Estimation Lasso et interactions poissoniennes sur le cercle

Laure SANSONNET

Université catholique de Louvain, Belgique
J-3 : AgroParisTech
en collaboration avec:
Patricia Reynaud-Bouret (Université Nice Sophia-Antipolis),
Vincent Rivoirard (Université Paris Dauphine) et
Rebecca Willett (University of Wisconsin-Madison).

Vendredi 29 août 2014
Journées MAS2014

Motivation

- Estimation in Hawkes model (Reynaud-Bouret and Schbath 2010, Hansen et al. 2012, ...) and for Poissonian interactions (Sansonnet 2014) needs the knowledge of an a priori bound on the support of interaction fonctions.

Motivation

- Estimation in Hawkes model (Reynaud-Bouret and Schbath 2010, Hansen et al. 2012, ...) and for Poissonian interactions (Sansonnet 2014) needs the knowledge of an a priori bound on the support of interaction fonctions.
- Aim: Overcome knowledge of this bound in a high-dimensional discrete setting.
- A discrete version of the Poissonian interactions model that is in the heart of my PhD thesis.
- A circular model: to avoid boundary effects and also to reflect a certain biological reality.

Poissonian discrete model

- Parents: n i.i.d. uniform random variables U_{1}, \ldots, U_{n} on the set $\{0, \ldots, p-1\} \rightarrow$ points on a circle (we work modulus p).

Poissonian discrete model

- Parents: n i.i.d. uniform random variables U_{1}, \ldots, U_{n} on the set $\{0, \ldots, p-1\} \rightarrow$ points on a circle (we work modulus p).
- Children:
- Each U_{i} gives birth independently to some Poisson variables.
- If $x^{*}=\left(x_{0}^{*}, \ldots, x_{p-1}^{*}\right)^{H} \in \mathbb{R}_{+}^{p}$, then $N_{U_{i}+j}^{i} \sim \mathcal{P}\left(x_{j}^{*}\right)$ independent of anything else.
- The variable $N_{U_{i}+j}^{i}$ represents the number of children that a certain individual U_{i} has at distance j.
- We set $Y_{k}=\sum_{i=1}^{n} N_{k}^{i}$ the total number of children at position k whose distribution conditioned on the U_{i} 's is given by

$$
Y_{k} \sim \mathcal{P}\left(\sum_{i=1}^{n} x_{k-U_{i}}^{*}\right)
$$

Poissonian discrete model

- Parents: n i.i.d. uniform random variables U_{1}, \ldots, U_{n} on the set $\{0, \ldots, p-1\} \rightarrow$ points on a circle (we work modulus p).
- Children:
- Each U_{i} gives birth independently to some Poisson variables.
- If $x^{*}=\left(x_{0}^{*}, \ldots, x_{p-1}^{*}\right)^{\mathrm{H}} \in \mathbb{R}_{+}^{p}$, then $N_{U_{i}+j}^{i} \sim \mathcal{P}\left(x_{j}^{*}\right)$ independent of anything else.
- The variable $N_{U_{i}+j}^{i}$ represents the number of children that a certain individual U_{i} has at distance j.
- We set $Y_{k}=\sum_{i=1}^{n} N_{k}^{i}$ the total number of children at position k whose distribution conditioned on the U_{i} 's is given by

$$
Y_{k} \sim \mathcal{P}\left(\sum_{i=1}^{n} x_{k-U_{i}}^{*}\right)
$$

Aim: Estimate x^{*} with the observation of the U_{i} 's and the Y_{k} 's.

Another translation

$$
Y=\left(Y_{0}, \ldots, Y_{p-1}\right)^{H} \sim \mathcal{P}\left(A x^{*}\right)
$$

Another translation

$$
Y=\left(Y_{0}, \ldots, Y_{p-1}\right)^{H} \sim \mathcal{P}\left(A x^{*}\right)
$$

where

- $A=\left(\begin{array}{cccc}\mathbb{N}(0) & \mathbb{N}(p-1) & \cdots & \mathbb{N}(1) \\ \mathbb{N}(1) & \mathbb{N}(0) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{N}(p-1) \\ \mathbb{N}(p-1) & \cdots & \mathbb{N}(1) & \mathbb{N}(0)\end{array}\right)$
is a $p \times p$ circulant matrix, with
- $\mathbb{N}(k)=\operatorname{card}\left\{i: \quad U_{i}=k[p]\right\}$
representing the number of parents at position k on the circle.

