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Seriation

The Seriation Problem.

Randomly ordered movie.

Image similarity matrix (true & observed)

Reconstructed movie.
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Seriation

The Seriation Problem.

� Pairwise similarity information Aij on n variables.

� Suppose the data has a serial structure, i.e. there is an order π such that

Aπ(i)π(j) decreases with |i− j| (R-matrix)

Recover π?
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Seriation

The Continuous Ones Problem.

� We’re given a rectangular binary {0, 1} matrix.

� Can we reorder its columns so that the ones in each row are contiguous (C1P)?

Input matrix Ordered C1P matrix CTC (overlap)

Lemma [Kendall, 1969]

Seriation and C1P. Suppose there exists a permutation such that C is C1P, then
CΠ is C1P if and only if ΠTCTCΠ is an R-matrix.
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Shotgun Gene Sequencing

C1P has direct applications in shotgun gene sequencing.

� Genomes are cloned multiple times and randomly cut into shorter reads
(∼ 400bp), which are fully sequenced.

� Reorder the reads to recover the genome.

(from Wikipedia. . . )
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Outline

� Introduction

� Spectral solution

� Combinatorial solution

� Convex relaxation

� Numerical experiments
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A Spectral Solution

Spectral Seriation. Define the Laplacian of A as LA = diag(A1)−A, the
Fiedler vector of A is written

f = argmin
1Tx=0,
‖x‖2=1

xTLAx.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose A ∈ Sn is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that Π ∈ P is such that
the permuted Fielder vector Πv is monotonic, then ΠAΠT is an R-matrix.
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Spectral Solution

A solution in search of a problem. . .

� What if the data is noisy and outside the spectral perturbation regime?
(The spectral solution is only stable when the noise ‖ΔL‖2 ≤ (λ2 − λ3)/2.)

� What if we have additional structural information?

Key questions here. . .

� Write seriation as an optimization problem?

� Define an objective function?
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Seriation

Combinatorial problems.

� The 2-SUM problem, written

min
π∈P

n∑
i,j=1

Aπ(i)π(j)(i− j)2 = (π−1)TLA(π
−1)

where LA is the Laplacian of A. The 2-SUM problem is NP-Complete for
generic matrices A.
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Seriation and 2-SUM

Combinatorial Solution. For certain matrices A, 2-SUM ⇐⇒ seriation.

Decompose the matrix A. . .

� Define CUT(u,v) matrices [Frieze and Kannan, 1999] as elementary {0, 1}
R-matrices (one constant symmetric square block), with

CUT (u, v) =

{
1 if u ≤ i, j ≤ v
0 otherwise,

� The combinatorial objective πTLAπ for A = CUT (u, v), is

n∑
i,j=1

Aij(yi − yj)
2 = yTLAy = (v − u+ 1)2 var(y[u,v])

it measures the variance of y[u,v].
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Seriation and 2-SUM

Combinatorial Solution. Solve

min
π∈P

n∑
i,j=1

Aij(π(i)− π(j))2 = πTLAπ

� For CUT matrices, contiguous sequences have low variance.

� All contiguous solutions have the same variance here.

� Simple graphical example with A = CUT (5, 8). . .
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Seriation and 2-SUM

Combinatorial Solution.

� CUT decomposition: if A is pre-R (or pre-P), then ATA =
∑

iA
T
i Ai is a sum

of CUT matrices.

� 2-SUM optimization problem:

min
π∈P

n∑
i,j=1

Aij(π(i)− π(j))2 = min
π∈P

πTLAπ (1)

when yi = i, i = 1, . . . , n and A is a conic combination of CUT matrices.

� Laplacian operator is linear, yπ monotonic optimal for all CUT components.

Proposition [F., Jenatton, Bach, d’Aspremont, 2013]

Seriation and 2-SUM. If A can be written as a conic combination of cut matrices,
then the identity permutation is optimal for the 2-SUM problem (1). More generally
if, for some permutation π ∈ P, Aπ can be written as a conic combination of cut
matrices, then π is optimal for the 2-SUM problem (1).
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Seriation and 2-SUM

Combinatorial Solution.

