Separability criteria

for high dimensional bipartite quantum states

Université Claude Bernard Lyon 1 / Universitat Autònoma de Barcelona

Cécilia Lancien

Journées MAS - August 28th 2014

Separability criteria

Outline

Introduction

Mean-width of the sets of separable and *k*-extendible states

Separability and k-extendibility of random states

3

State of a quantum system : Positive and trace 1 operator ρ (density operator) on a Hilbert space H (state space).
 Finite number n of free parameters → H ≡ Cⁿ.

• • = • • = •

- State of a quantum system : Positive and trace 1 operator ρ (density operator) on a Hilbert space H (state space).
 Finite number n of free parameters → H ≡ Cⁿ.
- Pure vs mixed : A quantum state ρ on H is *pure* if there exists a unit vector |ψ⟩ in H such that ρ = |ψ⟩⟨ψ|. Otherwise, it is *mixed*.

- State of a quantum system : Positive and trace 1 operator ρ (density operator) on a Hilbert space H (state space).
 Finite number n of free parameters → H ≡ Cⁿ.
- Pure vs mixed : A quantum state ρ on H is *pure* if there exists a unit vector |ψ⟩ in H such that ρ = |ψ⟩⟨ψ|. Otherwise, it is *mixed*.
- State of a quantum system composed of 2 subsystems in states σ_A on A and τ_B on B : ρ_{AB} = σ_A ⊗ τ_B on A ⊗ B.

- State of a quantum system : Positive and trace 1 operator ρ (density operator) on a Hilbert space H (state space).
 Finite number n of free parameters → H ≡ Cⁿ.
- Pure vs mixed : A quantum state ρ on H is *pure* if there exists a unit vector |ψ⟩ in H such that ρ = |ψ⟩⟨ψ|. Otherwise, it is *mixed*.
- State of a quantum system composed of 2 subsystems in states σ_A on A and τ_B on B : ρ_{AB} = σ_A ⊗ τ_B on A ⊗ B.
- Separability vs Entanglement : A bipartite quantum state is *separable* if it may be written as a convex combination of product states. Otherwise, it is *entangled*.

イロン イボン イヨン イヨン 三日

- State of a quantum system : Positive and trace 1 operator ρ (density operator) on a Hilbert space H (state space).
 Finite number n of free parameters → H ≡ Cⁿ.
- Pure vs mixed : A quantum state ρ on H is *pure* if there exists a unit vector |ψ⟩ in H such that ρ = |ψ⟩⟨ψ|. Otherwise, it is *mixed*.
- State of a quantum system composed of 2 subsystems in states σ_A on A and τ_B on B : ρ_{AB} = σ_A ⊗ τ_B on A ⊗ B.
- Separability vs Entanglement : A bipartite quantum state is *separable* if it may be written as a convex combination of product states. Otherwise, it is *entangled*.
- Reduced state : For ρ_{AB} a state on $A \otimes B$, its *reduced state on* A is the partial trace $\rho_A = \text{Tr}_B \rho_{AB}$.

- 12

 \rightarrow Deciding whether a given bipartite state is entangled or (close to) separable is an important issue in quantum physics.

 \rightarrow Deciding whether a given bipartite state is entangled or (close to) separable is an important issue in quantum physics.

<u>Problem</u> : It is known to be a hard task, both from a mathematical and a computational point of view (Gurvits).

 \rightarrow Deciding whether a given bipartite state is entangled or (close to) separable is an important issue in quantum physics.

<u>Problem</u> : It is known to be a hard task, both from a mathematical and a computational point of view (Gurvits).

Solution : Find set of states which are easier to characterize and which contain the set of separable states.

 \rightarrow Necessary conditions for separability that have a simple mathematical description and that may be checked efficiently on a computer (e.g. by a semi-definite programme).

イロン イボン イヨン イヨン 三日

The *k*-extendibility criterion for separability (1)

Definition (k-extendibility)

Let $k \ge 2$. A state ρ_{AB} on $A \otimes B$ is *k*-extendible with respect to B if there exists a state ρ_{AB^k} on $A \otimes B^{\otimes k}$ which is invariant under any permutation of the B subsystems and such that $\rho_{AB} = \text{Tr}_{B^{k-1}} \rho_{AB^k}$.

The *k*-extendibility criterion for separability (1)

Definition (k-extendibility)

Let $k \ge 2$. A state ρ_{AB} on $A \otimes B$ is *k*-extendible with respect to B if there exists a state ρ_{AB^k} on $A \otimes B^{\otimes k}$ which is invariant under any permutation of the B subsystems and such that $\rho_{AB} = \text{Tr}_{B^{k-1}} \rho_{AB^k}$.

