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Statistical framework

From a training sample

Dn = {(Xi, Yi)}ni=1

of i.i.d. replications of a r.v.

(X, Y ) ∈ Rd × Y with Y = R or Y = {±1}

learn the relationship between Y and X.

Goal
Estimation of a transform Φ of the regression function

x 7→ Φ (E[Y |X = x])

Benjamin Guedj Journées MAS 2014 2/24



Context PAC-Bayesian approach MCMC

Highlights

• High-dimensional setting: d� n.

• Sparsity-based perspective, carrying no assumptions on the design.

• Modus operandi : PAC-Bayesian theory.
Main references: Shawe-Taylor and Williamson (1997), McAllester
(1999), Catoni (2004, 2007), Audibert (2004, 2010), Alquier (2006,
2008), Dalalyan and Tsybakov (2008, 2012)...

• Implementation: MCMC algorithm favoring local moves of the
Markov chain.
Main references: Carlin and Chib (1995), Leung and Barron
(2006), Hans et al. (2007), Petralias (2010), Petralias and
Dellaportas (2012)...
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Aggregation approach

From a known dictionary D = {φ1, φ2, . . . , φM}, aggregated estimators
are of the form fθ = θ>D =

∑M
k=1 θkφk where:

• θ ∈ {e1, . . . , eM} (selectors),
• θ ∈ ΛM = {λ ∈ RM+ :

∑M
k=1 λk = 1} (convex aggregation),

• θ ∈ RM (linear aggregation),
• ...

fθ =
d∑
j=1

mj∑
k=1

θjkφk , θ ∈ Θ = R
∑d
j=1mj , |fθ|∞ ≤ C

 ,

where m = (m1, . . . ,md) ∈ {0, . . . ,M}d is a model.
For some loss function `, risk and empirical risk of an estimator fθ

R(fθ) = E`(Y, fθ(X)), Rn(fθ) =
1

n

n∑
i=1

`(Yi, fθ(Xi)).
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PAC-Bayesian estimators

• Set a prior probability measure π on Θ, promoting sparsity.

• Constrained optimization problem:

arg min
ρ

{∫
Θ

Rn(fθ)ρ(dθ) +
λ

n
KL(ρ, π)

}
,

with the Kullback-Leibler divergence

KL(ρ, π) =

∫
log

[
dρ

dπ
(θ)

]
ρ(dθ).

• Unique solution: Gibbs posterior distribution

ρ̂λ(dθ) ∝ exp[−λRn(fθ)]π(dθ).
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PAC-Bayesian estimators

• Two estimators in this talk:

θ̂ ∼ ρ̂λ (Randomized estimator),

θ̄ =

∫
Θ

θρ̂λ(dθ) = Eρ̂λθ (Posterior mean).

• PAC-Bayesian theory is a great tool to produce estimators with
nearly minimax optimal properties.

• PAC-Bayesian bounds depend on the KL divergence and hold for any
prior π.

Take-home message

PAC-Bayesian theory adapts nicely to high-dimensional problems when
coupled with a sparsity-inducing prior.
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Sparsity-inducing prior

π(θ) ∝
∑
m

(
d

|m|0

)−1

β
∑d
j=1mj UnifBm(θ),

where β ∈ (0, 1) and

Bm =

θ,
d∑
j=1

mj∑
k=1

|θjk| ≤ C

 .

This prior distribution gives larger mass to sparse parameters.

Goal
Obtain oracle inequalities on the excess risk of the PAC-Bayesian
estimators fθ̂ and fθ̄: For any ε ∈ (0, 1),

P
[
R(fθ̂)−R

? ≤ Kλ inf
θ

{
R(fθ)−R? + ∆n,d,M,ε(θ)

}]
≥ 1− ε.
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Regression I

• Y = R, model Y = ψ?(X) +W .
• Assumption: |ψ?|∞ ≤ C.

Theorem (G. and Alquier, 2013)

For any ε ∈ (0, 1), any 0 < λ < n/(4σ2 + 4C2), with probability at least
1− ε,

R(fθ̂)−R(ψ?)
R(fθ̄)−R(ψ?)

}
≤ Kλ × inf

m
inf
θ∈Bm

{
R(fθ)−R(ψ?)

+|m|0
log(d/|m|0)

n
+

log(n)

n

d∑
j=1

mj +
log(2/ε)

n

 ,

where Kλ −−−→
λ→0

1 and Kλ −−−−−−−−−−→
λ→n/(4σ2+C2)

+∞.
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Regression II
• Let φ1, φ2, . . . refer to the trigonometric basis and assume that
ψ? =

∑
j∈S? ψ

?
j , where

ψ?j ∈W(rj , `j)

=

{
f ∈ L2([−1, 1]) : f =

∞∑
k=1

θkφk and
∞∑
i=1

i2rjθ2
i ≤ `j

}
.

Theorem (G. and Alquier, 2013)

For any real ε ∈ (0, 1), any 0 < λ < n/(4σ2 + 4C2), with probability at
least 1− ε,

R(fθ̂)−R(ψ?)
R(fθ̄)−R(ψ?)

