Advanced Statistics I:
 Gaussian Linear Model (and beyond)

Aurélien Garivier

CNRS / Telecom ParisTech

Centrale

Outline

One and Two-Sample Statistics

Linear Gaussian Model

Model Reduction and model Selection

Exercices

Discrete and continuous distributions

- Discrete distribution $P=\sum_{i=1}^{n} p_{i} \delta_{x_{i}}$

Ex: Binomial, Poisson distributions

- Continuous distribution $Q(d x)=f(x) d x$.

Ex: Exponential distribution

- A distribution can be neither purely discrete, nor purely continuous!

Ex: $Z=\min \{X, 1\}$, where $X \sim \mathcal{E}(\lambda)$

Descriptive properties

Expectation $\quad \mu=\mathbb{E}[X]$
Variance $\quad \sigma^{2}=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}$
Skewness $\quad \gamma=\frac{\mathbb{E}\left[(X-\mu)^{3}\right]}{\sigma^{3}}$
Kurtosis $\quad \kappa=\frac{\mathbb{E}\left[(X-\mu)^{4}\right]}{\sigma^{4}}-3$

Some remarkable distributions

- Normal: scale- and shift- stable family
- Chi-2: if X_{1}, \ldots, X_{n} is a $\mathcal{N}(0,1)$-sample, then

$$
Z \sim X_{1}^{2}+\cdots+X_{n}^{2} \sim \chi^{2}(n)
$$

- Student: if $X \sim \mathcal{N}(0,1)$ is independent of $Z \sim \chi^{2}(n)$, then

$$
T=\frac{X}{\sqrt{Z / n}} \sim \mathcal{T}(n)
$$

- Fischer: if $X \sim \chi^{2}(n)$ is independent of $Y \sim \chi^{2}(m)$, then

$$
F=\frac{X / n}{Y / m} \sim \mathcal{F}(n, m)
$$

Empirical Distribution and statistics

- Let X_{1}, \ldots, X_{n} be a P-sample
- Empirical mean: $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Empirical variance:

$$
\Sigma_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\left(\bar{X}_{n}\right)^{2}
$$

- Empirical distribution $P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$
- Unbiased variance estimator

$$
\hat{\sigma}_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i}^{2}-n\left(\bar{X}_{n}\right)^{2}\right)
$$

- If $P=\mathcal{N}\left(0, \sigma^{2}\right)$, using Cochran's Theorem we get

$$
\bar{X}_{n} \sim \mathcal{N}\left(0, \sigma^{2} / n\right) \quad \Perp \quad \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} \sim \sigma^{2} \chi^{2}(n-1)
$$

Convergence properties

Theorem (LLN)
If $\mathbb{E}\left[\left|X_{i}\right|\right]<\infty$, then (in probability, almost surely)

$$
\bar{X}_{n} \rightarrow \mu
$$

- Application to S_{n}^{2} and $\hat{\sigma}_{n}^{2}$, etc. .
- Convergence of the empirical distribution $P_{n} \rightharpoonup P$ under appropriate hypotheses

Central Limit Theorem

Theorem (CLT)
If $\mathbb{E}\left[X_{i}^{2}\right]<\infty$,

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \rightharpoonup \mathcal{N}(0,1)
$$

- By Slutsky's Lemma,

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\hat{\sigma}_{n}} \rightharpoonup \mathcal{N}(0,1)
$$

- Student statistic: if $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$,

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\hat{\sigma}_{n}} \sim \mathcal{T}(n-1)
$$

Confidence interval for the mean

- if σ is known,

$$
I_{\alpha}(\mu)=\left[\bar{X}_{n} \pm \frac{\sigma \phi_{1-\alpha / 2}}{\sqrt{n}}\right]
$$

- if σ is unknown,

$$
I_{\alpha}(\mu)=\left[\bar{X}_{n} \pm \frac{\hat{\sigma}_{n} t_{1-\alpha / 2}^{n-1}}{\sqrt{n}}\right]
$$

Confidence interval for the variance

- if μ is known, as $\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \chi^{2}(n)$

$$
\Longrightarrow I_{\alpha}\left(\sigma^{2}\right)=\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\chi_{1-\alpha / 2}^{n}}, \frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\chi_{\alpha / 2}^{n}}\right]
$$

- if μ is unknown, as $\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}_{n}}{\sigma}\right)^{2} \sim \chi^{2}(n-1)$

$$
\Longrightarrow I_{\alpha}\left(\sigma^{2}\right)=\left[\frac{\hat{\sigma}_{n}^{2}}{\chi_{1-\alpha / 2}^{n-1} /(n-1)}, \frac{\hat{\sigma}_{n}^{2}}{\chi_{\alpha / 2}^{n-1} /(n-1)}\right]
$$

