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Model Lasso estimator Theoretical results

Motivation

@ Estimation in Hawkes model (Reynaud-Bouret and Schbath 2010,
Hansen et al.2012, ...) and for Poissonian interactions (Sansonnet
2014) needs the knowledge of an a priori bound on the support of
interaction fonctions.
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Motivation

@ Estimation in Hawkes model (Reynaud-Bouret and Schbath 2010,
Hansen et al.2012, ...) and for Poissonian interactions (Sansonnet
2014) needs the knowledge of an a priori bound on the support of
interaction fonctions.

@ Aim: Overcome knowledge of this bound in a high-dimensional
discrete setting.

o A discrete version of the Poissonian interactions model that is in the
heart of my PhD thesis.

o A circular model: to avoid boundary effects and also to reflect a
certain biological reality.
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Poissonian discrete model

{0,...,p— 1} — points on a circle (we work modulus p).

@ Parents: n i.i.d. uniform random variables U, ..., U, on the set
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Poissonian discrete model

@ Parents: n i.i.d. uniform random variables U, ..., U, on the set
{0,...,p— 1} — points on a circle (we work modulus p).
e Children:
e Each U; gives birth independently to some Poisson variables.
o If x* = (x3,...,xp_1)" € R, then N["J’_ﬂ- ~ P(x;") independent of

anything else.

o The variable Ni/.-ﬂ' represents the number of children that a certain
individual U; has at distance j.

o We set Yx =7 | Nj the total number of children at position k
whose distribution conditioned on the U;'s is given by

Y~ P <Z X;U,) :
i=1
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Poissonian discrete model

@ Parents: n i.i.d. uniform random variables U, ..., U, on the set
{0,...,p— 1} — points on a circle (we work modulus p).
e Children:
e Each U; gives birth independently to some Poisson variables.
o If x* = (x3,...,xp_1)" € R, then N["J’_ﬂ- ~ P(x;") independent of

anything else.

o The variable N[,'_H represents the number of children that a certain
individual U; has at distance j.

o We set Yx =7 | Nj the total number of children at position k
whose distribution conditioned on the U;'s is given by

Y~ P <Z X;U,) :
i=1

Aim: Estimate x* with the observation of the U;'s and the Y/'s.
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Another translation

Y = (Yo,..., Y,_1)" ~ P(AxY),

4/18



Model Lasso estimator Theoretical

Another translation

Y =(Yo,...,Y,_1)H ~ P(Ax*),

where
N(0) N(pp-1) - N(1)
sl | N N |
: - N(p-1)
N(p—-1) - N(1)  N(0)

is a p X p circulant matrix, with

o N(k)=-card{i: U; = k[p]}

representing the number of parents at position k on the circle.

results
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Another translation

Y =(Yo,...,Y,_1)H ~ P(Ax*),

where
N(0) N(pp-1) - N(1)
sl | N N |
: - N(p-1)
N(p—-1) - N(1)  N(0)

is a p X p circulant matrix, with
o N(k)=-card{i: U; = k[p]}
representing the number of parents at position k on the circle.

Aim: Recover x* < solve an inverse problem (potentially ill-posed)
where the operator A is random and depends on the U;'s.
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RIP property |

o The eigenvalues of A are given by oy = "7 | e=2™kUi/P for k in
{0,...,p — 1}. In particular,

[ n if k=0[p]
E(Uk)_{ 0 ifk;AO[g] '
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RIP property |
o The eigenvalues of A are given by oy = "7 | e=2™kUi/P for k in

{0,...,p — 1}. In particular,

n if k=0[p]
E("k)_{ 0 ifk;«éo[g] '

@ So, with high probability, many eigenvalues of A may be close to
zero. For these reasons, our problem is potentially ill-posed, which
justifies the use of nonparametric procedures, such as the Lasso,
even if p is not large with respect to n.
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RIP property |

o The eigenvalues of A are given by oy = "7 | e=2™kUi/P for k in
{0,...,p — 1}. In particular,

n if k =0[p]
E(”)_{ 0 ifk;éo[g] '

@ So, with high probability, many eigenvalues of A may be close to
zero. For these reasons, our problem is potentially ill-posed, which
justifies the use of nonparametric procedures, such as the Lasso,
even if p is not large with respect to n.