Generalization: equivalence between seriation and 2-SUM for any R-matrix A.

Proposition [Laurent, Seminaroti, 2014]

Seriation and 2-SUM: generalization. Let A,B ∈ Sn and assume that A is
a Robinson similarity matrix, B is a Robinson dissimilarity matrix and moreover A
or B is a Toeplitz matrix. Then the identity permutation is an optimal solution to
the problem QAP(A,B).
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Outline

� Introduction

� Spectral solution

� Combinatorial solution

� Convex relaxation

� Numerical experiments
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Convex Relaxation

2-SUM ⇐⇒ Seriation: What’s the point?

� Spectral (hence polynomial) solution for 2-SUM on for most R-matrices.

� Write seriation as an optimization problem.

� Write a convex relaxation for 2-SUM and seriation.

◦ Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)

◦ Not very robust. . .

◦ Not flexible. . . Hard to include additional structural constraints.
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Convex Relaxation

� Write Dn the set of doubly stochastic matrices, where

Dn = {X ∈ R
n×n : X � 0, X1 = 1, XT1 = 1}

is the convex hull of the set of permutation matrices.

� Also P = D ∩O, i.e. Π permutation matrix if and only Π is both doubly
stochastic and orthogonal.

� Form a convex relaxation

minimize Tr(Y TΠTLAΠY )− μ‖PΠ‖2F
subject to eT1Πg + 1 ≤ eTnΠg,

Π1 = 1, ΠT1 = 1,
Π ≥ 0,

(2)

in the variable Π ∈ R
n×n, where P = I− 1

n11
T and Y ∈ R

n×p is a matrix
whose columns are small perturbations of g = (1, . . . , n)T .
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Convex Relaxation

Objective. Minimize Tr(Y TΠTLAΠY )− μ‖PΠ‖2F

� 2-SUM term Tr(Y TΠTLAΠY ) =
∑p

i=1 y
T
i Π

TLAΠyi where yi are small
perturbations of the vector g = (1, . . . , n)T .

� Orthogonalization penalty −μ‖PΠ‖2F , where P = I− 1
n11

T .

◦ Among all DS matrices, rotations (hence permutations) have the highest
Frobenius norm.

◦ Setting μ ≤ λ2(LA)λ1(Y Y T ), keeps the problem a convex QP.

Constraints.

� eT1Πg + 1 ≤ eTnΠg breaks degeneracies by imposing π(1) ≤ π(n). Without it,
both monotonic solutions are optimal and this degeneracy can significantly
deteriorate relaxation performance.

� Π1 = 1, ΠT1 = 1 and Π ≥ 0, keep Π doubly stochastic.
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Convex Relaxation

Approximation bounds.

� A lot of work on relaxations for orthogonality constraints, e.g. SDPs in
[Nemirovski, 2007, Coifman et al., 2008, So, 2011]. All of this could be used
here.

� Forms SDP of dimension O(n4), e.g. O(n9) for naive IPM implementations

� Simple idea: QTQ = I is a quadratic constraint on Q, lift it.

� O(
√
log n) approximation bounds for some instances of Minimum Linear

Arrangement. [Even et al., 2000, Feige, 2000, Blum et al., 2000, Rao and
Richa, 2005, Feige and Lee, 2007, Charikar et al., 2010].

� Usual tradeoff with SDP relaxations: higher complexity but easier to
quantify approximation quality.

Our relaxation is a simpler QP. No approximation bounds at this point however.
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Semi-Supervised Seriation

� Semi-Supervised Seriation. We can add structural constraints to the
relaxation, where

a ≤ π(i)− π(j) ≤ b is written a ≤ eTi Πg − eTj Πg ≤ b.

which are linear constraints in Π.

� Sampling permutations. We can generate permutations from a doubly
stochastic matrix D

◦ Sample monotonic random vectors u.