NSC for Separability (Doherty/Parrilo/Spedalieri)

On a bipartite Hilbert space $A \otimes B$, a state is separable if and only if it is *k*-extendible w.r.t. B for all $k \ge 2$.

The *k*-extendibility criterion for separability (1)

Definition (k-extendibility)

Let $k \ge 2$. A state ρ_{AB} on $A \otimes B$ is *k*-extendible with respect to B if there exists a state ρ_{AB^k} on $A \otimes B^{\otimes k}$ which is invariant under any permutation of the B subsystems and such that $\rho_{AB} = \text{Tr}_{B^{k-1}} \rho_{AB^k}$.

NSC for Separability (Doherty/Parrilo/Spedalieri)

On a bipartite Hilbert space $A \otimes B$, a state is separable if and only if it is *k*-extendible w.r.t. B for all $k \ge 2$.

Proof idea :

- " ρ_{AB} separable $\Rightarrow \rho_{AB} k$ -extendible w.r.t. B for all $k \ge 2$ " is obvious since $\sigma_A \otimes \tau_B = \text{Tr}_{B^{k-1}} \left[\sigma_A \otimes \tau_B^{\otimes k} \right].$
- " ρ_{AB} *k*-extendible w.r.t. B for all $k \ge 2 \Rightarrow \rho_{AB}$ separable" relies on the quantum De Finetti theorem (Christandl/König/Mitchison/Renner).

イロン イボン イヨン イヨン 三日

The k-extendibility criterion for separability (2)

<u>Observation</u> : ρ_{AB} *k*-extendible w.r.t. $B \Rightarrow \rho_{AB}$ *k*'-extendible w.r.t. B for $k' \leq k$. \rightarrow Hierarchy of NC for separability, which an entangled state is guaranteed to stop passing at some point.

The k-extendibility criterion for separability (2)

<u>Observation</u> : ρ_{AB} *k*-extendible w.r.t. $B \Rightarrow \rho_{AB}$ *k*'-extendible w.r.t. B for $k' \leq k$. \rightarrow Hierarchy of NC for separability, which an entangled state is guaranteed to stop passing at some point.

Problem : For a given $k \ge 2$, how "close" to the set of separable states is the set of *k*-extendible states? how "powerful" is the *k*-extendibility NC for separability?

イロト イヨト イヨト

Reminder about Gaussian and Wishart matrices

Definitions (Gaussian Unitary and Wishart ensembles)

- *G* is a $n \times n$ GUE matrix if $G = (H + H^{\dagger})/2$ with *H* a $n \times n$ matrix having independent complex normal entries.
- *W* is a (n, s)-Wishart matrix if $W = HH^{\dagger}$ with *H* a $n \times s$ matrix having independent complex normal entries.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

Reminder about Gaussian and Wishart matrices

Definitions (Gaussian Unitary and Wishart ensembles)

• *G* is a $n \times n$ GUE matrix if $G = (H + H^{\dagger})/2$ with *H* a $n \times n$ matrix having independent complex normal entries.

• *W* is a (n, s)-Wishart matrix if $W = HH^{\dagger}$ with *H* a $n \times s$ matrix having independent complex normal entries.

Definitions (Centered semicircular and Marčenko-Pastur distributions) $d\mu_{SC(\sigma^2)}(x) = \frac{1}{2\pi\sigma^2}\sqrt{4\sigma^2 - x^2}\mathbf{1}_{[-2\sigma,2\sigma]}(x)dx$ $d\mu_{MP(\lambda)}(x) = (1 - \frac{1}{\lambda})_+ \delta_0 + \frac{\sqrt{(\lambda^+ - x)(x - \lambda^-)}}{2\pi\lambda x}\mathbf{1}_{[\lambda^-,\lambda^+]}(x)dx, \lambda^{\pm} = (\sqrt{\lambda} \pm 1)^2$

Reminder about Gaussian and Wishart matrices

Definitions (Gaussian Unitary and Wishart ensembles)

• *G* is a $n \times n$ GUE matrix if $G = (H + H^{\dagger})/2$ with *H* a $n \times n$ matrix having independent complex normal entries.

• *W* is a (n, s)-Wishart matrix if $W = HH^{\dagger}$ with *H* a $n \times s$ matrix having independent complex normal entries.