Another translation

$$
Y=\left(Y_{0}, \ldots, Y_{p-1}\right)^{H} \sim \mathcal{P}\left(A x^{*}\right)
$$

where

- $A=\left(\begin{array}{cccc}\mathbb{N}(0) & \mathbb{N}(p-1) & \cdots & \mathbb{N}(1) \\ \mathbb{N}(1) & \mathbb{N}(0) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{N}(p-1) \\ \mathbb{N}(p-1) & \cdots & \mathbb{N}(1) & \mathbb{N}(0)\end{array}\right)$
is a $p \times p$ circulant matrix, with
- $\mathbb{N}(k)=\operatorname{card}\left\{i: U_{i}=k[p]\right\}$ representing the number of parents at position k on the circle.

Aim: Recover $x^{*} \Leftrightarrow$ solve an inverse problem (potentially ill-posed) where the operator A is random and depends on the U_{i} 's.

RIP property I

- The eigenvalues of A are given by $\sigma_{k}=\sum_{i=1}^{n} e^{-2 \pi \hat{i} k U_{i} / p}$, for k in $\{0, \ldots, p-1\}$. In particular,

$$
\mathbb{E}\left(\sigma_{k}\right)= \begin{cases}n & \text { if } k=0[p] \\ 0 & \text { if } k \neq 0[p]\end{cases}
$$

RIP property I

- The eigenvalues of A are given by $\sigma_{k}=\sum_{i=1}^{n} e^{-2 \pi i k U_{i} / p}$, for k in $\{0, \ldots, p-1\}$. In particular,

$$
\mathbb{E}\left(\sigma_{k}\right)= \begin{cases}n & \text { if } k=0[p] \\ 0 & \text { if } k \neq 0[p]\end{cases}
$$

- So, with high probability, many eigenvalues of A may be close to zero. For these reasons, our problem is potentially ill-posed, which justifies the use of nonparametric procedures, such as the Lasso, even if p is not large with respect to n.

RIP property I

- The eigenvalues of A are given by $\sigma_{k}=\sum_{i=1}^{n} e^{-2 \pi \hat{i} k U_{i} / p}$, for k in $\{0, \ldots, p-1\}$. In particular,

$$
\mathbb{E}\left(\sigma_{k}\right)= \begin{cases}n & \text { if } k=0[p] \\ 0 & \text { if } k \neq 0[p]\end{cases}
$$

- So, with high probability, many eigenvalues of A may be close to zero. For these reasons, our problem is potentially ill-posed, which justifies the use of nonparametric procedures, such as the Lasso, even if p is not large with respect to n.
- We first focus on proving a Restricted Isometry Property (Candès and Tao, 2005): there exist positive constants r and R such that with high probability, for any K-sparse vector x (i.e. with at the most K non-zero coordinates)

$$
r\|x\|^{2} \leqslant\|A x\|^{2} \leqslant R\|x\|^{2}
$$

with R as close to r as possible.

RIP property II

- Under conditions, a RIP is satisfied by $\widetilde{A}=A-\frac{n-\sqrt{n}}{p} \mathbb{1} \mathbb{1}^{H}$:

$$
\frac{n}{2}\|x\|_{2}^{2} \leqslant\|\widetilde{A} x\|_{2}^{2} \leqslant \frac{3 n}{2}\|x\|_{2}^{2} .
$$

RIP property II

- Under conditions, a RIP is satisfied by $\widetilde{A}=A-\frac{n-\sqrt{n}}{p} \mathbb{1} \mathbb{1}^{H}$:

$$
\frac{n}{2}\|x\|_{2}^{2} \leqslant\|\widetilde{A} x\|_{2}^{2} \leqslant \frac{3 n}{2}\|x\|_{2}^{2}
$$

- We obtain also a classical Restricted Eigenvalue (RE) type condition (see Bickel 2009) on an event of probability larger than $1-5.54 p e^{-\theta}$ s.t. for all $d \in\{0, \ldots, p-1\}$,

$$
|\mathbb{U}(d)| \leqslant \kappa\left(\frac{n}{\sqrt{p}} \theta+\theta^{2}\right)=: n \xi(\theta)
$$

with $\mathbb{U}(d)=\sum_{u=0}^{p-1} \sum_{i=1}^{n} \sum_{j \neq i, j=1}^{n}\left(\mathbf{1}_{U_{i}=u}-\frac{1}{p}\right)\left(\mathbf{1}_{U_{j=u+d[p]}}-\frac{1}{p}\right)$ and for
p and n be fixed integers larger than 1 and for all $\theta>1$.