Comparison of two variances

- let $X_{1,1}, \ldots, X_{1, n_{1}}$ be a sample $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and $X_{2,1}, \ldots, X_{2, n_{2}}$ be an independant sample $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$,
- in order to test H_{0} : " $\sigma_{1}=\sigma_{2}^{\prime \prime}$ versus H_{1} : " $\sigma_{1} \neq \sigma_{2}^{\prime \prime}$, use statistic

$$
F=\frac{{\hat{\sigma_{1}}}^{2}}{{\hat{\sigma_{2}}}^{2}} \sim_{H_{0}} F\left(n_{1}-1, n_{2}-1\right)
$$

Comparison of two means

Theorem

- let $X_{1,1}, \ldots, X_{1, n_{1}}$ be a sample $\mathcal{N}\left(\mu_{1}, \sigma^{2}\right)$, and $X_{2,1}, \ldots, X_{2, n_{2}}$ be an independent sample $\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$,
- To estimate the common variance, use

$$
\begin{aligned}
\hat{\sigma}_{12} & =\frac{1}{n_{1}+n_{2}-2}\left(\sum_{i=1}^{n_{1}}\left(X_{1, i}-\bar{X}_{1}\right)^{2}+\sum_{i=1}^{n_{2}}\left(X_{2, i}-\bar{X}_{2}\right)^{2}\right) \\
& \sim \frac{\sigma^{2}}{n_{1}+n_{2}-2} \chi^{2}\left(n_{1}+n_{2}-2\right)
\end{aligned}
$$

- in order to test H_{0} : " $\mu_{1}=\mu_{2}^{\prime \prime}$ versus H_{1} : " $\mu_{1} \neq \mu_{2}^{\prime \prime}$, use statistic

$$
T=\sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}} \frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{\hat{\sigma}_{12}} \sim_{H_{0}} T\left(n_{1}+n_{2}-2\right)
$$

Outline

One and Two-Sample Statistics

Linear Gaussian Model

Model Reduction and model Selection

Exercices

Generic formulation

- $Y_{i}=\alpha_{1} x_{i}^{1}+\cdots+\alpha_{p} x_{i}^{p}+\sigma Z_{i}, Z_{i} \sim \mathcal{N}(0,1)$
- Matrice form:

$$
Y=X \theta+\sigma Z, \quad Z \sim \mathcal{N}\left(0_{n}, I_{n}\right)
$$

- Ex: ANOVA, regression, rupture in time series

Cochran's Theorem

Theorem

- let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a standard centered normal sample
- let E_{1}, \ldots, E_{p} be a decomposition of R^{n} by two-by-two orthogonal subspaces of dimensions $\operatorname{dim} E_{j}=d_{j}$
- for $1 \leq i \leq p$, let $v_{1}^{i}, \ldots, v_{j_{i}}^{i}$ be an orhogonal basis of E_{j}

Then

- the components of X in base $\left(v_{1}, \ldots, v_{n}\right)$ form another standard centered normal sample
- the random vectors $X_{E_{1}}, \ldots, X_{E_{p}}$ obtained by projecting X on E_{1}, \ldots, E_{p} are independent
- so are $\left\|X_{E_{1}}\right\|, \ldots,\left\|X_{E_{p}}\right\|$, and they satisfy:

$$
\left\|X_{E_{i}}\right\|^{2} \sim \chi^{2}\left(d_{i}\right)
$$

Generic solution

Theorem

- The Maximum-Likelihood estimator and the least-square estimator are given by:

$$
\hat{\theta}=\left({ }^{t} X X\right)^{-1}{ }^{t} X Y \sim \mathcal{N}\left(\theta, \sigma^{2}\left({ }^{t} X X\right)^{-1}\right)
$$

- The variance σ^{2} is estimated (without bias) by:

$$
\hat{\sigma}^{2}=\frac{\|Y-X \hat{\theta}\|^{2}}{n-p} \sim \frac{\sigma^{2}}{n-p} \chi^{2}(n-p)
$$

- $\hat{\theta}$ and σ^{2} are independent

Incremental Gramm-Schmidt procedure
Theorem (Gauss-Markov)
$\hat{\theta}$ has minimal variance among all linear unbiased estimators of θ

