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Model Lasso estimator Theoretical results

Motivation

Estimation in Hawkes model (Reynaud-Bouret and Schbath 2010,
Hansen et al. 2012, . . . ) and for Poissonian interactions (Sansonnet
2014) needs the knowledge of an a priori bound on the support of
interaction fonctions.

Aim: Overcome knowledge of this bound in a high-dimensional
discrete setting.

A discrete version of the Poissonian interactions model that is in the
heart of my PhD thesis.
A circular model: to avoid boundary effects and also to reflect a
certain biological reality.
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Poissonian discrete model

Parents: n i.i.d. uniform random variables U1, . . . ,Un on the set
{0, . . . , p − 1} → points on a circle (we work modulus p).

Children:
Each Ui gives birth independently to some Poisson variables.
If x∗ = (x∗

0 , . . . , x∗
p−1)

H ∈ Rp
+, then N i

Ui+j ∼ P(x∗
j ) independent of

anything else.
The variable N i

Ui+j represents the number of children that a certain
individual Ui has at distance j .
We set Yk =

∑n
i=1 N i

k the total number of children at position k
whose distribution conditioned on the Ui ’s is given by

Yk ∼ P

(
n∑

i=1

x∗k−Ui

)
.

Aim: Estimate x∗ with the observation of the Ui ’s and the Yk ’s.
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Another translation

Y = (Y0, . . . ,Yp−1)H ∼ P(Ax∗),

where

A =


N(0) N(p − 1) · · · N(1)

N(1) N(0)
. . .

...
...

. . . . . . N(p − 1)
N(p − 1) · · · N(1) N(0)


is a p × p circulant matrix, with
N(k) = card {i : Ui = k[p]}
representing the number of parents at position k on the circle.

Aim: Recover x∗ ⇔ solve an inverse problem (potentially ill-posed)
where the operator A is random and depends on the Ui ’s.
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RIP property I
The eigenvalues of A are given by σk =

∑n
i=1 e−2πîkUi/p, for k in

{0, ..., p − 1}. In particular,

E(σk) =

{
n if k = 0[p]
0 if k 6= 0[p]

.

So, with high probability, many eigenvalues of A may be close to
zero. For these reasons, our problem is potentially ill-posed, which
justifies the use of nonparametric procedures, such as the Lasso,
even if p is not large with respect to n.
We first focus on proving a Restricted Isometry Property (Candès
and Tao, 2005): there exist positive constants r and R such that
with high probability, for any K -sparse vector x (i.e. with at the most
K non-zero coordinates)

r‖x‖2 6 ‖Ax‖2 6 R‖x‖2,

with R as close to r as possible.
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RIP property II

Under conditions, a RIP is satisfied by Ã = A− n−
√

n
p 11

H:

n
2
||x ||22 6 ||Ãx ||22 6

3n
2
||x ||22.

We obtain also a classical Restricted Eigenvalue (RE) type condition
(see Bickel 2009) on an event of probability larger than
1− 5.54 pe−θ s.t. for all d ∈ {0, . . . , p − 1},

|U(d)| 6 κ

(
n
√

p
θ + θ2

)
=: nξ(θ),

with U(d) =

p−1∑
u=0

n∑
i=1

n∑
j 6=i,j=1

(
1Ui=u −

1
p

)(
1Uj=u+d [p] −

1
p

)
and for

p and n be fixed integers larger than 1 and for all θ > 1.
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3n
2
||x ||22.

We obtain also a classical Restricted Eigenvalue (RE) type condition
(see Bickel 2009) on an event of probability larger than
1− 5.54 pe−θ s.t. for all d ∈ {0, . . . , p − 1},

|U(d)| 6 κ

(
n
√

p
θ + θ2

)
=: nξ(θ),

with U(d) =

p−1∑
u=0

n∑
i=1

n∑
j 6=i,j=1

(
1Ui=u −

1
p

)(
1Uj=u+d [p] −

1
p

)
and for

p and n be fixed integers larger than 1 and for all θ > 1.

