A Nonparametric Analysis of ABC

Arnaud Guyader

Journées MAS de la SMAI
27-29 août 2014, Toulouse

Framework and Objective [Marin et al. (2012)]

- Parameter: $\theta \in \mathbb{R}^{p}$ generated from the prior $\pi(\theta)$.
- Observations: $y \in \mathbb{R}^{m}$ generated from the likelihood $f(y \mid \theta)$.
- Goal: given a fixed observation y_{0}, estimate the posterior

$$
\pi\left(\theta \mid y_{0}\right)=\frac{f\left(y_{0} \mid \theta\right) \pi(\theta)}{f\left(y_{0}\right)} \propto f\left(y_{0} \mid \theta\right) \pi(\theta)
$$

- Classical Tool: MCMC methods (e.g. Metropolis algorithm), but sometimes computationally intractable...
\Rightarrow Another Strategy: Approximate Bayesian Computation (ABC), a family of likelihood-free computational techniques.

The Original ABC Algorithm [Rubin (1984), Tavaré et al. (1997)]

Require: An integer N
for $i=1$ to N do
Generate θ_{i} from the prior $\pi(\theta)$
Generate y_{i} from the likelihood $f\left(. \mid \theta_{i}\right)$
end for return The values θ_{j}^{\star} such that $y_{j}^{\star}=y_{0}$.

- Conclusion: the θ_{j}^{\star} 's are i.i.d. with law $\pi\left(\theta \mid Y=y_{0}\right)$.
- Drawback: unrealistic unless the support of Y is countable.

Illustration

Illustration

Extension of ABC [Prithard et al. (1999)]

Require: An integer N, a tolerance level ε, a distance d on \mathbb{R}^{m} for $i=1$ to N do Generate θ_{i} from the prior $\pi(\theta)$ Generate y_{i} from the likelihood $f\left(. \mid \theta_{i}\right)$ end for return The couples $\left(\theta_{j}^{\star}, y_{j}^{\star}\right)$ such that $d\left(y_{j}^{\star}, y_{0}\right) \leq \varepsilon$.

- Practical Issue: use a low-dimensional summary statistic $s(y)$ and a distance $\rho\left(s(y), s\left(y_{0}\right)\right)$ instead of $d\left(y, y_{0}\right)$.
- Question: how to tune ε ?

Illustration

Illustration

Illustration

ABC in Practice

Require: Integers N and k, a distance d on \mathbb{R}^{m} for $i=1$ to N do

Generate θ_{i} from the prior $\pi(\theta)$
Generate y_{i} from the likelihood $f\left(. \mid \theta_{i}\right)$
end for return The k pairs $\left(\theta_{j}^{\star}, y_{j}^{\star}\right)$ such that y_{j}^{\star} belongs to the k nearest neighbors of y_{0}, i.e. such that

$$
d\left(y_{j}^{\star}, y_{0}\right)<d\left(y_{(k+1)}, y_{0}\right)=: d_{k+1} .
$$

Remark: in practice, $k=k_{N}$ is most commonly expressed as a percentile of N, e.g. $N=10^{6}$ and $k_{N} / N=0.1 \%$.

Illustration

Illustration

Illustration

Why Does It Work?

Proposition (Conditional Distribution)

Given d_{k+1}, the $\left(\Theta_{j}^{\star}, Y_{j}^{\star}\right)_{1 \leq j \leq k}$ are i.i.d. according to

$$
\frac{f(\theta, y) \mathbb{1}_{\mathcal{B}\left(y_{0}, d_{k+1}\right)}}{C_{k+1}}=\frac{f(\theta, y) \mathbb{1}_{\mathcal{B}\left(y_{0}, d_{k+1}\right)}}{\int_{\mathcal{B}\left(y_{0}, d_{k+1}\right)} f(y) d y}
$$

that is, the law $\mathcal{L}\left((\Theta, Y) \mid d\left(Y, y_{0}\right)<d_{k+1}\right)$.
Corollary (Strong Law of Large Numbers) Assume that $k_{N} \rightarrow+\infty, k_{N} / N \rightarrow 0$, and $k_{N} / \log \log N \rightarrow+\infty$. Then, for any bounded function φ, one has

$$
\frac{1}{k_{N}} \sum_{j=1}^{k_{N}} \varphi\left(\Theta_{j}^{\star}\right) \xrightarrow[N \rightarrow+\infty]{\text { a.s. }} \mathbb{E}\left[\varphi(\Theta) \mid Y=y_{0}\right] .
$$

Kernel Density Estimate

- Density Estimator:

$$
\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right)=\frac{1}{k_{N} h_{N}^{p}} \sum_{j=1}^{k_{N}} K\left(\frac{\Theta_{j}^{\star}-\theta_{0}}{h_{N}}\right) .
$$

- This is a hybrid between a k-nearest neighbor and a kernel density estimation procedure.
- Remark: an additional degree of smoothing [Blum (2010)]

$$
\tilde{\pi}_{N}\left(\theta_{0} \mid y_{0}\right)=\frac{\sum_{i=1}^{N} L\left(\frac{y_{i}-y_{0}}{\delta_{N}}\right) K\left(\frac{\Theta_{i}-\theta_{0}}{h_{N}}\right)}{h_{N}^{p} \sum_{i=1}^{N} L\left(\frac{y_{i}-y_{0}}{\delta_{N}}\right)}
$$

\Rightarrow Questions: Consistency? Rates of convergence?

