Adaptive one-bit matrix completion

Joseph Salmon
Télécom Paristech, Institut Mines-Télécom

Joint work with Jean Lafond (Télécom Paristech) Olga Klopp (Crest / MODAL'X, Université Paris Ouest)
Éric Moulines (Télécom Paristech)

Motivation : recommender systems

movies (Netflix, Itunes, Allociné)

Motivation : recommender systems

Motivation : recommender systems

restaurants (Yelp, la Fourchette)

Motivation : recommender systems

trips, hotels (TripAdvisor, Voyages-SNCF)

Motivation : recommender systems

Motivation : recommender systems

In all those cases matrix completion is a crucial ingredient (not the only one) for improving recommender systems Koren et al. [2009]

Recommendation systems ：movie example

					（2）
Medhi		＊	？	＊	
Lorne	＊		？	\＃\＃${ }^{\text {\％}}$	
Raquel	？	？	？		＊
Maria	？	＊${ }^{\text {k }}$		放次放	＊${ }^{\text {¢ }}$＊
Robert	＊${ }^{\text {¢ }}$	施施放	？	？	？

Recommendation systems ：movie example

					（8）
Medhi		＊	＊＊＊＊＊	＊	
Lorne	＊		$\star \star$	放为	
Raquel	＊	$\star \star \star \star$	$\star \star$	\＃れれわ	＊
Maria	＊＊＊＊＊	＊${ }^{\text {c }}$	炏炏	为为施的	
Robert	＊${ }^{\text {N }}$		＊	＊＊＊＊＊	＊＊＊＊

Other aspect of matrix completion

- Quantum physics

Other aspect of matrix completion

- Quantum physics
- Image/signal processing with missing pixels

Other aspect of matrix completion

- Quantum physics
- Image/signal processing with missing pixels
- Communications

Other aspect of matrix completion

- Quantum physics
- Image/signal processing with missing pixels
- Communications
- Analysis of survey data

Other aspect of matrix completion

- Quantum physics
- Image/signal processing with missing pixels
- Communications
- Analysis of survey data

Classical theoretical model : partial observation and Gaussian noise

Observation model

- Matrix of true ratings : $X^{*} \in \mathbb{R}^{m_{1} \times m_{2}}$ (to recover)
- Indexes observed: $\left(\omega_{i}\right)_{1 \leq i \leq n} \stackrel{i . i . d .}{\sim}$ Unif over $\left[m_{1}\right] \times\left[m_{2}\right]$,
- Noisy observations : $Y_{\omega_{i}}=X_{\omega_{i}}^{*}+\sigma \varepsilon_{\omega_{i}}$ for $1 \leq i \leq n$
- σ : noise level, ε : centered standard Gaussian random vector

Rem: potentially $n \ll m_{1} m_{2}$
Rem: randomness sources : 1) index picking 2) degraded answer

Some dataset sizes

Parameter Size	m_{1}	m_{2}	n
MovieLens	$70 \cdot 10^{3}$	$10 \cdot 10^{3}$	$10 \cdot 10^{6}$
NetFlix	$2.5 \cdot 10^{6}$	$17 \cdot 10^{3}$	$100 \cdot 10^{6}$
Yahoo	$1 \cdot 10^{6}$	$600 \cdot 10^{3}$	$250 \cdot 10^{6}$

Low rank and matrix factorization

Underlying simplifying assumption : $r^{*}=\operatorname{rank}\left(X^{*}\right)$ is small Consequence :

- pass from $m_{1} m_{2}$ to $r^{*}\left(m_{1}+m_{2}\right)$ degrees of freedom Interpretation :
- a combination of few items can represent all of them
- a combination of few users can represent all of them

Popular estimator

Least square penalized by trace/nuclear norm

$$
\hat{X}=\underset{X \in \mathbb{R}^{m_{1} \times m_{2}}}{\arg \min } \frac{1}{2} \sum_{i=1}^{n}\left(Y_{\omega_{i}}-X_{\omega_{i}}\right)^{2}+\lambda\|X\|_{\sigma, 1}
$$

- $\|X\|_{\sigma, 1}$: trace/nuclear norm (ℓ_{1} norm of the singular values)
- $\lambda>0$: regularization parameter controlling data-fitting / low rank trade-off

Rem:

- vector case : $\|\cdot\|_{1} \quad$ regularization \Rightarrow sparsity (LASSO)
- matrix case : $\|\cdot\|_{\sigma, 1}$ regularization \Rightarrow low rank