Lasso estimator by using a weighted penalty |

- $\widetilde{A}=A-\frac{n-\sqrt{n}}{p} \mathbb{1} \mathbb{1}^{\mathrm{H}}$ and $\widetilde{Y}_{k}=Y_{k}-\frac{n-\sqrt{n}}{p} \bar{Y}$, with $\bar{Y}=\frac{1}{n} \sum_{k=0}^{p-1} Y_{k}$.
- $\mathbb{E}(\bar{Y})=\left\|x^{*}\right\|_{1}$ and conditionally on the U_{i} 's, \widetilde{Y} is an unbiased estimate of $\widetilde{A} x^{*}$:

$$
\mathbb{E}\left(\tilde{Y} \mid U_{1}, \ldots, U_{n}\right)=\widetilde{A} x^{*}
$$

Lasso estimator by using a weighted penalty I

- $\widetilde{A}=A-\frac{n-\sqrt{n}}{p} \mathbb{1} \mathbb{1}^{\mathrm{H}}$ and $\widetilde{Y}_{k}=Y_{k}-\frac{n-\sqrt{n}}{p} \bar{Y}$, with $\bar{Y}=\frac{1}{n} \sum_{k=0}^{p-1} Y_{k}$.
- $\mathbb{E}(\bar{Y})=\left\|x^{*}\right\|_{1}$ and conditionally on the U_{i} 's, \widetilde{Y} is an unbiased estimate of $\widetilde{A} x^{*}$:

$$
\mathbb{E}\left(\tilde{Y} \mid U_{1}, \ldots, U_{n}\right)=\widetilde{A} x^{*}
$$

We first introduce the following Lasso estimate for some $\gamma>0$:

$$
\widehat{x}:=\underset{x \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\{\|\widetilde{Y}-\widetilde{A} x\|_{2}^{2}+\gamma \sum_{k=0}^{p-1} d_{k}\left|x_{k}\right|\right\},
$$

which is based on random and data-dependent weights d_{k}.

Lasso estimator by using a weighted penalty II

The Lasso estimate satisfies

$$
\left\{\begin{array}{lll}
\left(\widetilde{A}^{\mathrm{H}}(\widetilde{Y}-\widetilde{A} \widehat{x})\right)_{k} & = & \frac{\gamma d_{k}}{2} \operatorname{sign}^{\operatorname{sig}}\left(\widehat{x}_{k}\right) \\
\left.\widetilde{A}^{\mathrm{H}}(\widetilde{Y}-\widetilde{A} \widehat{x})\right|_{k} \leq & \text { for } k \text { s.t. } \widehat{x}_{k} \neq 0 \\
\left\lvert\, \frac{\gamma d_{k}}{2}\right. & \text { for } k \text { s.t. } \widehat{x}_{k}=0
\end{array}\right.
$$

and in particular, for any k,

$$
\left|\tilde{A}^{H}(\tilde{Y}-\tilde{A} \widehat{x})\right|_{k} \leq \frac{\gamma d_{k}}{2} .
$$

Lasso estimator by using a weighted penalty II

The Lasso estimate satisfies

$$
\left\{\begin{array}{lll}
\left(\tilde{A}^{\mathrm{H}}(\widetilde{Y}-\widetilde{A} \widehat{x})\right)_{k} & = & \frac{\gamma d_{k}}{2} \operatorname{sign}^{\operatorname{ign}}\left(\widehat{x}_{k}\right) \\
\left.\widetilde{A}^{\mathrm{H}}(\widetilde{Y}-\widetilde{A} \widehat{x})\right|_{k} \leq & \text { for } k \text { s.t. } \widehat{x}_{k} \neq 0 \\
\left\lvert\, \frac{\gamma d_{k}}{2}\right. & \text { for } k \text { s.t. } \widehat{x}_{k}=0
\end{array}\right.
$$

and in particular, for any k,

$$
\left|\tilde{A}^{H}(\tilde{Y}-\tilde{A} \widehat{x})\right|_{k} \leq \frac{\gamma d_{k}}{2}
$$

- Our approach where weights are random is similar to Zou 2006, Bertin et al. 2011, Hansen et al. 2012, in some sense, the weights play the same role as the thresholds in the estimation procedure proposed in Donoho and Johnstone 1994, Reynaud-Bouret and Rivoirard 2010, Sansonnet 2014, ...