Definitions (Centered semicircular and Marčenko-Pastur distributions) $d\mu_{SC(\sigma^{2})}(x) = \frac{1}{2\pi\sigma^{2}}\sqrt{4\sigma^{2} - x^{2}}\mathbf{1}_{[-2\sigma,2\sigma]}(x)dx$ $d\mu_{MP(\lambda)}(x) = (1 - \frac{1}{\lambda})_{+}\delta_{0} + \frac{\sqrt{(\lambda^{+} - x)(x - \lambda^{-})}}{2\pi\lambda x}\mathbf{1}_{[\lambda^{-},\lambda^{+}]}(x)dx, \lambda^{\pm} = (\sqrt{\lambda} \pm 1)^{2}$

Link with random matrices : When $n \to +\infty$, the spectral distribution of a $n \times n$ GUE matrix (rescaled by \sqrt{n}) converges to $\mu_{SC(1)}$, and that of a $(n, \lambda n)$ -Wishart matrix (rescaled by λn) converges to $\mu_{MP(\lambda)}$.

(日) (四) (三) (三) (三)

Introduction

Separability and *k*-extendibility of random states

3

Mean-width of a set of states

Definitions

Let *K* be a convex set of states on \mathbf{C}^n containing Id/n.

• For a $n \times n$ Hermitian Δ , the width of K in the direction Δ is $w(K, \Delta) = \sup_{\sigma \in K} \operatorname{Tr}(\Delta(\sigma - Id/n)).$

• The *mean-width of K* is the average of $w(K, \cdot)$ over the Hilbert-Schmidt unit sphere of $n \times n$ Hermitians, equipped with the uniform probability measure. It is equivalently defined as $w(K) = \mathbf{E} w(K, G)/\gamma_n$, where *G* is a $n \times n$ GUE matrix and $\gamma_n = \mathbf{E} ||G||_{HS} \sim_{n \to +\infty} n$.

Mean-width of a set of states

Definitions

Let *K* be a convex set of states on \mathbf{C}^n containing Id/n.

• For a $n \times n$ Hermitian Δ , the width of K in the direction Δ is $w(K, \Delta) = \sup_{\sigma \in K} \operatorname{Tr}(\Delta(\sigma - Id/n)).$

• The *mean-width of K* is the average of $w(K, \cdot)$ over the Hilbert-Schmidt unit sphere of $n \times n$ Hermitians, equipped with the uniform probability measure. It is equivalently defined as $w(K) = \mathbf{E} w(K, G)/\gamma_n$, where *G* is a $n \times n$ GUE matrix and $\gamma_n = \mathbf{E} ||G||_{HS} \sim_{n \to +\infty} n$.

 \rightarrow The mean-width of a set of states is a certain measure of its "size". Computing it amounts to estimating the supremum of some Gaussian process.

Mean-width of a set of states

Definitions

Let *K* be a convex set of states on \mathbf{C}^n containing Id/n.

• For a $n \times n$ Hermitian Δ , the width of K in the direction Δ is $w(K, \Delta) = \sup_{\sigma \in K} \operatorname{Tr}(\Delta(\sigma - Id/n)).$

• The *mean-width of K* is the average of $w(K, \cdot)$ over the Hilbert-Schmidt unit sphere of $n \times n$ Hermitians, equipped with the uniform probability measure. It is equivalently defined as $w(K) = \mathbf{E} w(K, G)/\gamma_n$, where *G* is a $n \times n$ GUE matrix and $\gamma_n = \mathbf{E} ||G||_{HS} \sim_{n \to +\infty} n$.

 \rightarrow The mean-width of a set of states is a certain measure of its "size".

Computing it amounts to estimating the supremum of some Gaussian process.

Theorem (Wigner's semicircle law)

On **C**^{*n*}, the mean-width of the set of all states is asymptotically $2/\sqrt{n}$.

Mean-width of the set of separable states

Theorem (Aubrun/Szarek)

Denote by *S* the set of separable states on $\mathbf{C}^d \otimes \mathbf{C}^d$. There exist universal constants c, C such that $c/d^{3/2} \leq w(S) \leq C/d^{3/2}$.

Mean-width of the set of separable states

Theorem (Aubrun/Szarek)

Denote by S the set of separable states on $\mathbf{C}^d \otimes \mathbf{C}^d$. There exist universal constants c, C such that $c/d^{3/2} \leq w(S) \leq C/d^{3/2}$.

<u>Remark</u> : The mean-width of the set of separable states is of order $1/d^{3/2}$, hence much smaller than the mean-width of the set of all states (of order 1/d). \rightarrow On high dimensional bipartite systems, most states are entangled.

