]

for
a new observation at point x∗ in the simple regression model.

• Same exercices for the general gaussian linear model.
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Exercice: weighting methods
A two plate weighing machine is called unbiased with precision σ2

if, an object of true weight m on the left plate is balanced by a
random weight y such that y = m + σǫ on the right plate, where ǫ
is a centered standard normal variable.
Mister M. has three objects of mass a, b and c to weigh with such
a machine, and he is allowed to proceed to three measurements.
He thinks of three possibilities

• weighting each object separately : (a — ), (b — ), (c —);
• weighting the objects two at a time : (ab — ), (ac — ) and

(bc —);
• putting each object one time on the right plate alone and two

times with another on the right plate (ab — c), (ac — b), (bc
— a).

What would you advice him?
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Exercice: weighting methods
A two plate weighing machine is called unbiased with precision σ2

if, an object of true weight m on the left plate is balanced by a
random weight y such that y = m + σǫ on the right plate, where ǫ
is a centered standard normal variable.
Mister M. has three objects of mass a, b and c to weigh with such
a machine, and he is allowed to proceed to three measurements.
He thinks of three possibilities

• weighting each object separately : (a — ), (b — ), (c —);
• weighting the objects two at a time : (ab — ), (ac — ) and

(bc —);
• putting each object one time on the right plate alone and two

times with another on the right plate (ab — c), (ac — b), (bc
— a).

What would you advice him?
More precisely: compute the individual variance for each possibility
and give a first conclusion. Does it hold if one is interested in
linear combinations of the weight?
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Exercice: multi-intercept regression

Botanists want to quantify the average difference of height
between the trees of two forests A and B. In their model, the
height of a tree is the sum of three terms:

• a term q depending on the quality of the ground, which is
assumed to be constant in each forest: qA for the trees of
forest A, qB for the trees of forest B ;

• an unknown biological constant times the quantity of humus
around the tree;

• a random term proper to each tree.

Precisely, they want to estimate the difference D = qA − qB . For
their study, they have collected the height of nA trees in forest A,
nB trees in forest B , as well as the quantities (hA

i )1≤j≤nA
and

(hB
i )1≤j≤nB

of humus at the basis of all thoses trees.
Tell them how to do it.
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