Simple regression: $Y_{i}=\alpha+\beta x_{i}+\sigma Z_{i}$

Theorem

- The ML-estimators are given by:

$$
\begin{aligned}
& \hat{\alpha}=\bar{Y}-\hat{\beta} \bar{x} \sim \mathcal{N}\left(\alpha, \frac{\sigma^{2} \mathbb{E}\left[x^{2}\right]}{n \operatorname{Var}(x)}\right) \\
& \hat{\beta}=\frac{\operatorname{Cov}(x, Y)}{\operatorname{Var}(x)} \sim \mathcal{N}\left(\beta, \frac{\sigma^{2}}{n \operatorname{Var}(x)}\right)
\end{aligned}
$$

- They are correlated: $\operatorname{Cov}(\hat{\alpha}, \hat{\beta})=-\frac{\sigma^{2} \bar{x}}{n \operatorname{Var}[x]}$
- The variance can be estimated by:

$$
\hat{\sigma}_{n}^{2}=\frac{1}{n-2} \sum\left(Y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2} \sim \frac{\sigma^{2}}{n-2} \chi^{2}(n-2)
$$

- Smart reparameterization $Y_{i}=\delta+\beta\left(x_{i}-\bar{x}\right)+\sigma Z_{i}$

Polynomial regression

$$
(Y)=\left(\begin{array}{lllll}
1 & x & x^{2} & \ldots & x^{p}
\end{array}\right) \times\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{p}
\end{array}\right)
$$

Can also be used for exponential growth models $y_{i}=\exp \left(a x_{i}+b_{i}+\epsilon_{i}\right)$ to determine β such that $\mathbb{E}[Y]=\alpha X^{\beta}, \ldots$

Outline

One and Two-Sample Statistics

Linear Gaussian Model

Model Reduction and model Selection

Exercices

Student test on a regressor

Theorem
In order to test $H_{0}=" \theta_{k}=a^{\prime \prime}$ versus $H_{1}=" \theta_{k} \neq a^{\prime \prime}$

- estimate the variance of $\hat{\theta}_{k}$ by

$$
\hat{\sigma}^{2}\left(\hat{\beta}_{k}\right)=\hat{\sigma}^{2}\left\{\left({ }^{t} X X\right)^{-1}\right\}_{k, k}
$$

- use the statistic

$$
T=\frac{\hat{\beta}_{k}-a}{\hat{\sigma}\left(\hat{\beta}_{k}\right)} \sim_{H_{0}} T(n-p)
$$

- Generalization: to test $H_{0}={ }^{\text {"t }} b \theta=a "$ versus $H_{1}=" t b \theta \neq a^{\prime \prime}$, use

$$
T=\frac{{ }^{t} b \hat{\beta}-a}{\hat{\sigma} \sqrt{{ }^{t} b\left({ }^{t} X X\right)^{-1} b}} \sim_{H_{0}} T(n-p)
$$

Fischer Test "model vs submodel"

Theorem

- let $H \subset E \subset \mathbb{R}^{n}, \operatorname{dim} H=q, \operatorname{dim} E=p$
- to test $H_{0}=" \theta \in H^{\prime \prime}$ versus $H_{1}=$ " $\theta \in E \backslash H^{\prime \prime}$, use the statistic

$$
F=\frac{\left\|Y_{E}-Y_{H}\right\|^{2} /(p-q)}{\left\|Y-Y_{E}\right\|^{2} /(n-p)} \sim_{H_{0}} \mathcal{F}(p-q, n-p)
$$

- reject if $F>\mathcal{F}_{1-\alpha}^{p-q, n-p}$

SSS-notations and R^{2}

- For a model M (relative to a matrix X), define

$$
\begin{aligned}
\text { total variance } \quad S S Y & =\left\|Y-\bar{Y} 1_{n}\right\|^{2}=\operatorname{SSE}\left(1_{n}\right) \\
\text { residual variance } \quad \operatorname{SSE}(M) & =\|Y-X \hat{\theta}\|^{2} \\
\text { explained variance } \quad \operatorname{SSR}(M) & =\left\|X \hat{\theta}-\bar{Y} 1_{n}\right\|^{2}
\end{aligned}
$$

$$
S S Y=\operatorname{SSE}(M)+\operatorname{SSR}(M)
$$

- The quality of fit is quantified by

$$
R^{2}(M)=\frac{S S R(M)}{S S Y}
$$

- The Fischer statistic can be written:

$$
\begin{aligned}
F & =\frac{(\operatorname{SSE}(H)-\operatorname{SSE}(E)) /(p-q)}{\operatorname{SSE}(E) /(n-p)} \\
& =\frac{n-\operatorname{dim}(E)}{\operatorname{dim}(E)-\operatorname{dim}(H)} \times \frac{R^{2}(E)-R^{2}(H)}{1-R^{2}(E)}
\end{aligned}
$$

