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We observe X1, · · · , Xn random vectors of Rr or a separable
Banach space i.i.d. P.

Goal : Construct confidence regions for some
multi-dimensional parameter θ of ”large dimension” q, with a
finite number of observations n (with n/q small...).

Model :θ satisfies some moment constraints (including
eventually some additional margin constraints).

EPξ(X, θ) = 0.

where ξ ∈ RF , F is some finite set or some general class of
real functions . For instance semiparametric model may be
seen as infinite dimensional M-parameter (see van der Vaart
(1995), Stat. Neerland.)
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In this talk
θ = {EPf, f ∈ F}

and
ξ(X, θ) = {f(X) − EPf}f∈F .

Not : EP f = Pf

What really matters: the structure of the space
of the constraints, its dimension in term of
metric entropy and/or in term of the covariance
operator of ξ(X, θ) (the eigenvalue).
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Main idea of empirical likelihood (Owen, 01, Chapman &
Hall) and its generalization (see Newey and Smith, 03,
Econometrica)= project the empirical measure

Pn =
1
n

n∑
i=1

δXi

with δXi is Dirac measure, on the space of ”probability” or a
signed measure satisfying the constraints
{Q, Q(f − Pf) = 0 f ∈ F}.
with respect to a convex pseudo-distance I (defined on a
space of signed measures),

inf
Qn << Pn

EQn(f(X) − Pf) = 0
f ∈ F

I(Qn, Pn)
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Confidence region :

Pr (θ ∈ Cn(ηn)) = Pr

⎛⎜⎜⎜⎜⎝ inf
Qn << Pn

EQnξ(X, θ) = 0, f ∈ F

I(Qn, Pn) < ηn

⎞⎟⎟⎟⎟⎠
Empirical likelihood (Kullback) Min(-
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Because of the constraint Qn << Pn, Qn belong to the set

Pn = {P̃n =
n∑

i=1

pi,nδXi ,}.

In case I = K, the Kullback distance and imposing∑n
i=1 pi,n = 1 yields empirical likelihood. Largest region =

convex hull of the Zi = {f(Xi), f ∈ F} ∈RF .

Very strong constraint (see Tsao, 2004, Ann. Stat. ) : geometry of the
region determined by the extreme points. Very few extremal points, when
we have fat tail and even in the gaussian case : very bad finite sample
properties in large dimension.

Several solutions have been proposed to solve this problem : Chen,
Varyath, Abraham (2008), Emmerson and Owen (2009) or penalizing the
original likelihood, Bartolucci (2007), Lahiri and Mukhopadhyay (2012)
etc... : relaxing the constraints, either by adding a perturbation on the
constraints.
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For other choice of I , one can not impose these constraints else
there might be no solution to the minimization problem. Ex : χ2

type distance.

Work with general divergence but on space of signed
measures rather than probability : escape the
convex hull!
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Empirical ϕ∗-Discrepancies on space of measures
Define the ϕ∗-divergence (or ϕ∗-discrepancies) between two
(signed) measures.

Iϕ∗(Q, P) =

{ ∫
ϕ∗

(
dQ
dP

− 1
)

dP if Q � P

+∞ else.

where ϕ∗ is the convex conjugate (Fenchel transform) of a
function ϕ

ϕ∗(y) = sup
x∈R

{xy − ϕ(x)}

ϕ function satisfying assumptions A1: convex, twice differentiable
on its (non-void) domain containing 0, non negative,
ϕ(0) = 0, ϕ(1)(0) = 0, ϕ(2)(0) = 1, its second order derivative is
lower bounded on R+ (intersected with its domain) ...
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For details on ϕ∗-discrepancies or divergences see Csiszar, 1967,
Rockafellar, 1970, Princeton U. P., 1971, Pacific M. J.