}
≤

Kλ ×

∑
j∈S?

`
1

2rj+1

j

(
log(n)

2nrj

) 2rj
2rj+1

+
|S?| log(d/|S?|)

n
+

log(2/ε)

n

 .
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Logistic regression I

Y = {±1}, model

log
P(Y = 1|X = x)

1− P(Y = 1|X = x)
= ν(x), x ∈ Rd.

Logistic loss function:

` : (Y, fθ(X)) 7→ log [1 + exp(−Y fθ(X))] .

Simplified framework where m = (m1, . . . ,md) ∈ {0,M}d.

Theorem (G., 2013)

For any ε ∈ (0, 1),

P
[
R(fθ̄) ≤ Kλ inf

ρ

{∫
R(fθ)ρ(dθ) +

KL(ρ, π)

n
+

log(2/ε)

n

}]
≥ 1− ε.
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Logistic regression II

Theorem (G., 2013)

For any ε ∈ (0, 1), with probability at least 1− ε,

R(fθ̄) ≤ Kλ inf
m∈M

inf
θ∈Bm

{
R(fθ) +

|m|0
n

[
M log

(
n

M |m|0

)
+ log

(
de

|m|0

)
+ log(1/β)

]
+

log(2/ε)

n

}
,

where Kλ −−−→
λ→0

1.

Benjamin Guedj Journées MAS 2014 11/24



Context PAC-Bayesian approach MCMC Regression Logistic regression Binary ranking

Binary ranking I

• Y = {±1}, model η : x 7→ P{Y = 1|X = x}.
• Ranking consists in ordering Rd such that the order of labels is
preserved.

• Goal: construct a so-called scoring function s : Rd → R, such that
for any pair (x,x′) ∈ Rd × Rd, s(x) ≤ s(x′)⇔ η(x) ≤ η(x′).

• Ranking risk:

R(s)
def
= P {(s(X)− s(X′)) · (Y ′ − Y ) < 0} ,

and empirical counterpart

Rn(s)
def
=

1

n(n− 1)

∑
i 6=j

1{(Yi − Yj)(s(Xi)− s(Xj)) < 0}.

Benjamin Guedj Journées MAS 2014 12/24



Context PAC-Bayesian approach MCMC Regression Logistic regression Binary ranking

Binary ranking II

• Set of scoring functions:

SΘ =

sθ : x 7→
d∑
j=1

M∑
k=1

θjkφk(xj), θ ∈ RdM
 .

Simplified framework where m = (m1, . . . ,md) ∈ {0,M}d.
• (Empirical) Excess risk s :

E(s)
def
= R(s)−R?, En(s)

def
= Rn(s)−Rn(η).

• PAC-Bayesian estimator ŝ = sθ̂ where θ̂ ∼ ρ̂λ.

Benjamin Guedj Journées MAS 2014 13/24



Context PAC-Bayesian approach MCMC Regression Logistic regression Binary ranking

Binary ranking III

Condition (C)

For any λ > 0, and any scoring function s,

E exp [λ (En(s)− E(s))] ≤ exp(ψ),

where ψ may depend on n and λ.

Theorem

Under C, for any ε ∈ (0, 1),

P
[
E(ŝ) ≤ inf

ρ

{
E(s) +

2ψ + 2 log(2/ε) + 2KL(ρ, π)

λ

}]
≥ 1− ε,

where s ∼ ρ.
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Binary ranking IV

Corollary

For any distribution of (X, Y ), C holds for ψ = λ2/4n.
With λ =

√
n, for any ε ∈ (0, 1),

P
[
E(ŝ) ≤ inf

ρ

{
E(s) +

1/2 + 2 log(2/ε) + 2KL(ρ, π)√
n

}]
≥ 1− ε.

Corollary

Using the sparsity-inducing prior π, with

λ = c
√
n|m|0 log(d),

for any ε ∈ (0, 1), with probability at least 1− ε,

E(ŝ) ≤ inf
m

inf
θ∈Bm

{
E(sθ) + c′

√
log(2/ε) + |m|0 (log(1/β) + log(d))√

n

}
.
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Binary ranking V

Condition (MA(α))

The distribution of (X, Y ) satisfies a margin condition MA(α) of
parameter α ∈ (0, 1) if there exists C <∞ such that for any scoring
function s,

P [(s(X)− s(X′))(η(X)− η(X′)) < 0] ≤ C(R(s)−R?)
α

1+α .

Lemma
Let s be a scoring function, and

T = 1{(s(X)−s(X′))(Y−Y ′)<0} − 1{(η(X)−η(X′))(Y−Y ′)<0}.