Illustration

Illustration

Illustration

Illustration

Pointwise Mean Square Error Consistency

Theorem
Assume that the joint probability density f is such that

$$
\int_{\mathbb{R}^{p}} \int_{\mathbb{R}^{m}} f(\theta, y) \log ^{+} f(\theta, y) d \theta d y<\infty
$$

If $k_{N} \rightarrow \infty, k_{N} / N \rightarrow 0, h_{N} \rightarrow 0$ and $k_{N} h_{N}^{p} \rightarrow \infty$, then

$$
\mathbb{E}\left[\left(\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right)-\pi\left(\theta_{0} \mid y_{0}\right)\right)^{2}\right] \xrightarrow[N \rightarrow \infty]{\lambda_{p} \otimes \lambda_{m} \text { a.e. }} 0 .
$$

Remark: the assumption on f is not very restrictive...

Bias-Variance Decomposition

Conditioning on $d_{k+1}=d_{k_{N}+1}$ yields

$$
\mathbb{E}\left[\left(\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right)-\pi\left(\theta_{0} \mid y_{0}\right)\right)^{2}\right]=\mathbb{E}\left[B\left(d_{k+1}\right)^{2}\right]+\mathbb{E}\left[V\left(d_{k+1}\right)\right]
$$

where

$$
B\left(d_{k+1}\right)=\mathbb{E}\left[\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right) \mid d_{k+1}\right]-\pi\left(\theta_{0} \mid y_{0}\right),
$$

and

$$
V\left(d_{k+1}\right)=\mathbb{E}\left[\left(\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right)-\mathbb{E}\left[\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right) \mid d_{k+1}\right]\right)^{2} \mid d_{k+1}\right] .
$$

The Bias Term

Recall: We have to prove that $\mathbb{E}\left[B\left(d_{k+1}\right)^{2}\right] \rightarrow 0$, with

$$
B\left(d_{k+1}\right)=\mathbb{E}\left[\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right) \mid d_{k+1}\right]-\pi\left(\theta_{0} \mid y_{0}\right),
$$

where $\pi\left(\theta_{0} \mid y_{0}\right)=f\left(\theta_{0}, y_{0}\right) / f\left(y_{0}\right)$, and

$$
\begin{aligned}
& \mathbb{E}\left[\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right) \mid d_{k+1}\right]=\left(\frac{1}{V_{m} d_{k+1}^{m}} \int_{\mathcal{B}\left(y_{0}, d_{k+1}\right)} f(y) \mathrm{d} y\right)^{-1} \\
& \quad \times\left(\frac{1}{V_{m} d_{k+1}^{m}} \int_{\mathbb{R}^{p}} \int_{\mathcal{B}\left(y_{0}, d_{k+1}\right)} K_{h}\left(\theta-\theta_{0}\right) f(\theta, y) \mathrm{d} \theta \mathrm{~d} y\right)
\end{aligned}
$$

\Rightarrow Tools: Extensions of Lebesgue's differentiation theorem, and of Jessen-Marcinkiewicz-Zygmund theorem.

The Variance Term

Recall that

$$
\mathbb{E}\left[V\left(d_{k+1}\right)\right]=\mathbb{E}\left[\mathbb{E}\left[\left(\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right)-\mathbb{E}\left[\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right) \mid d_{k+1}\right]\right)^{2} \mid d_{k+1}\right]\right] .
$$

Thus, assuming that $\|K\|_{\infty}=\sup K(\theta)<\infty$, we are led to

$$
\mathbb{E}\left[V\left(d_{k+1}\right)\right] \leq \frac{C\left(\theta_{0}, y_{0}\right)\|K\|_{\infty}}{k_{N} h_{N}^{P}}
$$

and everything is OK, provided that

$$
k_{N} h_{N}^{p} \xrightarrow[N \rightarrow \infty]{ } \infty
$$

Rates of Convergence

Theorem (MISE in the case $m>4$)
Assume that Y has a bounded support. Then, under some regularity assumptions on $f(\theta, y)$ and $f(y)$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\int_{\mathbb{R}^{p}}\left[\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right)-\pi\left(\theta_{0} \mid y_{0}\right)\right]^{2} d \theta_{0}\right] \leq \frac{\int_{\mathbb{R}^{p}} K^{2}(\theta) d \theta}{k_{N} h_{N}^{p}} \\
& +A\left(y_{0}\right)\left(\frac{k_{N}}{N}\right)^{\frac{4}{m}}+B\left(y_{0}\right)\left(\frac{k_{N}}{N}\right)^{\frac{2}{m}} h_{N}^{2}+C\left(y_{0}\right) h_{N}^{4}+o\left(\left(\frac{k_{N}}{N}\right)^{\frac{4}{m}}+h_{N}^{4}\right)
\end{aligned}
$$

\Rightarrow For $k_{N} \propto N^{\frac{p+4}{m+p+4}}$ and $h_{N} \propto N^{\frac{-1}{m+p+4}}$, this leads to

$$
\mathbb{E}\left[\int_{\mathbb{R}^{p}}\left[\hat{\pi}_{N}\left(\theta_{0} \mid y_{0}\right)-\pi\left(\theta_{0} \mid y_{0}\right)\right]^{2} \mathrm{~d} \theta_{0}\right] \leq D\left(y_{0}\right) N^{\frac{-4}{m+p+4}} .
$$

