
Statistical challenges in analyzing 16S microbiome data

An application to the identification of microbe-regulated pathways in allergy and

auto-immunity

Marine Jeanmougin
Institut Curie, U932 - Immunity and cancer

Journées MAS, August 28th, 2014

1



Outline

1 Introduction
The MAARS project
Microbiome data production and features

2 Normalisation of 16S data
Motivations
State of the art
Evaluation of current methods

3 Preliminary results
Exploratory analysis
Integration of microbiome and transcriptome data

2



Outline

1 Introduction
The MAARS project
Microbiome data production and features

2 Normalisation of 16S data
Motivations
State of the art
Evaluation of current methods

3 Preliminary results
Exploratory analysis
Integration of microbiome and transcriptome data

3



The MAARS Project

Goal

↝ Unravel the inflammatory pathways during the host-pathogen interactions
which may trigger allergic or autoimmune inflammation

Clinical impact

↝ Identify key microbes and molecular targets to develop novel intervention
strategies
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16S data production

The skin microbiome

Ecosystem of microbes that live on the skin

Culture independent microbiome research:

▸ total microbiome DNA sequencing

▸ 16S rRNA sequencing
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16S data features

Discrete counts of sequence reads: number of time each OTU was found in a sample

Large-scale data: ∼ 17000 OTUs × 666 samples

  

Pso Controls AD

228

180258

129
Non-lesional

129
Lesional

90
Non-lesional

90
Lesional

Heterogeneneous data due to:

▸ biological phenomena: some species are found in only a small % of samples

▸ technical reasons: others are not detected (insufficient seq depth)

→ Library size (total reads per sample) vary by orders of magnitude

→ Sparsity: i.e. most OTUs are rare (98% of sparsity in raw data)

→ Overdispersion: variance grows faster than the mean
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Normalisation: motivations

Comparison across samples with different library sizes may induce biases in the downstream
analysis

Differential analysis: the higher sequencing depth, the higher counts

Diversity/richness estimation: rarefaction phenomenon
"The number of taxonomic features detected in a sample depends on the amount of
sequencing performed"
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Figure: Illustration of the rarefaction phenomenon on MAARS data
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Normalisation: current practices

Rarefying

Random subsampling of each sample to a common depth:

Omission of available data: add artificial uncertainty

Inflate the variance and induce a loss of power in differential analysis

Total-sum scaling (TSS): proportional abundance of species

Divide read counts by the total number of reads in each sample:

c̃ij =
cij

sj

where:

cij is the number of times taxonomic feature i was observed in sample j

sj = ∑i cij , sum of counts for sample i

In practice...

Does not account for heteroscedasticity

Dillies et al. demonstrated biais in RNA-seq data: undue influence of high-count genes on
normalized counts

▸ ↗ FPR when differences in library composition
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Normalisation: alternative approaches

Methods derived from the field of RNA-seq data analysis:

1 Quantile (Q): Quantiles of the count distributions are matched between samples

2 Upper-Quartile (UQ): scale factors are calculated from the 75% quantile of the counts for each
library

3 Relative Log Expression (RLE) - DESeq (Anders & Huber 2010):

ŝj = mediani(
cij

(πn
v=1civ)1/n

)

where n is the sample size.

4 Trimmed Mean of M-values (TMM) - EdgeR (Robinson et al. 2010)
Trim data by log-fold-changes Mi and absolute intensity Ai :

Mi = log2
cij /sj

cij′ /sj′
; Ai = 1

2 log2(cij/sj × cij ′ /sj ′);

▷ Scaling factor: trimmed mean of the log-abundance ratios

5 Voom (Law et al. 2014)
Log-counts per million (log-cpm) value:

yij = log2(
cij + 0.5
sj + 1

× 106)

The library size is offset by 1 to ensure that 0 < cij+0.5
sj+1 < 1
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Normalisation : Cumulative-Sum Scaling (CSS)