Previous theoretical work on matrix completion with

- noise-free scenario : Recht, Fazel and Parrilo [2010] Candès and Recht [2009] Candès and Tao [2010]
- additive noise scenario : Candès and Plan [2010] Koltchinskii, Tsybakov and Lounici [2011] Negahban and Wainwrigh [2012] Klopp [2014]
Typical results :

Klopp [2014]

$$
\begin{aligned}
& \text { For } \lambda=C \sigma \sqrt{\frac{\log \left(m_{1}+m_{2}\right)}{\min \left(m_{1}, m_{2}\right) n}} \text {, w.h.p. } \\
& \frac{\left\|\hat{X}-X^{*}\right\|_{F}^{2}}{m_{1} m_{2}} \leq c \max \left(\sigma^{2},\left\|X^{*}\right\|_{\infty}^{2}\right) \frac{r^{*} \max \left(m_{1}, m_{2}\right) \log \left(m_{1}+m_{2}\right)}{n}
\end{aligned}
$$

Rem: can be extended to non uniform sampling provided each coefficient is sampled sufficiently often

Limits of the previous model

- Generally ratings are discrete (0-1, 1-5 stars, etc.)
- In surveys, answers are naturally discrete (yes/no, classes, etc.)
- Variance of the noise model (implicitly) assumed identical for all entries. Cases with picky distribution e.g., movies with agreement (only 5's) / disagreement among the audience (lots of 1 's and lots of 5's).

Binary model

Observation model Davenport et al. [2012]

- Matrix of true ratings to recover : $X^{*} \in \mathbb{R}^{m_{1} \times m_{2}}$
- Indexes observed: $\left(\omega_{i}\right)_{1 \leq i \leq n} \stackrel{i . i . d .}{\sim}$ Unif over $\left[m_{1}\right] \times\left[m_{2}\right]$,
- Indirect observations :

$$
\mathbb{P}\left(Y_{\omega_{i}}=1\right)=f\left(X_{\omega_{i}}^{*}\right) \text { and } \mathbb{P}\left(Y_{\omega_{i}}=-1\right)=1-f\left(X_{\omega_{i}}^{*}\right),
$$

where f is a link function taking value in $[0,1]$.
Rem: Uniform sampling only for the sake of simplicity Rem: To obtain theoretical guarantees $\log (f(\cdot))$ and $\log (1-f(\cdot))$ need to be concave (e.g., logit, probit)

The estimator

The log-likelihood of the observations $X \rightarrow \mathrm{~L}(X)$:
$\mathrm{L}(X)=\sum_{i=1}^{n}\left[\mathbb{1}_{\left\{Y_{\omega_{i}}=1\right\}} \log \left(f\left(X_{\omega_{i}}\right)\right)+\mathbb{1}_{\left\{Y_{\omega_{i}}=-1\right\}} \log \left(1-f\left(X_{\omega_{i}}\right)\right)\right]$.

Penalized log-likelihood estimator

$$
\hat{X}=\underset{X \in \mathbb{R}^{m_{1} \times m_{2}}}{\arg \min } \mathrm{~F}(X), \quad \text { where } \quad \mathrm{F}(X)=-\frac{1}{n} \mathrm{~L}(X)+\lambda\|X\|_{\sigma, 1},
$$

with $\lambda>0$ a regularization parameter.

Results

Proposed result

For $\lambda=C \sqrt{\frac{\log \left(m_{1}+m_{2}\right)}{\min \left(m_{1}, m_{2}\right) n}}$ w.h.p.

$$
\mathrm{KL}\left(f\left(X^{*}\right), f(\hat{X})\right) \leq c^{*} \frac{r^{*} \max \left(m_{1}, m_{2}\right) \log \left(m_{1}+m_{2}\right)}{n}
$$

where we define the Kullback-Liebler divergence :
$\operatorname{KL}(P, Q):=\frac{1}{m_{1} m_{2}} \sum_{\substack{1 \leq i \leq m_{1} \\ 1 \leq j \leq m_{2}}}\left[P_{i, j} \log \frac{P_{i, j}}{Q_{i, j}}+\left(1-P_{i, j}\right) \log \frac{1-P_{i, j}}{1-Q_{i, j}}\right]$.