6 / 18



Model Lasso estimator Theoretical results

Lasso estimator by using a weighted penalty I

Ã = A− n−
√

n
p 11

H and Ỹk = Yk − n−
√

n
p Y , with Y = 1

n

∑p−1
k=0 Yk .

E(Y ) = ‖x∗‖1 and conditionally on the Ui ’s, Ỹ is an unbiased
estimate of Ãx∗:

E(Ỹ |U1, . . . ,Un) = Ãx∗.

We first introduce the following Lasso estimate for some γ > 0:

x̂ := argmin
x∈Rp

{
‖Ỹ − Ãx‖22 + γ

p−1∑
k=0

dk |xk |

}
,

which is based on random and data-dependent weights dk .

7 / 18



Model Lasso estimator Theoretical results

Lasso estimator by using a weighted penalty I
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Lasso estimator by using a weighted penalty II

The Lasso estimate satisfies{
(ÃH(Ỹ − Ãx̂))k = γdk

2 sign(x̂k) for k s.t. x̂k 6= 0
|ÃH(Ỹ − Ãx̂)|k ≤ γdk

2 for k s.t. x̂k = 0
,

and in particular, for any k ,

|ÃH(Ỹ − Ãx̂)|k ≤
γdk

2
.

Our approach where weights are random is similar to Zou 2006,
Bertin et al. 2011, Hansen et al. 2012, . . . : in some sense, the
weights play the same role as the thresholds in the estimation
procedure proposed in Donoho and Johnstone 1994,
Reynaud-Bouret and Rivoirard 2010, Sansonnet 2014, . . .
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Lasso estimator by using a weighted penalty III

The double role of the weights:
They have to control the random fluctuations of ÃHỸ around its
mean conditionally on the Ui ’s due to the Poisson setting:

|ÃH(Ỹ − Ãx∗)|k 6 dk .

Remark: If γ > 2, x∗ will also satisfy |ÃH(Ỹ − Ãx̂∗)|k ≤ γdk
2 . This is

a key technical point to prove optimality of our approach.
They need to be high enough, so that they work even if A is not
invertible enough.
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|ÃH(Ỹ − Ãx∗)|k 6 dk .

Remark: If γ > 2, x∗ will also satisfy |ÃH(Ỹ − Ãx̂∗)|k ≤ γdk
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How to choose the dk ’s?

Proposition 1
For any θ > 0, there exists an event Ωv (θ) of probability larger than
1− 2pe−θ on which, for all k in {0, . . . , p − 1},

|ÃH(Ỹ − Ãx∗)|k 6
√

2vkθ +
Bθ
3
,

where

B = max
u∈{0,...,p−1}

∣∣∣∣N(u)− n − 1
p

∣∣∣∣
and

vk =

p−1∑
u=0

w(k − u)x∗u ,

with w(d) =

p−1∑
u=0

(
N(u)− n − 1

p

)2

N(u + d) for all d in {0, . . . , p − 1}.

10 / 18
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Derivation of constant weights

vk 6 W ||x∗||1,

where

W := max
d

w(d) = max
u∈{0,...,p−1}

p−1∑
`=0

(
N(`+ u)− n − 1

p

)2

N(`) is

observable, and
||x∗||1 is unbiasedly estimated by Ȳ .

Constant weights

d :=
√
2W θ

[√
Ȳ +

5θ
6n

+

√
θ

2n

]
+

Bθ
3

satisfies |ÃH(Ỹ − Ãx∗)|k 6 dk = d on an event of probability larger than
1− (2p + 1)e−θ.
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Derivation of non constant weights

We reestimate the vk ’s:

v̂k =

p−1∑
`=0

(
N(`− k)− n − 1

p

)2

Y`.