Empirical ϕ∗-Discrepancies (Newey and Smith, 2003, Bertail,
2003, A. Kéziou, 2003, H. Harari, 2005, B., Harari, Ravaille,
2007, Broniatowski, Kéziou, 2006, Kitamura, 2006, Peletier,
2010, Rochet, 2011,... )

Key results : duality theory for convex integral on space of
signed measures. In the finite dimensional case card(F) = q,
Borwein and Lewis, 1991, SIAM J. Comp. Opt., in the infinite
dimensional case , Leonard, 2003, Math. Hung.
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Duality on space of signed measure, q fixed

Under the constraints qualification :
There exists a measure R, dominated by Pn, satisfying the
constraints such that

inf d(ϕ∗) < inf
Ω

dR

dPn
≤ sup

Ω

dR

dPn
< sup d(ϕ∗),

inf
Qn << Pn

Qnξ(X, θ) = 0

nIϕ∗(Qn, Pn)

= n sup
λ∈Rq

{−λ′Pnξ(X, θ) − Pnϕ(λ′ξ(X, θ))
}
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Quasi empirical-likelihood : B., Harari, Ravaille (2007), Ann. Stat.
Eco.

For ε ∈]0; 1] and x ∈] −∞; 1[ let,

Kε(x) = ε x2/2 + (1 − ε)(−x − log(1 − x)).

We call the corresponding K∗
ε -discrepancy, the quasi-Kullback

discrepancy.
Efficient optimization algorithm are available in the optimization
literature for this regularized discrepancy even with a large number
of constraints (see log-proximal methods, Auslender, Teboulle,
Ben-Tiba (1999) and the semi-infinite programming literature in
convex analysis).
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K∗
ε has an explicit expression

K∗
ε (x) = −1

2
+

(2ε − x − 1)
√

1 + x(x + 2 − 4ε) + (x + 1)2

4ε

− (ε − 1) log
2ε − x − 1 +

√
1 + x(x + 2 − 4ε)
2ε

.

and satisfy nice properties
(i) the domain d(K∗

ε ) = R

(ii) the second order derivative of kε is bounded from below:

K
(2)
ε (x) ≥ ε.

(iii) 0 ≤ K
∗(2)
ε (x) ≤ 1/ε.
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Coverage probabilities: q=6, scale mixture, for α = 10%.Patrice Bertail, CREST and University Paris X Journées MAS, 2014, Toulouse
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Theorem

If ε = O(n−3/2) then the quasi-empirical likelihood is Bartlett
correctable. Even if q is large, exact solution (measure not
probability) of the dual problem can be obtained.

Under the hypotheses A1, for all n > q, for any α > 0, for any
n ≥ 2εα

q , then

Pr(θ /∈ Cn(η)) = Pr(βn(θ) ≥ η) ≤ Pr
(
nξnS−2

n ξn ≥ 2εη
)

with S2
n = n−1Pn(ξ(X, θ)ξ(X, θ)t)

Remark : useless for ε = 0 (empirical likelihood).
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Exponential bounds, B., Gautherat, Harari (2008), E.C.P.

1 (Pinelis). Symmetric distribution

Pr
(
nξ

′
nS−2

n ξn ≥ u
)
≤ 2e3

9 F q(u).

2 General distribution with kurtosis γ4 = E(||ξ||42) < ∞, for any
a > 1 and for 2q(1 + a) ≤ u,

Pr
(
nξ

′
nS−2

n ξn ≥ u
)

≤ K1(q)Pq,a(u)e−
u

2(1+a)

+K(q) n3q̃e
− n

γ4(q+1)(1− 1
a)2

with K1(q) = 2e3+
q
2

9Γ( q
2
+1)

and Pq,a(u) =
(

e2(1+a)(u−q(1+a))
2(1+a)

) q
2
.

Proof : Pinelis(1994), Ann. Stat + generalization
Panchenko(2003), Ann. Stat’s symmetrization + Control smallest
eigenvalue, Barbe and Bertail (2003). For all n > q and for u ≤ nqPatrice Bertail, CREST and University Paris X Journées MAS, 2014, Toulouse
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Large process valued parameter, without penalization
No need for relaxation or penalization if the parameter lies in a
smooth structured space, see a recent work by Davit Varron
(2014).
A1 : Envelop of the class. There exists a measurable function
H : X → R such that there exists η > 0 such that H(x) > η for
every x and

∫
x∈X H2+η(x)P (dx) < ∞ for some η and

|f(x)| ≤ H(x) for all x ∈ X and any f ∈ F .