o We first focus on proving a Restricted Isometry Property (Candés
and Tao, 2005): there exist positive constants r and R such that
with high probability, for any K-sparse vector x (i.e. with at the most
K non-zero coordinates)

rlixI® < AXI12 < R|Ix|1,

with R as close to r as possible.
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RIP property Il
o Under conditions, a RIP is satisfied by A = A — “T\ﬁllH:

n ~ 3n
2113 < 1Ax3 < 13,
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RIP property Il
o Under conditions, a RIP is satisfied by A = A — r'fT\ﬁ]l]lH:

3n
*"X”z |AX[3 < = x5

o We obtain also a classical Restricted Eigenvalue (RE) type condition
(see Bickel 2009) on an event of probability larger than
1-5.54 pe ¥ st.forall d € {0,...,p— 1},

0(d)) < & (fewz) — ne(6).

p—1 n n
1
with U(d) =Y > > <1Uu - ) <1Uj_u+d[p] - ) and for
u=0 i=1 j#i j=1 p
p and n be fixed integers larger than 1 and for all 6 > 1.
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Lasso estimator by using a weighted penalty |

o A=A—"11M and Y = Vi — 220V, with YV = L300 Vi

o E(Y) = ||x*||l1 and conditionally on the U;'s, Y is an unbiased

estimate of Ax*: B B
E(Y|Uy,...,U,) = Ax".
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Lasso estimator by using a weighted penalty |

o A=A—"11M and Y = Vi — 220V, with YV = L300 Vi

o E(Y) = ||x*||l1 and conditionally on the U;'s, Y is an unbiased

estimate of Ax*: B B
E(Y|Uy,...,U,) = Ax".

We first introduce the following Lasso estimate for some v > 0:
p—1
X :=argmin < [|Y = Ax|3+v>  dilxl ¢,
xERP k=0

which is based on random and data-dependent weights d.

results
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Lasso estimator by using a weighted penalty |l

The Lasso estimate satisfies

(AR(Y =A%) = 2sign(%) for kst.% #0
IAH(Y —AX)[ < 1k for k st. X =0

and in particular, for any k,

IAH(Y =A%), < 7;”‘
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Lasso estimator by using a weighted penalty |l

The Lasso estimate satisfies

(AR(Y =A%) = 2sign(%) for kst.% #0
IAH(Y —AX)[ < 1k for k st. X =0

and in particular, for any k,

IAH(Y =A%), < VS’k

@ Our approach where weights are random is similar to Zou 2006,
Bertin et al.2011, Hansen et al.2012, ...: in some sense, the
weights play the same role as the thresholds in the estimation
procedure proposed in Donoho and Johnstone 1994,
Reynaud-Bouret and Rivoirard 2010, Sansonnet 2014, . ..

8/18



Model Lasso estimator Theoretical results

Lasso estimator by using a weighted penalty Il

The double role of the weights:

@ They have to control the random fluctuations of AHY around its
mean conditionally on the U;'s due to the Poisson setting:
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Lasso estimator by using a weighted penalty Il

The double role of the weights:

@ They have to control the random fluctuations of AMY around its
mean conditionally on the U;'s due to the Poisson setting:

|AR(Y — Ax*)|x < dh.

Remark: If v > 2, x* will also satisfy |A"(Y — Ax*)|, < 72&. This is
a key technical point to prove optimality of our approach.
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Lasso estimator by using a weighted penalty Il

The double role of the weights:

@ They have to control the random fluctuations of AMY around its
mean conditionally on the U;'s due to the Poisson setting:

|AR(Y — Ax*)|x < dh.

Remark: If v > 2, x* will also satisfy |A"(Y — Ax*)|, < 72&. This is
a key technical point to prove optimality of our approach.

@ They need to be high enough, so that they work even if A is not
invertible enough.

results
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How to choose the dj's?

Proposition 1

For any 6 > 0, there exists an event (0, (0) of probability larger than
1 — 2pe~" on which, for all kin {0,...,p— 1},

~h s~ Bo
AP (Y — Ax¥)|x < 2ud + —,
where )
B = max N(u) — n- ‘
uef{0,...,p—1} p
and
p—1
Vk = Z w(k — u)x},
u=0

with w(d) :pz_: (N(u) = n;l) N(u+ d) for all d in {0,...,p—1}.

u=0
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Derivation of constant weights

vie < W|x*[1,
where
p—1 n—1 2
o W :=maxw(d) = max N4+ u) — )Nﬁis
@)=, oo 3 (0 (0

observable, and

o |x*|; is unbiasedly estimated by Y.

results

11/18



Model

Lasso estimator Theoretical results

Derivation of constant weights

vk < Wx"1,

where
p—1 n—1 2
o W :=maxw(d) = max N(¢ + u) — )Nﬁis
@)=, oo 3 (0 (0

observable, and

o |x*|; is unbiasedly estimated by Y.