ANOVA

- The model can be written:

$$
Y_{i, k}=\theta_{i}+\sigma \epsilon_{i, k}, 1 \leq i \leq p, 1 \leq k \leq n_{i}
$$

- Let $Y_{i, \bullet}=\frac{1}{n_{i}} \sum_{k} Y_{i, k}$ and $Y_{\bullet, \bullet}=\frac{1}{n} \sum_{i, k} Y_{i, k}$
- The variance can be decomposed as:

$$
\begin{aligned}
\operatorname{SSY} & =\operatorname{SSR}(M)+\operatorname{SSE}(M) \\
& =\sum_{i} n_{i}\left(Y_{i, \bullet}-Y_{\bullet, \bullet}\right)+\sum_{i, k}\left(Y_{i, k}-Y_{i, \bullet}\right)
\end{aligned}
$$

- To test $H_{0}=" \theta_{1}=\cdots=\theta_{p}^{\prime \prime}$ versus $H_{1}=\bar{H}_{0}$, the Fischer statistic is:

$$
F=\frac{n-p}{p-1} \frac{\sum_{i} n_{i}\left(Y_{i, \bullet}-Y_{\bullet, \bullet}\right)^{2}}{\sum_{i, k}\left(Y_{i, k}-Y_{i, \bullet}\right)^{2}} \sim F(p-1, n-p)
$$

Exhaustive, Forward, Backward and Stepwise selection

- Exhaustive search: for all sizes $1 \leq k \leq p$, find the combination of directions with highest R^{2}.
- Forward selection: at each step, add the direction most correlated with Y. Stop when the Fischer test for this direction is not rejected
- Backward selection: start with full model, and remove the direction with smallest t-statistic. Stop when all remaining t-statistics are significant
- Stepwise selection: like Forward selection, but after each inclusion remove all directions with unsignificant F-statistic
- Note: unless specified, 1_{n} is always included into the models.

Quadratic Risk: Bias-Variance decomposition

- To simplify the discussion, we consider the model

$$
Y=\theta+\sigma Z
$$

where θ is arbitrary but aims at be understood by the family of models \mathcal{M}

- The quadratic risk of model $M \in \mathcal{M}$ is defined as

$$
r(M)=\mathbb{E}\left[\left\|\theta-\hat{\theta}_{M}\right\|^{2}\right]
$$

- It can be decomposed as:

$$
r(M)=\left\|\theta-\theta_{M}\right\|^{2}+\sigma^{2} \operatorname{dim}(M)
$$

Risk Estimation and Mallow's criterion

- Goal: choose model $M \in \mathcal{M}$ with minimal quadratic risk $r(M)$.
- Problem: the bias $\left\|\theta-\theta_{M}\right\|^{2}$ is unknown
- Idea: penalize complexity $\operatorname{dim}(M)$
- Mallow's criterion: choose model M minimizing

$$
C_{p}(M)=\operatorname{SSE}(M)+2 \sigma^{2} \operatorname{dim}(M)
$$

Heuristic: $r(M)=\|\theta\|^{2}-\left\|\theta_{M}\right\|^{2}+\sigma^{2} \operatorname{dim}(M)$, but $\mathbb{E}\left[\left\|\hat{\theta}_{M}\right\|^{2}\right]=\left\|\theta_{M}\right\|^{2}+\sigma^{2} \operatorname{dim}(M)$, hence
$\tilde{r}(M)=\|\theta\|^{2}-\left(\left\|\hat{\theta}_{M}\right\|^{2}-\sigma^{2} \operatorname{dim}(M)\right)+\sigma^{2} \operatorname{dim}(M)$ has
expectation $r(M)$, but maximizing $\tilde{r}(M)$ over M is equivalent to maximizing

$$
\tilde{r}(M)-\|\theta\|^{2}+\|Y\|^{2}=\left\|Y-\hat{\theta}_{M}\right\|^{2}+2 \sigma^{2} \operatorname{dim}(M)
$$

- $\mathbf{Y}=\theta+\sigma Z$

Other Criteria

- Adjusted R^{2} :

$$
\begin{aligned}
R_{a}^{2}(M) & =1-\frac{n-1}{n-\operatorname{dim}(M)}\left(1-R^{2}(M)\right) \\
& =1-\frac{n-1}{n-\operatorname{dim}(M)} \times \frac{\operatorname{SSE}(M)}{S S Y}
\end{aligned}
$$

- Bayesian Information Criterion:

$$
\operatorname{BIC}(M)=\operatorname{SSE}(M)+\sigma^{2} \operatorname{dim}(M) \log n
$$