A2 : Donsker classes. F is a Donsker class of function
(Hoffmann-Jorgensen weak convergence). The set of probability
measures P may be considered as a subset of l∞(F), i.e. the
space of all maps Φ : F → R such that
||Φ||F = supf∈F |Φ(f)| < +∞) equipped with the uniform
convergence norm ||P − Q||F = suph∈F | ∫ hdP − ∫

hQ|.
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Covering number at some probability Q
N(ε,F , ||.||2,Q) = number of balls of size ε needed to cover the
class F with the L2(Q) norm

A3 : Uniform entropy number condition∫ 1

0
sup
Q∈D

√
log(N(ε||H||2,Q,F , ||.||2,Q))dε < ∞

,
where D is the set of all discrete probability measures Q such that
0 <

∫
H2dQ < ∞
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Then for each f it is possible to construct a quasi-empirical
likelihood region. Then uniformly, over the class of function, we
have the following result

Proposition

Assume that the divergence satisfies the constraints qualification,
that the class of function satisfy A1-A3. If in in addition the
smallest eigenvalue of the covariance operator
S2 = (cov(f(X), g(X)))f∈F ,g∈F is strictly positive then

sup
f∈F

( inf
Qn << Pn

Qnf(X, θ) = 0

nIϕ∗(Qn, Pn)))

= n sup
λ∈R

{−λPnf(X, θ) − Pnϕ(λ′f(X, θ))
}

converges weakly to supf∈F (G(f)′S−2(f)G(f)) where G(f) is a
gaussian process indexed by F .
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Holds also true for empirical likelihood under additional
assumptions ensuring the existence of a solution for every f
(too strong) (see Davit Varron(2014))
The limiting distribution is not distribution free... BUT we
also can get some finite sample exponential bounds, using
bounds for self-normalized process, under some sign coherency
assumptions, using for instance Bercu, Gassiat, Rio (2002),
Ann. Probab. Need for improvements (constants)...
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Unfortunately the eigenvalue assumption can not be removed.
Consider for instance the case of f(X) = 1X<x, x ∈ R then it
is known (see Jaeschke, 1979, Ann. Stat.) that
supx∈(R)(

√
n(Fn − F (x))/(Fn(x)(1 − Fn(x)))1/2) = ∞ as

well as supx∈(R)(
√

n(Fn − F (x))/(F (x)(1 − F (x)))1/2) = ∞
The internal self-normalization of general empirical likelihood may
be bad in some cases.
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Large parameter : Penalizing the dual likelihood

Solving the problem simultaneously for all f = semi-infinite
optimisation problem (a lot of literature in convex
optimization). Important to choose a divergence different from
the Kullback.

Rather than relaxing the original likelihood, penalize the dual
program (which is a likelihood for empirical likelihood).
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Dimension of the problem in the Hilbert space case

Let λ be in the dual space of the constraints . To simplify the
exposition we assume that the constraints lie in an Hilbert space.
We introduce the norm

||λ||2R,2 =
1
2
λ∗Rnλ

where Rn is some given self adjoint bounded (invertible) positive
operator (eventually depending on n but it may be the identity).
Define the penalized dual generalized empirical minimizer as

Ln(λ) = −λ∗Pnξ(X, θ) − Pnϕ(λ∗ξ(X, θ)) + δn||λ||2Rn, 2

Patrice Bertail, CREST and University Paris X Journées MAS, 2014, Toulouse
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Dimension of the problem in the Hilbert space case

By standard convex duality theory (see Boyd and Vanderburghe,
2009, E. 3.26), this is the dual problem of a relaxed primal problem

Ln = inf
Qn << Pn

||R−1/2
n EQnξ(X, θ)||22 ≤ 2/δn

Iϕ∗(Qn, Pn)

This is very close to the proposal of Bartolucci (2007) (with
R = S2

n) and Lahiri and Mukhopadhyay (2012) (with
R = diag(S2

n)) except that the relaxation is directly integrated to
the likelihood in their papers.
Leads to the same solution for an adequate choice of the
penalisation, but not exactly equal to the value of the dual version.