Mean-width of the set of separable states

Theorem (Aubrun/Szarek)

Denote by S the set of separable states on $\mathbf{C}^d \otimes \mathbf{C}^d$. There exist universal constants c, C such that $c/d^{3/2} \leq w(S) \leq C/d^{3/2}$.

<u>Remark</u> : The mean-width of the set of separable states is of order $1/d^{3/2}$, hence much smaller than the mean-width of the set of all states (of order 1/d). \rightarrow On high dimensional bipartite systems, most states are entangled.

Proof idea :

• Upper-bound : Approximate S by a polytope with "few" vertices, and use that $\mathsf{E}\sup_{i\in I} Z_i \leq C\sqrt{\log |I|}$ for $(Z_i)_{i\in I}$ a finite bounded Gaussian process (Pisier).

• Lower-bound : Estimate the *volume-radius* of S by "geometric" considerations, and use that $vrad \leq w$ (Urysohn).

Mean-width of the set of k-extendible states

Theorem

Fix $k \ge 2$ and denote by \mathcal{E}_k the set of *k*-extendible states on $\mathbf{C}^d \otimes \mathbf{C}^d$. Asymptotically, $w(\mathcal{E}_k) = 2/\sqrt{kd}$.

Mean-width of the set of k-extendible states

Theorem

Fix $k \ge 2$ and denote by \mathcal{E}_k the set of *k*-extendible states on $\mathbf{C}^d \otimes \mathbf{C}^d$. Asymptotically, $w(\mathcal{E}_k) = 2/\sqrt{k}d$.

<u>Remark</u> : The mean-width of the set of *k*-extendible states is of order 1/d, hence much bigger than the mean-width of the set of separable states. \rightarrow On high dimensional bipartite systems, the set of *k*-extendible states is a very rough approximation of the set of separable states.

Mean-width of the set of k-extendible states

Theorem

Fix $k \ge 2$ and denote by \mathcal{E}_k the set of *k*-extendible states on $\mathbf{C}^d \otimes \mathbf{C}^d$. Asymptotically, $w(\mathcal{E}_k) = 2/\sqrt{kd}$.

<u>Remark</u> : The mean-width of the set of *k*-extendible states is of order 1/d, hence much bigger than the mean-width of the set of separable states. \rightarrow On high dimensional bipartite systems, the set of *k*-extendible states is a very rough approximation of the set of separable states.

Proof strategy : $\sup_{\sigma k-ext} \operatorname{Tr}(G(\sigma - Id/d^2))$ may be expressed as $\|\widetilde{G}\|_{\infty}$ for some suitable \widetilde{G} . So one has to estimate $\mathbf{E} \|\widetilde{G}\|_{\infty}$ for the "modified" GUE matrix \widetilde{G} . This is done by computing the *p*-order moments $\mathbf{E} \operatorname{Tr} \widetilde{G}^p$, and identifying the limiting spectral distribution (after rescaling by d/k) : a centered semicircular distribution $\mu_{SC(k)}$. The latter has $2\sqrt{k}$ as upper-edge.

Introduction

Mean-width of the sets of separable and *k*-extendible states

Separability and k-extendibility of random states

- 12

イロト イヨト イヨト イヨト

System space $H \equiv \mathbf{C}^n$. Ancilla space $H' \equiv \mathbf{C}^s$. <u>**Random mixed state model on**</u> $H : \rho = \text{Tr}_{H'} |\psi\rangle \langle \psi|$ with $|\psi\rangle$ a uniformly distributed pure state on $H \otimes H'$ (quantum marginal).

System space $H \equiv \mathbf{C}^n$. Ancilla space $H' \equiv \mathbf{C}^s$. **Random mixed state model on** $H : \rho = \text{Tr}_{H'} |\psi\rangle\langle\psi|$ with $|\psi\rangle$ a uniformly distributed pure state on $H \otimes H'$ (quantum marginal). Equivalent description : $\rho = \frac{W}{\text{Tr}W}$ with W a (n, s)-Wishart matrix.

System space $H \equiv \mathbf{C}^n$. Ancilla space $H' \equiv \mathbf{C}^s$. **Random mixed state model on** $H : \rho = \text{Tr}_{H'} |\psi\rangle\langle\psi|$ with $|\psi\rangle$ a uniformly distributed pure state on $H \otimes H'$ (quantum marginal). Equivalent description : $\rho = \frac{W}{\text{Tr}W}$ with W a (n, s)-Wishart matrix.