Application: denoising a signal

- discretized and noisy version of $f:[0,1] \rightarrow \mathbb{R}$:

$$
Y_{k}=f(k / n)+\sigma Z_{k}, 0 \leq k \leq n-1
$$

- choice of an orthogonal basis of \mathbb{R}^{n} : Fourier

$$
\begin{aligned}
\Omega_{n}=\{ & {\left[\sin \left(\frac{2 \pi k l}{n}\right)\right]_{0 \leq I \leq N-1}, 1 \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor, } \\
& {\left.\left[\cos \left(\frac{2 \pi k l}{n}\right)\right]_{0 \leq I \leq N-1}, 0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} }
\end{aligned}
$$

- nested models with increasing number of non-zero Fourier coefficients

Logistic Regression

- The Gaussian model does obviously not apply everywhere; think e.g. of a regression age/heart disease.
- Logistic model:

$$
Y_{i} \sim \mathcal{B}\left(\mu\left({ }^{t} X_{i} \theta\right)\right),
$$

where $\mu(\eta)=\frac{\exp (\eta)}{1+\exp (\eta)}$ is the inverse logit function.

- Maximum likelihood estimation is possible numerically (Newton-Raphson method)

Outline

One and Two-Sample Statistics

Linear Gaussian Model

Model Reduction and model Selection

Exercices

Discovery of R

- Understand and modify the source codes available on the website.
- The data frame called 'cars' contains two arrays: cars\$dist and cars\$speed. Its gives the speed of cars and the distances taken to stop (recorded in the 1920s). A relation dist $=A \times$ speed B is expected. How to estimate A and B ?
Test if $B=0$, and then if $B=1$.
- Find out how logistic regression can be done with R. Illustrate on some data you choose.

Simple Exercices

- Show that if X_{1}, \ldots, X_{n} is a $\mathcal{N}(0,1)$-sample, then

$$
\bar{X}_{n} \sim \mathcal{N}(0,1 / n) \quad \Perp \quad \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} \sim \chi^{2}(n-1)
$$

- Re-compute the formula giving $\hat{\alpha}$ and $\hat{\beta}$ in the simple regression model by analytic minimization of the total squared errors $\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}$.
- Compute the squared prediction error $\mathbb{E}\left[\left(\hat{y}^{*}-\alpha-\beta x^{*}\right)^{2}\right]$ for a new observation at point x^{*} in the simple regression model.
- Same exercices for the general gaussian linear model.

Exercice: weighting methods

A two plate weighing machine is called unbiased with precision σ^{2} if, an object of true weight m on the left plate is balanced by a random weight y such that $y=m+\sigma \epsilon$ on the right plate, where ϵ is a centered standard normal variable.
Mister M. has three objects of mass a, b and c to weigh with such a machine, and he is allowed to proceed to three measurements. He thinks of three possibilities

- weighting each object separately : (a -), (b -), (c -);
- weighting the objects two at a time : $(\mathrm{ab}-),(\mathrm{ac}-)$ and (bc -);
- putting each object one time on the right plate alone and two times with another on the right plate $(a b-c),(a c-b),(b c$ -a).
What would you advice him?

Exercice: weighting methods

A two plate weighing machine is called unbiased with precision σ^{2} if, an object of true weight m on the left plate is balanced by a random weight y such that $y=m+\sigma \epsilon$ on the right plate, where ϵ is a centered standard normal variable.
Mister M. has three objects of mass a, b and c to weigh with such a machine, and he is allowed to proceed to three measurements. He thinks of three possibilities

- weighting each object separately : (a -), (b -), (c -);
- weighting the objects two at a time : $(\mathrm{ab}-),(\mathrm{ac}-)$ and (bc -);
- putting each object one time on the right plate alone and two times with another on the right plate $(a b-c),(a c-b),(b c$ - a).

What would you advice him?
More precisely: compute the individual variance for each possibility and give a first conclusion. Does it hold if one is interested in linear combinations of the weight?

Exercice: multi-intercept regression

Botanists want to quantify the average difference of height between the trees of two forests A and B. In their model, the height of a tree is the sum of three terms:

- a term q depending on the quality of the ground, which is assumed to be constant in each forest: q_{A} for the trees of forest A, q_{B} for the trees of forest B;
- an unknown biological constant times the quantity of humus around the tree;
- a random term proper to each tree.

Precisely, they want to estimate the difference $D=q_{A}-q_{B}$. For their study, they have collected the height of n_{A} trees in forest A, n_{B} trees in forest B, as well as the quantities $\left(h_{i}^{A}\right)_{1 \leq j \leq n_{A}}$ and $\left(h_{i}^{B}\right)_{1 \leq j \leq n_{B}}$ of humus at the basis of all thoses trees. Tell them how to do it.

