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First definition : Ferguson-Klass-LePage
series

Consider (E , E ,m) a (σ-)finite measure space. Let α ∈ (0, 2) and
(ft)t a family of functions such that

∫
E

|ft(x)|αm(dx) < +∞:

we can define the stochastic process

I (ft) =

∫
ft(x)M(dx)

where M is a symmetric α-stable random measure with control
measure m: ft is seen as a limit of simple functions.

• We use here an other representation [Lévy-Véhel, LG (2012)].
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Let

• (Γi )i≥1 be a sequence of arrival times of a Poisson process
with unit arrival time,

• (Vi )i≥1 a sequence of i.i.d. random variables with distribution
m̂ = m/m(E ),

• (γi )i≥1 a sequence of i.i.d. random variables with distribution
P(γi = 1) = P(γi = −1) = 1/2.

• with the three sequences (Γi )i≥1, (Vi )i≥1, and (γi )i≥1
independent.

Let α ∈ (0, 2) and c(α) = (2α−1Γ(1− α) cos(πα2 ))−1/α:

I (ft)
d
= (

α

2
m(E ))−1/αc(α)

+∞∑
i=1

γiΓ
−1/α
i ft(Vi ).
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We define the multistable processes on an open interval U:

let α : U → [c, d ] ⊂ (0, 2) a continuous function, ft(x) a family of
functions such that ∀t ∈ U,

∫
E

|ft(x)|α(t)m(dx) < +∞:

Y (t) := (
α(t)

2
m(E ))−1/α(t)c(α(t))

+∞∑
i=1

γiΓ
−1/α(t)
i ft(Vi )

is a symmetric multistable process, with kernel ft and stability
function α.
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• Characteristic function: we compute

E[e iθY (t)] = exp

−|θ|α(t) ∫
E

|ft(x)|α(t)m(dx)

 .



Local structure of multistable processes

Let Y be a real stochastic process.

• Property of localisability : Y admits a tangent process.
[Falconer (2002,2003)]

Definition
A real stochastic process Y = {Y (t) : t ∈ R} is h−localisable at u
if there exists an h ∈ R and a non-trivial limiting process Y ′u (the
local form) such that

lim
r→0

Y (u + rt)− Y (u)

rh
= Y ′u(t)

where convergence occurs in finite dimensional distributions.



Example

The Multistable Lévy Motion:

Y (t) = K (α(t))
+∞∑
i=1

γiΓ
− 1

α(t)

i 1[0,t](Vi ), t ∈ [0, 1]

where α is a C1 function ranging in (1, 2), (Vi )i is i.i.d. uniformly
distributed on (0, 1), and the kernel ft(x) = 1[0,t](x).

The process Y is 1
α(u) -localisable at u ∈ [0, 1], with

Y ′u(t) = Lα(u)(t)

(the Stable Lévy Motion).
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Example of a Stable Lévy Motion
• Trajectory of a α-stable Lévy process, α = 1.9

• Trajectory of a α-stable Lévy process, α = 1.1



Example of multistable Lévy process
• α(t) = 1, 5 + 0, 48 sin(2πt), h(t) = 1

α(t) .
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• α(t) = 1, 02 + 0, 96t.
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Second definition: multistable measures
[Falconer-Liu (2010)]: Let α : R→ (0, 2). We define the family of
stable integrals {I (f ), f ∈ F} as a stochastic process indexed by a
set F of functions. We specify its finite-dimensional distributions,
and apply the Kolmogorov’s existence theorem. Here

F = {f :

∫
E

|f (x)|α(x)m(dx) < +∞}.

Given f1, ..., fd ∈ F , we define a probability measure Pf1,...,fd in Rd

by its characteristic function:

φf1,...,fd (θ1, ..., θd) := exp

−∫
E

|
d∑

j=1

θj fj(x)|α(x)m(dx)

 ,

I (f ) =
∫

f (x)Mα(x)(dx) is called the α(x)-multistable integral of f .
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• Characteristic function: by definition,

E[e iθI (ft)] = exp
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E

|θft(x)|α(x)m(dx)

 .

• For the other definition,

E[e iθI (ft)] = exp

−∫
E

|θft(x)|α(t)m(dx)

 .
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Link between the definitions

We denote by L(t) the Lévy process defined by multistable
measures:

E[e iθL(t)] = exp

− t∫
0

|θ|α(x)dx

 .

The idea is to obtain the Ferguson-Klass-LePage representation of
this process: for t ∈ (0, 1), we have:

L(t) =
∞∑
i=1

K (α(Vi ))γiΓ
−1/α(Vi )
i 1(Vi≤t).

L is a pure jump process, with independent increments. It is a
Markov process and a semi-martingale.
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Link between the definitions

The link is explained by the following decomposition: almost
surely, ∀t ∈ (0, 1),

+∞∑
i=1

γiK (α(t))Γ
− 1

α(t)

i 1[0,t](Vi ) =
+∞∑
i=1

γiK (α(Vi ))Γ
− 1

α(Vi )

i 1[0,t](Vi )+ε(t),

where ε(t) =
t∫
0

+∞∑
i=1

γig
′
i (s)1[0,s[(Vi )ds

and gi (t) = K (α(t))Γ
−1/α(t)
i .
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How to test the multistability

We want to know if the observations come from a stable process or
from a multistable one. We want to test if α is varying with time.
We consider the statistical test:

H0 : α is a constant vs H1 : α is varying.