CSS strategy

Paulson, J. et al. (2013), Nature Methods

q l
j : l th quantile of sample j

sl
j = ∑i ∣cij≤q l

j
cij

N: normalization constant (ex: the medj (sl
j ))

c̃ij =
cij

sl
j

N

▸ avoid placing undue influence on high-count features

Selection of the appropriate quantile

q̄ l = medj(q l
j ), median l th quantile across samples

dl = medj ∣q l
j − q̄ l ∣, median absolute deviation of sample-specific quantiles

l̂ : smallest value for which high instability is detected
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Except for voom, all approaches decrease the range of library sizes
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Figure: Distribution of library sizes across normalisation approaches
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All the normalisation methods improve the homogeneity between
technical replicates
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Voom increases the distance between technical replicates
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Rarefying decreases the biological signal
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Figure: Ratio of distances between clinical groups and technical replicates
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Proportion and rarefying approaches show high FPR

McMurdie, P.J. and Holmes, S. (2014), PLOS Comp. Biol.

  

Effect size

Figure: Performance of differential abundance detection on simulated data

Preliminary results on permuted data show that proportions and rarefying exhibit a FPR of 30%
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Conclusions on normalisation approaches

● TMM and RLE are the best compromises :

show good results on simulated data (McMurdie 2014)

reduce the heterogeneity in library sizes

lower the distances between technical replicates

do not degrade the biological signal

● UQ performs well but need to be tested on simulated data

● Voom, Q and CSS normalisation approaches to be proscribed

● Perspectives for differential abundance testing: zero-inflated negative binomial
model

18



Outline

1 Introduction
The MAARS project
Microbiome data production and features

2 Normalisation of 16S data
Motivations
State of the art
Evaluation of current methods

3 Preliminary results
Exploratory analysis
Integration of microbiome and transcriptome data

19



Microbiome data enable to discriminate AD samples from controls

  

Non-metric MultiDimensional Scaling

Atopic DermatitisPsoriasis
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Integration of microbiome and transcriptome data

▷ Unravel the interdependencies between skin microbiome and transcriptome

Univariate analysis

Associate the presence of a given microbe with different transcriptome profiles

Multivariate exploratory analysis

Canonical Correlation Analysis:
↝ identify largest correlations between linear combinations of transcriptome and OTU profiles

Let us consider two matrices X and Y of order n × p and n × q respectively, with p ≤ q.

For S = 1, ...,p, find ρ1 ≥ ρ2 ≥ ... ≥ ρp such as:

ρs = max
aS,bS

cor(XaS
,YbS) (1)

= cor(US
,V S) (2)

with cor(US ,UK ) = cor(V S ,V K ) = 0 for S ≠ K .

US and V S : canonical variates

ρS : canonical correlations
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Univariate approach: preliminary results

Abundance of given bacteria in AD is associated with different transcriptome profiles

  

Heatmap of the 400 « most significant » genes in 
bact 2. low/high patients

Heatmap of differentially expressed 
genes in bact. 1 low/high patients

Bact. 1 Bact. 2
Bact. 1 low

Bact. 1 high
Bact. 2 low

Bact. 2 high
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High abundance of bact. 1 is related to a dysregulated T-helper
cell differentiation pathway

  

Down-regulation in « bact 1 high »

Up-regulation in « bact 1 high » IL13RA2 (FC = 0,74)
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Conclusions and perspectives

16S data: large-scale count data

● similar features than RNA-seq data
● BUT with a higher level of sparsity

Normalization methods used in RNA-seq analysis

● perform well on 16S data
● should be transferred to microbiome research (instead of rarefying)

No consensus for differential analysis

Investigate co-occurences/co-exclusions of microbes

  

bact 1.

bact 2.

bact 3.
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The MAARS consortium
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Thanks !

Alix, Mahé, Paula, Sol, Caro, Max, Gérôme, Maude, Phil, Lucia, Irit, Vassili, Salvo,
Sofia, Anto, Colline, Aurore.
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Thank you !
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