◦ Recover a permutation by reordering Du.

� Algorithms. Large QP, projecting on doubly stochastic matrices can be done
very efficiently, using block coordinate descent on the dual. We use accelerated
first-order methods.

� Recent work by Cong Han Lim and Stephen J. Wright (2014): optimize over
permutahedron using sorting networks representation of Goemans. Seems
faster to solve.
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Outline
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Comparing orderings

Compare permutations x = {3, 5, 7, . . . , 1} and y = {4, 5, 2, . . . , 3}?

� Spearman’s ρ. Pearson correlation between permutation vectors x and y.

� Kendall’s τ . Pairs concordant if (xi, yi) ≤ (xj, yj) or (xi, yi) ≥ (xj, yj), then

τ =
#concordant pairs−#non concordant pairs

n(n− 1)/2

� 2-SUM objective. Compute

n∑
i,j=1

Axixj
(yi − yj)

2

� # R constraints violated. Number of pairwise R-constraints violated by
permuted similarity matrix.
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Numerical results

Dead people. Row ordering, 70 artifacts × 59 graves matrix [Kendall, 1971].
Find the chronology of the 59 graves by making artifact occurrences contiguous in
columns.

Kendall Spectral Semi-Superv. Seration

The Hodson’s Munsingen dataset: column ordering given by Kendall (left),
Fiedler solution (center), best unsupervised QP solution from 100 experiments
with different Y , based on combinatorial objective (right).
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Numerical results

Dead people.

Kendall [1971] Spectral QP Reg QP Reg + 0.1% QP Reg + 47.5%

Kendall τ 1.00±0.00 0.75±0.00 0.73±0.22 0.76±0.16 0.97±0.01

Spearman ρ 1.00±0.00 0.90±0.00 0.88±0.19 0.91±0.16 1.00±0.00

Comb. Obj. 38520±0 38903±0 41810±13960 43457±23004 37602±775

# R-constr. 1556±0 1802±0 2021±484 2050±747 1545±43

Performance metrics (median and stdev over 100 runs of the QP relaxation).
We compare Kendall’s original solution with that of the Fiedler vector, the
seriation QP in (2) and the semi-supervised seriation QP with 0.1% and 24%
pairwise ordering constraints specified.

Note that the semi-supervised solution actually improves on both Kendall’s
manual solution and on the spectral ordering.
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Numerical results

DNA. Reorder the read similarity matrix to solve C1P on 250 000 reads from
human chromosome 22.

# reads×# reads matrix measuring the number of common k-mers between
read pairs, reordered according to the spectral ordering.

The matrix is 250 000 × 250 000, we zoom in on two regions.
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Numerical results

DNA. 250 000 reads from human chromosome 22.

Spectral Spectral + QP

Recovered read position versus true read position for the spectral solution and
the spectral solution followed by semi-supervised seriation.

We see that the number of misplaced reads significantly decreases in the
semi-supervised seriation solution.
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Advertisement: SerialRank

New method for ranking based on pairwise comparisons

� Comparison matrix C (cij ∈ [−1, 1]).

� Define similarity S = nI + CCT : “number of similar outcomes against other
opponents”.

� Apply spectral and/or convex relaxation.

See preprint on Arxiv for more details and nice experiments!!

www.di.ens.fr/∼fogel
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Conclusion

Results.

� Equivalence 2-SUM ⇐⇒ seriation.

� QP relaxation for semi supervised seriation.

� Good performance on shotgun gene sequencing.

Open problems.

� Approximation bounds.

� Large-scale QPs (without spectral preprocessing).

� Impact of similarity measures for DNA sequencing and ranking.
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Merci!
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•
• Ranking by “skills” under a probabilistic model (e.g. 

•
matrix (e.g. PageRank, Rank centrality…)

•
•

• football…)
• …)
• Online computer games…
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recovered ranking and “true” ranking

paper for more details…)
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