Patrice Bertail, CREST and University Paris X Journées MAS, 2014, Toulouse
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Main Idea : under the preceeding conditions on ϕ, Ln(λ)
behaves like

L̃n(λ) = −λ∗Pnξ(X, θ) − λ∗(Pnξ(X, θ)ξ(X, θ)∗ + δnR)λ/2

Denote

S2
n = Pnξ(X, θ)ξ(X, θ)′ = (

1
n

n∑
i=1

(f(Xi) − Pf)(g(Xi) − Pf))

the empirical covariance operator (recentered at the true
expectation). Assuming that the operator S2

n + δnRn is invertible
then, the solution in λ is given by

λ = (S2
n + δnRn)−1Pnξ(X, θ)

Patrice Bertail, CREST and University Paris X Journées MAS, 2014, Toulouse
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The penalized generalized empirical likelihood should behave like

L̃n(λ) =
1
2
Pnξ(X, θ)∗((S2

n + δnRn)−1)Pnξ(X, θ)

that is, penalizing the dual leads to a Tikhonov or Ridge like
regularization of the empirical covariance metric (which is
calculated internally by the optimisation procedure).

Rq : a pb with Bartolucci(2007), it does not really regularize (it
enlarges the margin and thus escape the convex hull of
ξ(Xi, θ)

′s but, for large dimension does not solve the problem).
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Dimension of the problem in the Hilbert space case

The problem reduces to studying the behaviour of regularized
quadratic forms or Hotteling T 2.

See also Peng and Schick(2013, 2014), for empirical likelihood
with a growing number of constraints (extending Hjort, McKeague
and Keilegom(2009) and Cheng, Peng and Qing(2009) : need to
ensure the existence of a solution (control of the smallest
eigenvalue). No need for quasi-empirical likelihood.

Other interesting references in the normal case : Srivastava
Fujikoshi (2006), Srivastava(2007), J. Japan Stat. Soc, Chen
Debashis, Ross, Prentice and Wang (2011) (with R=Id under
normality assumptions and q/n → γ > 0).
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Dimension of the problem in the Hilbert space case

More precise results in a particular case.
Consider that ξ take its value in an Hilbert space H2 with scalar
product < ., . >, with countable basis fj , .j = 1, ...∞.

Define ξ =
∑∞

i=1 ξjfj ξj =< ξ, fj > . Assume that E||ξ||4 < ∞.

It is known that 1√
n

∑
ξ(Xi, θ)

w→
n→∞G, Gaussian r.v. in H2

with covariance operator S2 = E(ξ(Xi, θ) 	 ξ(Xi, θ))

Patrice Bertail, CREST and University Paris X Journées MAS, 2014, Toulouse
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Dimension of the problem in the Hilbert space case

Assume that S2 is bounded and positive.
Let λ1 ≥ λ2 ≥ ... ≥ ... be eigenvalues of this operator ( they are
such that

∑∞
i=1 |λi| ≤ ∞) . Denote λ̂1 ≥ λ̂2 ≥ ... ≥ ... the

estimated eigenvalues of S2
n and μ̂1 ≥ μ̂2 ≥ ... ≥ ... the

eigenvalues of the regularizing operator Rn . Rn is assumed to
commute with S2

n and to have bounded eigenvalues.
Define, for l ∈ N, the dimensions

c(S2, R, l, δ) =
l∑

i=1

λi

λi + δμi

d(S2, R, l, δ) =
l∑

i=1

(
λi

λi + δμi

)2
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Regularized generalized emp. divergence and Hotteling T2

Dimension of the problem in the Hilbert space case

Theorem

Then, their always exists some sequence δn → 0 and ln → ∞ such
that ln = γ

√
nδn for some γ > 0, we have

supλ∈H2
(Ln(λ)) − c(S2

n, Rn, ln, δn)√
2d(S2

n, Rn, ln, δn)
d→

n→∞ N(0, 1)

Proof : control the truncation ln ensuring that
∑∞

i=ln
λi

λi+δnμi
→ 0

and show that supλ∈H2
(Ln(λ)) behaves like the weighted sum of

i.i.d χ2(1) r.v.
∑l

i=1
λi

λi+δnμi
(< G, fj >2 −1). Then apply

Hajek(1961)’s, Ann. Math. stat. Theorem.
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Dimension of the problem in the Hilbert space case

Moral : convergence of penalized generalized empirical likelihood
(or of quadratic forms) to a distribution essentially depends on the
”true” dimension of the problem measured by c and d or more
precidely on c/

√
(2d), not really on q.
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