<u>Question</u>: Fix $d \in \mathbf{N}$ and consider ρ a random state on $\mathbf{C}^d \otimes \mathbf{C}^d$ induced by some environment \mathbf{C}^s .

For which values of s is ρ typically separable? k-extendible?

System space $H \equiv C^n$. Ancilla space $H' \equiv C^s$. **Random mixed state model on** $H : \rho = \text{Tr}_{H'} |\psi\rangle \langle \psi|$ with $|\psi\rangle$ a uniformly

distributed pure state on $H \otimes H'$ (quantum marginal).

Equivalent description : $\rho = \frac{W}{\text{Tr }W}$ with W a (n, s)-Wishart matrix.

<u>Question</u> : Fix $d \in \mathbf{N}$ and consider ρ a random state on $\mathbf{C}^d \otimes \mathbf{C}^d$ induced by some environment \mathbf{C}^s .

For which values of *s* is ρ typically separable ? *k*-extendible ? "typically" = "with overwhelming probability as *d* grows". Hence 2 steps : (i) Identify the range of *s* where ρ is, on average, separable/*k*-extendible. (ii) Show that the average behaviour is generic in high dimension (concentration of measure).

Separability of random induced states

Theorem (Aubrun/Szarek/Ye)

Let ρ be a random state on $\mathbb{C}^d \otimes \mathbb{C}^d$ induced by \mathbb{C}^s . There exists a threshold s_0 satisfying $cd^3 \leq s_0 \leq Cd^3 \log^2 d$ for some constants c, C such that, if $s < s_0$ then ρ is typically entangled, and if $s > s_0$ then ρ is typically separable.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Separability of random induced states

Theorem (Aubrun/Szarek/Ye)

Let ρ be a random state on $\mathbb{C}^d \otimes \mathbb{C}^d$ induced by \mathbb{C}^s . There exists a threshold s_0 satisfying $cd^3 \leq s_0 \leq Cd^3 \log^2 d$ for some constants c, C such that, if $s < s_0$ then ρ is typically entangled, and if $s > s_0$ then ρ is typically separable.

Intuition : If $s \le d^2$ then ρ is uniformly distributed on the set of states of rank at most *s*, therefore generically entangled. If $s \gg d^2$ then ρ is expected to be close to ld/d^2 , therefore separable.

 \rightarrow Phase transition between these two regimes ?

(日) (同) (E) (E) (E)

Theorem (Aubrun/Szarek/Ye)

Let ρ be a random state on $\mathbb{C}^d \otimes \mathbb{C}^d$ induced by \mathbb{C}^s . There exists a threshold s_0 satisfying $cd^3 \leq s_0 \leq Cd^3 \log^2 d$ for some constants c, C such that, if $s < s_0$ then ρ is typically entangled, and if $s > s_0$ then ρ is typically separable.

Intuition : If $s \le d^2$ then ρ is uniformly distributed on the set of states of rank at most *s*, therefore generically entangled. If $s \gg d^2$ then ρ is expected to be close to Id/d^2 , therefore separable.

 \rightarrow Phase transition between these two regimes ?

Proof idea : Convex geometry + Comparison of random matrix ensembles.

k-extendibility of random induced states

Theorem

Let ρ be a random state on $\mathbf{C}^d \otimes \mathbf{C}^d$ induced by \mathbf{C}^s . If $s < \frac{(k-1)^2}{4k}d^2$ then ρ is typically not *k*-extendible.

k-extendibility of random induced states

Theorem

Let ρ be a random state on $\mathbf{C}^d \otimes \mathbf{C}^d$ induced by \mathbf{C}^s . If $s < \frac{(k-1)^2}{4k}d^2$ then ρ is typically not *k*-extendible.

Proof strategy : If $\sup_{\sigma k \to ext} \operatorname{Tr}(\rho\sigma) < \operatorname{Tr}(\rho^2)$, then ρ is not k-extendible. To identify when such is the case, one should characterize when $\operatorname{\mathsf{Esup}}_{\sigma k-ext} \operatorname{Tr}(W\sigma) < \operatorname{\mathsf{ETr}}(W^2) / \operatorname{\mathsf{ETr}} W$ for W a (d^2, s) -Wishart matrix. • RHS : In the limit $d, s \to +\infty$, $\operatorname{\mathsf{ETr}}(W^2) = d^4s + d^2s^2$ and $\operatorname{\mathsf{ETr}} W = d^2s$. • LHS : Write $\sup_{\sigma k-ext} \operatorname{Tr}(W\sigma) = \|\widetilde{W}\|_{\infty}$, and estimate $\operatorname{\mathsf{E}} \|\widetilde{W}\|_{\infty}$ for the "modified" Wishart matrix \widetilde{W} . This may be done by computing the p-order moments $\operatorname{\mathsf{ETr}} \widetilde{W}^p$, and identifying the limiting spectral distribution (after rescaling by s/k) : a Marčenko-Pastur distribution $\mu_{MP(ks/d^2)}$. The latter's support has $(\sqrt{ks/d^2} + 1)^2$ as upper-edge. • For $s < (k-1)^2 d^2/4k$, $(\sqrt{ks/d^2} + 1)^2 < (d^2+s)k/s$.