Lasso estimator by using a weighted penalty III

The double role of the weights:

- They have to control the random fluctuations of $\widetilde{A}^{H} \widetilde{Y}$ around its mean conditionally on the U_{i} 's due to the Poisson setting:

Lasso estimator by using a weighted penalty III

The double role of the weights:

- They have to control the random fluctuations of $\widetilde{A}^{H} \widetilde{Y}$ around its mean conditionally on the U_{i} 's due to the Poisson setting:

$$
\left|\tilde{A}^{H}\left(\widetilde{Y}-\widetilde{A} x^{*}\right)\right|_{k} \leqslant d_{k} .
$$

Remark: If $\gamma \geqslant 2, x^{*}$ will also satisfy $\left|\widetilde{A}^{H}\left(\widetilde{Y}-\widetilde{A} \widehat{x}^{*}\right)\right|_{k} \leq \frac{\gamma d_{k}}{2}$. This is a key technical point to prove optimality of our approach.

Lasso estimator by using a weighted penalty III

The double role of the weights:

- They have to control the random fluctuations of $\widetilde{A}^{H} \widetilde{Y}$ around its mean conditionally on the U_{i} 's due to the Poisson setting:

$$
\left|\widetilde{A}^{\mathrm{H}}\left(\widetilde{Y}-\widetilde{A} x^{*}\right)\right|_{k} \leqslant d_{k} .
$$

Remark: If $\gamma \geqslant 2, x^{*}$ will also satisfy $\left|\widetilde{A}^{H}\left(\widetilde{Y}-\widetilde{A} \widehat{x}^{*}\right)\right|_{k} \leq \frac{\gamma d_{k}}{2}$. This is a key technical point to prove optimality of our approach.

- They need to be high enough, so that they work even if A is not invertible enough.

How to choose the d_{k} 's?

Proposition 1

For any $\theta>0$, there exists an event $\Omega_{v}(\theta)$ of probability larger than $1-2 p e^{-\theta}$ on which, for all k in $\{0, \ldots, p-1\}$,

$$
\left|\tilde{A}^{H}\left(\widetilde{Y}-\widetilde{A} x^{*}\right)\right|_{k} \leqslant \sqrt{2 v_{k} \theta}+\frac{B \theta}{3},
$$

where

$$
B=\max _{u \in\{0, \ldots, p-1\}}\left|\mathbb{N}(u)-\frac{n-1}{p}\right|
$$

and

$$
v_{k}=\sum_{u=0}^{p-1} w(k-u) x_{u}^{*},
$$

with $w(d)=\sum_{u=0}^{p-1}\left(\mathbb{N}(u)-\frac{n-1}{p}\right)^{2} \mathbb{N}(u+d)$ for all d in $\{0, \ldots, p-1\}$.

Derivation of constant weights

$$
v_{k} \leqslant W\left\|x^{*}\right\|_{1}
$$

where

- $W:=\max _{d} w(d)=\max _{u \in\{0, \ldots, p-1\}} \sum_{\ell=0}^{p-1}\left(\mathbb{N}(\ell+u)-\frac{n-1}{p}\right)^{2} \mathbb{N}(\ell)$ is observable, and
- $\left\|x^{*}\right\|_{1}$ is unbiasedly estimated by \bar{Y}.

Derivation of constant weights

$$
v_{k} \leqslant W\left\|x^{*}\right\|_{1},
$$

where

- $W:=\max _{d} w(d)=\max _{u \in\{0, \ldots, p-1\}} \sum_{\ell=0}^{p-1}\left(\mathbb{N}(\ell+u)-\frac{n-1}{p}\right)^{2} \mathbb{N}(\ell)$ is observable, and
- $\left\|x^{*}\right\|_{1}$ is unbiasedly estimated by \bar{Y}.

Constant weights

$$
d:=\sqrt{2 W \theta}\left[\sqrt{\bar{Y}+\frac{5 \theta}{6 n}}+\sqrt{\frac{\theta}{2 n}}\right]+\frac{B \theta}{3}
$$

satisfies $\left|\widetilde{A}^{\mathrm{H}}\left(\widetilde{Y}-\widetilde{A} x^{*}\right)\right|_{k} \leqslant d_{k}=d$ on an event of probability larger than $1-(2 p+1) e^{-\theta}$.