We consider only the case of the Multistable Lévy motion, so
h(t) = 1

α(t) and f (t, u, x) = 1[0,t](x).

• Idea : we will test if h is varying.
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Estimation of h

We need to estimate the function h, with the observation of one
trajectory of Y .

We define the sequence (Yk,N)k∈Z,N∈N by

Yk,N = Y (
k + 1

N
)− Y (

k

N
).

Let t0 ∈ R. We introduce an estimate of h(t0) with

ĥN(t0) = − 1

n(N) log N

[Nt0]+
n(N)
2
−1∑

k=[Nt0]− n(N)
2

log |Yk,N |

where (n(N))N∈N is a sequence taking even integer values.
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Estimation of h

Theorem
Under technical conditions on the general kernel f (t, u, x), if

• lim
N→+∞

N
n(N) = +∞,

then ∀r > 0, ∀t0,

lim
N→+∞

E
∣∣∣ĥN(t0)− h(t0)

∣∣∣r = 0.

Theorem
For a Lévy process (f (t, u, x) = 1[0,t](x)), when

lim
N→+∞

n(N) = +∞ and lim
N→+∞

n(N)
N = 0, ∀t0 ∈ (0, 1),

√
n(N)

(
log N(ĥN(t0)− h(t0)) + E[ln |Sα(t0)|]

)
L→ N (0,E[Y 2])

where Y ∼ ln |Sα(t0)| − E[ln |Sα(t0)|].
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Estimation of h, case of the Lévy motion

α(t) = 1, 5 + 0, 48 sin(2πt), N = 20000, n(N) = 500.
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Test of the multistability

The hypotheses are :

H0 : ∀(t1, t2) ∈ (0, 1)2, α(t1) = α(t2).
vs

H1 : ∃(t1, t2) ∈ (0, 1)2, α(t1) 6= α(t2).

We use the following statistic, for one t0:

IN =

∫ 1

0
|ĥN(t)− ĥN(t0)|2dt.

Under (H0), E [IN ]→ 0.

Under (H1), E [IN ]→
∫ 1
0 |h(t)− h(t0)|2dt > 0.



Results under H0

Let σ2 = E[Y 2] = Var(ln |Sα(t0)| − E[ln |Sα(t0)|]).
We have the following convergence:

n(N)(log N)2
∫ 1

0
|ĥN(t)− ĥN(t0)|2dt

d→ σ2(1 + χ2(1)).



Proof

Let µ = −E[ln |Sα(t0)|].
We have√

n(N)
(

log N(ĥN(t0)− h(t0))− µ
)

d→ N (0, σ2)

so with
ZN(t) =

√
n(N)

(
log N(ĥN(t)− h(t))− µ(t)

)
→ N (0, σ2)

and ∆h(t) = h(t)− h(t0), ∆µ(t) = µ(t)− µ(t0),

n(N)(log N)2
∫ 1
0 |ĥN(t)− ĥN(t0)|2dt

=
∫ 1
0

∣∣∣ZN(t)− ZN(t0) +
√

n(N)((log N)∆h(t) + ∆µ(t) )
∣∣∣2 dt.



Proof
Under (H0), we expand the square,

1∫
0

|ZN(t)− ZN(t0)|2 dt =

1∫
0

|ZN(t)|2dt−2ZN(t0)

1∫
0

ZN(t)dt+|ZN(t0)|2.

We are now able to control each term:

•
∫ 1
0 |ZN(t)|2dt

P→ σ2,

•
∫ 1
0 ZN(t)dt

P→ 0,

• |ZN(t0)|2 → σ2χ2(1).

Finally,

n(N)(log N)2
∫ 1

0
|ĥN(t)− ĥN(t0)|2dt

d→ σ2(1 + χ2(1)).



Results under H1

The rejection region of the test is

Rc = {n(N)(log N)2

σ̂2

∫ 1

0
|ĥN(t)− ĥN(t0)|2dt > qβ}

with qβ the quantile of the distribution 1 + χ2(1).

• Statistical power for a Lévy process (multistable measures)

Theorem
∀(εN)N such that lim

N→+∞
εN = 0 and lim

N→+∞
εN log N = +∞, if

α∗ = minα(u) and α∗ = maxα(u),

lim inf
N→+∞

− logP1

(
Rc

)
NεN log N

≥ 2(
1

α∗
− 1

α∗
).
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|ĥN(t)− ĥN(t0)|2dt > qβ}

with qβ the quantile of the distribution 1 + χ2(1).
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Results under H1

• Statistical power for a Lévy process

lim inf
N→+∞

− logP1

(
Rc

)
log log N

= +∞.



.


	Multistable processes
	First definition : Ferguson-Klass-LePage series
	Properties of the distributions
	Second definition: multistable measures

	How to test the multistability