\ Y+ L \/ .

6n 2n 3
satisfies |Z\H(\~/ = ZX*)|1( < dk = d on an event of probability larger than
1—(2p+1)e".

Constant weights

d:=V2Wé
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Derivation of non constant weights

We reestimate the vy's:
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Derivation of non constant weights

We reestimate the vy's:

di = V26

ez W
KT 76 2 3

satisfies |AH(Y — Ax*)|x < di = di on an event of probability larger
than 1 — 3pe~".
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Control of the weights |

We consider the following special relationships between n, p and 6. For
any integers n, p and for any 6 > 1,

K /PO < n< K'ph

where ' := max(2k, 1) and k" is an absolute constant small enough.

@ In particular, if we choose ¢ proportional to log p (which is natural
to have results on events with large probability), then the regime
becomes

Vplog(p) << n << plog™*(p).
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Control of the weights Il

Theorem

@ On a event of probability larger than 1 — (2 + 8.54p)e*
¢ (nO]x*[e, +6%) < d* < c (nB)x*|e, +6%).

@ On a event of probability larger than 1 — 10.54pe~?, for any

ke{l,...,p},
" | nfx; + n*0p~* le’j + 62
u#k
< d?2 < | nbx; + n?6%pt le’f +0*

u#k
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Control of the weights Il

For instance, in the asymptotic regime

no = o(p) and 6% = o(n’|x|1/p),
then if x; =0,

di = O(*6%p™Hx"[1) = o(n]x*|1).

Therefore .
di = o(d?),

i.e. di can be much more smaller than d.
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Oracle inequalities for the lasso estimate with d

Theorem
Let v > 2 and 0 < € < 1. Let s a positive integer satisfying

3y+2
——s¢(0)<1—e.

k0 <1

Then, there exists a constant C, . depending on 7 and ¢ such that on an
event of probability larger than 1 — (1 + 7.54p)e~", the lasso estimate X
satisfies

L - d(6)?
A% — Ax* |2 < C,. inf {|AX_AX*||§+ sd(6) }
n

x: |supp(x)|<s
And if x* is s-sparse, under the same assumptions, we get that

- . 2
I — A < 25008

Remark : We also obtain oracle inequalities for the {1 and {..-losses.
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Oracle inequalities for the lasso estimate with di

Theorem

Let v > 2 and 0 < € < 1. Let s be a positive integer and assume that we
are on an event s.t.

maxi<k<p d(0) - (1—e)s71O) 1 —1)(y—2)
minlgkgp E/k(H) h 2(’7+2) .

Then, there exists a constant C, . depending on v and ¢ such that on an
event of probability larger than 1 — 8.54peY, the lasso estimate X
satisfies

NS AF . A A o* il 7
IBR-ACI3< G inf dIA—ACB+E S 30)
x: [supp(x)|<s n kesupp(x)

And if x* is s-sparse, under the same assumptions, we get that

AT AU* C7
A% -Acp< S &)

kesupp(x*)
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And what happens next?

@ We will consider a second alternative consisting in assuming that x*
is supported by S* with |S*| = o(p). We then introduce the
pseudo-estimate X(°7) defined by

p—1
X5 e argmin ||Y—Ax||§+ﬂyzdk\xk| .
xERP:supp(x)CS* k=0
In this case, we shall see that under some conditions the support of

% is included into S* (support property), enabling us to derive oracle
inequalities quite easily.
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@ We will consider a second alternative consisting in assuming that x*
is supported by S* with |S*| = o(p). We then introduce the
pseudo-estimate X(°7) defined by

p—1
x5 e argmin ||Y—Ax||§+ﬂyzdk\xk| .
xERP:supp(x)CS* k—0

In this case, we shall see that under some conditions the support of
% is included into S* (support property), enabling us to derive oracle
inequalities quite easily.

@ Simulations. ..
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@ We will consider a second alternative consisting in assuming that x*
is supported by S* with |S*| = o(p). We then introduce the
pseudo-estimate X(°7) defined by

p—1
x5 e argmin ||Y—Ax||§+ﬂyzdk\xk| .
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In this case, we shall see that under some conditions the support of
% is included into S* (support property), enabling us to derive oracle
inequalities quite easily.

@ Simulations. ..

Merci pour votre attention !
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