Derivation of non constant weights

We reestimate the v_{k} 's:

$$
\hat{v}_{k}=\sum_{\ell=0}^{p-1}\left(\mathbb{N}(\ell-k)-\frac{n-1}{p}\right)^{2} Y_{\ell} .
$$

Derivation of non constant weights

We reestimate the v_{k} 's:

$$
\hat{v}_{k}=\sum_{\ell=0}^{p-1}\left(\mathbb{N}(\ell-k)-\frac{n-1}{p}\right)^{2} Y_{\ell} .
$$

Non constant weights

$$
\tilde{d}_{k}=\sqrt{2 \theta}\left[\sqrt{\hat{v}_{k}+\frac{5 \theta B^{2}}{6}}+\sqrt{\frac{\theta B^{2}}{2}}\right]+\frac{B \theta}{3}
$$

satisfies $\left|\widetilde{A^{H}}\left(\widetilde{Y}-\widetilde{A} x^{*}\right)\right|_{k} \leqslant d_{k}=\tilde{d}_{k}$ on an event of probability larger than $1-3 p e^{-\theta}$.

Control of the weights I

We consider the following special relationships between n, p and θ. For any integers n, p and for any $\theta>1$,

$$
\kappa^{\prime} \sqrt{p} \theta \leqslant n \leqslant \kappa^{\prime \prime} p \theta^{-1},
$$

where $\kappa^{\prime}:=\max (2 \kappa, 1)$ and $\kappa^{\prime \prime}$ is an absolute constant small enough.

- In particular, if we choose θ proportional to $\log p$ (which is natural to have results on events with large probability), then the regime becomes

$$
\sqrt{p} \log (p) \ll n \ll p \log ^{-1}(p) .
$$

Control of the weights II

Theorem

- On a event of probability larger than $1-(2+8.54 p) e^{-\theta}$

$$
\bar{c}\left(n \theta\left\|x^{*}\right\|_{\ell_{1}}+\theta^{2}\right) \leqslant d^{2} \leqslant c\left(n \theta\left\|x^{*}\right\|_{\ell_{1}}+\theta^{4}\right) .
$$

- On a event of probability larger than $1-10.54 p e^{-\theta}$, for any $k \in\{1, \ldots, p\}$,

$$
\begin{aligned}
& c^{\prime \prime}\left(n \theta x_{k}^{*}+n^{2} \theta p^{-1} \sum_{u \neq k} x_{u}^{*}+\theta^{2}\right) \\
& \leqslant \tilde{d}_{k}^{2} \leqslant c^{\prime}\left(n \theta x_{k}^{*}+n^{2} \theta^{2} p^{-1} \sum_{u \neq k} x_{u}^{*}+\theta^{4}\right) .
\end{aligned}
$$

Control of the weights II

For instance, in the asymptotic regime

$$
n \theta=o(p) \quad \text { and } \quad \theta^{2}=o\left(n^{2}\left\|x^{*}\right\|_{1} / p\right)
$$

then if $x_{k}^{*}=0$,

$$
\tilde{d}_{k}^{2}=O\left(n^{2} \theta^{2} p^{-1}\left\|x^{*}\right\|_{1}\right)=o\left(n \theta\left\|x^{*}\right\|_{1}\right) .
$$

Therefore

$$
\tilde{d}_{k}^{2}=o\left(d^{2}\right),
$$

i.e. \tilde{d}_{k} can be much more smaller than d.

Oracle inequalities for the lasso estimate with d

Theorem

Let $\gamma>2$ and $0<\varepsilon<1$. Let s a positive integer satisfying

$$
\frac{3 \gamma+2}{\gamma-2} s \xi(\theta) \leqslant 1-\varepsilon .
$$

Then, there exists a constant $C_{\gamma, \varepsilon}$ depending on γ and ε such that on an event of probability larger than $1-(1+7.54 p) e^{-\theta}$, the lasso estimate \widehat{x} satisfies

$$
\left\|\tilde{A} \widehat{x}-\widetilde{A} x^{*}\right\|_{2}^{2} \leqslant C_{\gamma, \varepsilon} \inf _{x:|\operatorname{supp}(x)| \leqslant s}\left\{\left\|\widetilde{A} x-\widetilde{A} x^{*}\right\|_{2}^{2}+\frac{\operatorname{sd}(\theta)^{2}}{n}\right\} .
$$

And if x^{*} is s-sparse, under the same assumptions, we get that

$$
\left\|\tilde{A} \widehat{x}-\widetilde{A} x^{*}\right\|_{2}^{2} \leqslant \frac{C_{\gamma, \varepsilon} s d(\theta)^{2}}{n} .
$$

Remark: We also obtain oracle inequalities for the ℓ_{1} and ℓ_{∞}-losses.