Non constant weights

d̃k =
√
2θ

[√
v̂k +

5θB2

6
+

√
θB2

2

]
+

Bθ
3

satisfies |ÃH(Ỹ − Ãx∗)|k 6 dk = d̃k on an event of probability larger
than 1− 3pe−θ.
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Control of the weights I

We consider the following special relationships between n, p and θ. For
any integers n, p and for any θ > 1,

κ′
√

pθ 6 n 6 κ′′pθ−1,

where κ′ := max(2κ, 1) and κ′′ is an absolute constant small enough.
In particular, if we choose θ proportional to log p (which is natural
to have results on events with large probability), then the regime
becomes √

p log(p) << n << p log−1(p).

13 / 18
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Control of the weights II

Theorem
On a event of probability larger than 1− (2 + 8.54p)e−θ

c̄
(
nθ||x∗||`1 + θ2) 6 d2 6 c

(
nθ||x∗||`1 + θ4) .

On a event of probability larger than 1− 10.54pe−θ, for any
k ∈ {1, . . . , p},

c ′′

nθx∗k + n2θp−1
∑
u 6=k

x∗u + θ2


6 d̃2

k 6 c ′

nθx∗k + n2θ2p−1
∑
u 6=k

x∗u + θ4

 .
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Control of the weights II

For instance, in the asymptotic regime

nθ = o(p) and θ2 = o(n2||x∗||1/p),

then if x∗k = 0,

d̃2
k = O(n2θ2p−1||x∗||1) = o(nθ||x∗||1).

Therefore
d̃2
k = o(d2),

i.e. d̃k can be much more smaller than d .

15 / 18
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Oracle inequalities for the lasso estimate with d

Theorem
Let γ > 2 and 0 < ε < 1. Let s a positive integer satisfying

3γ + 2
γ − 2

sξ(θ) 6 1− ε.

Then, there exists a constant Cγ,ε depending on γ and ε such that on an
event of probability larger than 1− (1 + 7.54p)e−θ, the lasso estimate x̂
satisfies

‖Ãx̂ − Ãx∗‖22 6 Cγ,ε inf
x : |supp(x)|6s

{
‖Ãx − Ãx∗‖22 +

sd(θ)2

n

}
.

And if x∗ is s-sparse, under the same assumptions, we get that

‖Ãx̂ − Ãx∗‖22 6
Cγ,εsd(θ)2

n
.

Remark : We also obtain oracle inequalities for the `1 and `∞-losses.
16 / 18
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Oracle inequalities for the lasso estimate with d̃k

Theorem
Let γ > 2 and 0 < ε < 1. Let s be a positive integer and assume that we
are on an event s.t.

max16k6p d̃k(θ)

min16k6p d̃k(θ)
6

(
(1− ε)s−1ξ(θ)−1 − 1

)
(γ − 2)

2(γ + 2)
.

Then, there exists a constant Cγ,ε depending on γ and ε such that on an
event of probability larger than 1− 8.54pe−θ, the lasso estimate x̂
satisfies

‖Ãx̂ − Ãx∗‖22 6 Cγ,ε inf
x : |supp(x)|6s

‖Ãx − Ãx∗‖22 +
1
n

∑
k∈supp(x)

d̃2
k (θ)

 .

And if x∗ is s-sparse, under the same assumptions, we get that

‖Ãx̂ − Ãx∗‖22 6
Cγ,ε
n

∑
k∈supp(x∗)

d̃2
k (θ).

17 / 18
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And what happens next?

We will consider a second alternative consisting in assuming that x∗

is supported by S∗ with |S∗| = o(p). We then introduce the
pseudo-estimate x̂ (S∗) defined by

x̂ (S∗) ∈ argmin
x∈Rp :supp(x)⊆S∗

{
‖Ỹ − Ãx‖22 + γ

p−1∑
k=0

dk |xk |

}
.

In this case, we shall see that under some conditions the support of
x̂ is included into S∗ (support property), enabling us to derive oracle
inequalities quite easily.

Simulations. . .

Merci pour votre attention !
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