Multinomial Coordinate Lifted Gradient Desc. : Dudik et al. [2012]
Data: Observations : Y
ini. param. : $\theta_{0} \in \Theta_{+}$; tolerance : ϵ; maximum iterations : K
Result: $\theta \in \Theta_{+}$
Initialization : $\theta \leftarrow \theta_{0}$, conv $\leftarrow 0, k \leftarrow 0$
while $k \leq K$ and conv $=0$ do
Compute top singular vectors pair of $\left(-\nabla \mathrm{F}\left(W_{\theta}\right)\right): u, v$ Let $g=\lambda+\left\langle\nabla \mathrm{L}, u v^{\top}\right\rangle$
if $g \leq-\epsilon / 2$ then
$\beta=\arg \min _{b \in \mathbb{R}} \mathrm{~F}\left(\theta+\left(b \delta_{u v}{ }^{\top}\right)\right)$
$\theta \leftarrow \theta+\beta \delta_{u v^{\top}} ; k \leftarrow k+1$
end
else
if $g \leq \epsilon$ then
। conv $\leftarrow 1$
end
else
$\theta \leftarrow \arg \min _{\theta^{\prime} \in \mathbb{R}^{+}+\mathbb{K}}, \operatorname{supp}\left(\theta^{\prime}\right) \subset \operatorname{supp}(\theta) \mathrm{F}\left(\theta^{\prime}\right) ; k \leftarrow k+1$
end
end
end

Main interests compared to other classical methods

- Does not require full SVD as proximal methods
- Convex formulation which offers strong theoretical guarantees
- Well adapted to sparse structure

Numerical experiments

- Simulate X^{*} for
$m_{1} \times m_{2}=100 \times 150,300 \times 450,900 \times 1350$ and $r^{*}=5$

Numerical experiments

- Simulate X^{*} for $m_{1} \times m_{2}=100 \times 150,300 \times 450,900 \times 1350$ and $r^{*}=5$
- For each X^{*} simulate with logit distribution n observations, from $n=10000$ to 500000

Numerical experiments

- Simulate X^{*} for $m_{1} \times m_{2}=100 \times 150,300 \times 450,900 \times 1350$ and $r^{*}=5$
- For each X^{*} simulate with logit distribution n observations, from $n=10000$ to 500000
- For Gaussian and Binomial estimator, choose λ by cross validation

Numerical experiments

- Simulate X^{*} for $m_{1} \times m_{2}=100 \times 150,300 \times 450,900 \times 1350$ and $r^{*}=5$
- For each X^{*} simulate with logit distribution n observations, from $n=10000$ to 500000
- For Gaussian and Binomial estimator, choose λ by cross validation
- For Gaussian and Binomial estimator, estimate X^{*}

Numerical experiments

- Simulate X^{*} for $m_{1} \times m_{2}=100 \times 150,300 \times 450,900 \times 1350$ and $r^{*}=5$
- For each X^{*} simulate with logit distribution n observations, from $n=10000$ to 500000
- For Gaussian and Binomial estimator, choose λ by cross validation
- For Gaussian and Binomial estimator, estimate X^{*}
- For Gaussian and Binomial estimator, compute KL divergence

Illustration over simulation (with cross-validation choice for λ)

Conclusion

- New results for binary / logit matrix completion
- No need to know a bound on the rank or to make a "spikiness" assumption
- Fast algorithm based on Lifted Coordinate Descent Dudik et al. [2012]
- Extension to multinomial under some separability

Références I

- E. J. Candès and Y. Plan.

Matrix completion with noise.
Proceedings of the IEEE, 98(6) :925-936, 2010.

- E. J. Candès and B. Recht.

Exact matrix completion via convex optimization.
Found. Comput. Math., 9(6):717-772, 2009.

- E. J. Candès and T. Tao.

The power of convex relaxation : Near-optimal matrix completion.
IEEE Trans. Inf. Theory, 56(5) :2053-2080, 2010.

- M. Dudík, Z. Harchaoui, and J. Malick.

Lifted coordinate descent for learning with trace-norm regularization.
In AISTATS, 2012.

- M. A. Davenport, Y. Plan, E. van den Berg, and M. Wootters.

1-bit matrix completion.
CoRR, abs/1209.3672, 2012.

Références II

- Y. Koren, R. Bell, and C. Volinsky.

Matrix factorization techniques for recommender systems.
Computer, 42(8):30-37, 2009.

- O. Klopp.

Noisy low-rank matrix completion with general sampling distribution.
Bernoulli, 2(1) :282-303, 022014.

- V. Koltchinskii, A. B. Tsybakov, and K. Lounici.

Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion.
Ann. Statist., 39(5) :2302-2329, 2011.

- S. Negahban and M. J. Wainwright.

Restricted strong convexity and weighted matrix completion : optimal bounds with noise.
J. Mach. Learn. Res., 13 :1665-1697, 2012.

Références III

- B. Recht, M. Fazel, and P. A. Parrilo.

Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization.
SIAM review, 52(3) :471-501, 2010.