Oracle inequalities for the lasso estimate with \tilde{d}_{k}

Theorem

Let $\gamma>2$ and $0<\varepsilon<1$. Let s be a positive integer and assume that we are on an event s.t.

$$
\frac{\max _{1 \leqslant k \leqslant p} \tilde{d}_{k}(\theta)}{\min _{1 \leqslant k \leqslant p} \tilde{d}_{k}(\theta)} \leqslant \frac{\left((1-\varepsilon) s^{-1} \xi(\theta)^{-1}-1\right)(\gamma-2)}{2(\gamma+2)} .
$$

Then, there exists a constant $C_{\gamma, \varepsilon}$ depending on γ and ε such that on an event of probability larger than $1-8.54 p^{-\theta}$, the lasso estimate \widehat{x} satisfies

$$
\left\|\widetilde{A} \widehat{x}-\widetilde{A} x^{*}\right\|_{2}^{2} \leqslant C_{\gamma, \varepsilon} \inf _{x:|\operatorname{supp}(x)| \leqslant s}\left\{\left\|\widetilde{A} x-\widetilde{A} x^{*}\right\|_{2}^{2}+\frac{1}{n} \sum_{k \in \operatorname{supp}(x)} \tilde{d}_{k}^{2}(\theta)\right\} .
$$

And if x^{*} is s-sparse, under the same assumptions, we get that

$$
\left\|\widetilde{A} \widehat{x}-\widetilde{A} x^{*}\right\|_{2}^{2} \leqslant \frac{C_{\gamma, \varepsilon}}{n} \sum_{k \in \operatorname{supp}\left(x^{*}\right)} \tilde{d}_{k}^{2}(\theta) .
$$

And what happens next?

- We will consider a second alternative consisting in assuming that x^{*} is supported by S^{*} with $\left|S^{*}\right|=o(p)$. We then introduce the pseudo-estimate $\widehat{x}^{\left(S^{*}\right)}$ defined by

$$
\widehat{x}^{\left(S^{*}\right)} \in \underset{x \in \mathbb{R}^{P}: \operatorname{supp}(x) \subseteq S^{*}}{\operatorname{argmin}}\left\{\|\widetilde{Y}-\widetilde{A} x\|_{2}^{2}+\gamma \sum_{k=0}^{p-1} d_{k}\left|x_{k}\right|\right\} .
$$

In this case, we shall see that under some conditions the support of \hat{x} is included into S^{*} (support property), enabling us to derive oracle inequalities quite easily.

And what happens next?

- We will consider a second alternative consisting in assuming that x^{*} is supported by S^{*} with $\left|S^{*}\right|=o(p)$. We then introduce the pseudo-estimate $\widehat{x}^{\left(S^{*}\right)}$ defined by

$$
\widehat{x}^{\left(S^{*}\right)} \in \underset{x \in \mathbb{R}^{P}: \operatorname{supp}(x) \subseteq S^{*}}{\operatorname{argmin}}\left\{\|\widetilde{Y}-\widetilde{A} x\|_{2}^{2}+\gamma \sum_{k=0}^{p-1} d_{k}\left|x_{k}\right|\right\} .
$$

In this case, we shall see that under some conditions the support of \hat{x} is included into S^{*} (support property), enabling us to derive oracle inequalities quite easily.

- Simulations. . .

And what happens next?

- We will consider a second alternative consisting in assuming that x^{*} is supported by S^{*} with $\left|S^{*}\right|=o(p)$. We then introduce the pseudo-estimate $\widehat{x}^{\left(S^{*}\right)}$ defined by

$$
\widehat{x}^{\left(S^{*}\right)} \in \underset{x \in \mathbb{R}^{p}: \operatorname{supp}(x) \subseteq S^{*}}{\operatorname{argmin}}\left\{\|\widetilde{Y}-\widetilde{A} x\|_{2}^{2}+\gamma \sum_{k=0}^{p-1} d_{k}\left|x_{k}\right|\right\} .
$$

In this case, we shall see that under some conditions the support of \hat{x} is included into S^{*} (support property), enabling us to derive oracle inequalities quite easily.

- Simulations...

Merci pour votre attention!