Introduction

- Mean-width of the sets of separable and *k*-extendible states
- Separability and k-extendibility of random states

- 12

イロト イヨト イヨト イヨト

Separability criteria

Journées MAS - August 28th 2014 17 / 18

・ロト ・四ト ・ヨト ・ヨト … ヨ

- On high dimensional bipartite systems, the volume of k-extendible states is more like the one of all states than like the one of separable states.
 - \rightarrow Asymptotic weakness of the *k*-extendibility NC for separability.

- 3

- On high dimensional bipartite systems, the volume of *k*-extendible states is more like the one of all states than like the one of separable states.
 → Asymptotic weakness of the *k*-extendibility NC for separability.
- When *d*→ +∞, a random state on C^d ⊗ C^d induced by C^s is w.h.p. entangled if *s* < *cd*³, and this entanglement is w.h.p. detected by the *k*-extendibility test if *s* < C_kd².

 \rightarrow What about the range $Cd^2 < s < cd^3$?

- On high dimensional bipartite systems, the volume of *k*-extendible states is more like the one of all states than like the one of separable states.
 → Asymptotic weakness of the *k*-extendibility NC for separability.
- When *d*→+∞, a random state on C^d ⊗ C^d induced by C^s is w.h.p. entangled if *s* < *cd*³, and this entanglement is w.h.p. detected by the *k*-extendibility test if *s* < C_kd².

 \rightarrow What about the range $Cd^2 < s < cd^3$?

• Similar features are exhibited by all other known separability criteria (e.g. PPT or realignment).

- On high dimensional bipartite systems, the volume of *k*-extendible states is more like the one of all states than like the one of separable states.
 → Asymptotic weakness of the *k*-extendibility NC for separability.
- When *d*→+∞, a random state on C^d ⊗ C^d induced by C^s is w.h.p. entangled if *s* < *cd*³, and this entanglement is w.h.p. detected by the *k*-extendibility test if *s* < C_kd².

 \rightarrow What about the range $Cd^2 < s < cd^3$?

- Similar features are exhibited by all other known separability criteria (e.g. PPT or realignment).
- Possible generalizations to the unbalanced case A ≡ C^{d_A} and B ≡ C^{d_B} with d_A ≠ d_B.

- On high dimensional bipartite systems, the volume of *k*-extendible states is more like the one of all states than like the one of separable states.
 → Asymptotic weakness of the *k*-extendibility NC for separability.
- When *d*→+∞, a random state on C^d ⊗ C^d induced by C^s is w.h.p. entangled if *s* < *cd*³, and this entanglement is w.h.p. detected by the *k*-extendibility test if *s* < C_kd².

 \rightarrow What about the range $Cd^2 < s < cd^3$?

- Similar features are exhibited by all other known separability criteria (e.g. PPT or realignment).
- Possible generalizations to the unbalanced case A ≡ C^{d_A} and B ≡ C^{d_B} with d_A ≠ d_B.
- What happens when k is not fixed, but instead grows with d?

- G. Aubrun, "Partial transposition of random states and non-centered semicircular distributions", arXiv :1011.0275
- G. Aubrun, Ion Nechita, "Realigning random states", arXiv :1203.3974
- G. Aubrun, Stanislaw Szarek, "Tensor products of convex sets and the volume of separable states on N qudits", arXiv :quant-ph/0503221
- G. Aubrun, Stanislaw Szarek, Deping Ye, "Entanglement threshold for random induced states", arXiv :1106.2265
- M. Christandl, R. König, G. Mitchison, R. Renner, "One-and-a-half quantum De Finetti theorems", arXiv :quant-ph/0602130
- A.C. Doherty, P.A. Parrilo, F.M. Spedalieri, "A complete family of separability criteria", arXiv :quant-ph/0308032