Under the condition MA(α),

Var(T ) ≤ C(R(s)−R?)
α

1+α .
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Binary ranking VI

Corollary

Under MA(α), condition C holds for ψ = n
2 Var(T )φ

(
2λ
n

)
, with

φ : t 7→ et − t− 1. With λ = C−1
1 n

1+α
2+α , for any ε ∈ (0, 1), with

probability at least 1− ε :

E(ŝ) ≤ inf
ρ

{
2E(s) + C1n

− 1+α
2+α [log(2/ε) + KL(ρ, π)]

}
where C1 depends on α and C.
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Binary ranking VII

Proposition

With the sparsity-inducing prior π, with λ = C1 log(d)
1

2+αn
1+α
2+α , for any

ε ∈ (0, 1), with probability at least 1− ε :

E(ŝ) ≤ inf
m

inf
θ∈Bm(t)

{
2E(sθ) + C2n

− 1+α
2+αK

1+α
2+α

}
,

where C1 and C2 depend on C and α, and

K = log(2/ε) + |m|0 [log(1/β) + log(d)] .
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A challenging problem

• Goal: Sample a chain with stationary distribution ρ̂λ.

• The sample space is very high-dimensional, and its structure is non
standard.

• Existing PAC-Bayesian implementations:
• RJMCMC for the Single-Index model (Alquier and Biau, 2013).
• Langevin Monte-Carlo for fixed design regression (Dalalyan and

Tsybakov, 2012).
• ...
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A subspace Carlin & Chib-like approach

• Metropolized version of the Carlin & Chib algorithm (originally
introduced by Petralias and Dellaportas (2012) for Bayesian model
selection).

• Key idea: Introduce pseudopriors and define a neighborhood
relationship on the models space.

• For any model m, define its neighborhood V = {V+,V−}:
• V+: All models with the regressors from m plus one.
• V−: All models with the regressors from m but one.

• For any model m, pseudoprior defined as Gaussian with mean equal
to some default estimator1 in model m and covariance matrix
Σ = σ2I, σ2 being a parameter.

1Least-squares fit, maximum likelihood estimator, ...
Benjamin Guedj Journées MAS 2014 20/24



Context PAC-Bayesian approach MCMC

A subspace Carlin & Chib-like approach

• Metropolized version of the Carlin & Chib algorithm (originally
introduced by Petralias and Dellaportas (2012) for Bayesian model
selection).

• Key idea: Introduce pseudopriors and define a neighborhood
relationship on the models space.

• For any model m, define its neighborhood V = {V+,V−}:
• V+: All models with the regressors from m plus one.
• V−: All models with the regressors from m but one.

• For any model m, pseudoprior defined as Gaussian with mean equal
to some default estimator1 in model m and covariance matrix
Σ = σ2I, σ2 being a parameter.

1Least-squares fit, maximum likelihood estimator, ...
Benjamin Guedj Journées MAS 2014 20/24



Context PAC-Bayesian approach MCMC

Algorithm (R package pacbpred)

At iteration t = 1, . . . , T :
1 Pick a move: Add, delete a covariate, or stay in the current model.

2 For each of the neighbors models, draw a candidate estimator from
the Gaussian pseudoprior (whose density is denoted by ϕ).

3 Pick the model j and candidate parameter θj with probability

ρ̂λ(θj)/ϕ(θj)∑
k ρ̂λ(θk)/ϕ(θk)

.

4 The Metropolis-Hastings acceptance ratio is

α = min

(
1,
ρ̂λ(θj)ϕ(θt−1)

ρ̂λ(θt−1)ϕ(θj)

)
.
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Highlights

Take-home message
• Nearly minimax optimal estimators in a variety of high-dimensional
models.

• Oracle risk bounds in probability under little or no assumption.
• Competitive implementation via MCMC, enforcing sparse models.

References
• G. and Alquier (2013), PAC-Bayesian Estimation and Prediction in
Sparse Additive Models. Electronic Journal of Statistics.

• G. (2012), R package pacbpred, version 0.92.2.
• G. (2013), Agrégation d’estimateurs et de classificateurs : théorie et
méthodes. Ph.D. thesis, UPMC.

• G. and Robbiano (2014), Une approche PAC-bayésienne d’un
problème de ranking binaire en grande dimension. 46èmes Journées
de Statistique de la SFdS, Rennes.
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Key result

Lemma (Catoni, 2004)

Let (A,A) be a measurable space. For any probability measure µ on
(A,A) and any measurable function h : A→ R such that∫

(exp ◦h)dµ <∞,

log

∫
(exp ◦h)dµ = sup

m∈M1
µ(A,A)

{∫
hdm−KL(m,µ)

}
,

with the convention ∞−∞ = −∞. Further, if h is upper-bounded on
the support of µ, the supremum with respect to m in the right-hand term
is reached for the Gibbs distribution g defined by

dg

dµ
(a) =

exp ◦h(a)∫
(exp ◦h)dµ

, a ∈ A.
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Concentration inequality

Lemma (Massart, 2007)

Let (Ti)
n
i=1 be a collection of real independant random variables. Assume

there exist two positive constants v and w such that

n∑
i=1

ET 2
i ≤ v,

and for any integer k ≥ 3,

n∑
i=1

E[(Ti)
k
+] ≤ k!

2
vwk−2.

Then, for any γ ∈
(
0, 1

w

)
,

E

[
exp

(
γ

n∑
i=1

(Ti − ETi)

)]
≤ exp

(
vγ2

2(1− wγ)

)
.
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