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Unsupervised Learning & Computer Experiments

Context

From Real life to Simulated life...

Y = Variable of Interest (uncertain !)

ρ∗ = Quantity of Interest (quantile, pdf, exceed. probability ...)

Challenge :

From ref. data Y1, ...,Yn or (X∗1 ,Y1), ..., (X∗n ,Yn) (n limited !)

−→ Choose h and θ to predict ρ∗ with simulation model(s) h
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Unsupervised Learning & Computer Experiments

Numerical Simulations under Uncertainties
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Numerical Simulations under Uncertainties
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Unsupervised Learning & Computer Experiments

Methodology commonly adopted [de Rocquigny et al. (2008)]

⇒ 2 kind of problems:

• Inverse Problem: identify the parameter θ (mechanical, thermal...) from a set
Y1, ...,Yn

• Prediction Problem: estimate θ (tuning parameters, etc.) and simulate with

h(X, θ̂) under X
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Unsupervised Learning & Computer Experiments

Questions ?

Inverse problem: If the "real life" inputs X∗i 's are not observed ? How to
calibrate ?
(e.g input code 6= experimental conditions etc...)

In other words, for each simulation input Xi we do not have the associated
response Yi , which may be referred to as Unsupervised Learning.
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Unsupervised Learning & Computer Experiments

Link with Statistical Learning
Classical learning areas (see Hastie et al [7], Massart [8])

• Unsupervised learning: We observe X∗1 , ...,X
∗
n i.i.d P∗X (unknown) and we

look for a probabilistic feature of P∗X

• Semi-supervised learning With l < n, we observe (X∗i ,Y
∗
i )i≤l +

X∗l+1, ...,X
∗
n and we look for a map g : X ∗ → Y∗

• Supervised/inductive learning: We observe (X∗1 ,Y
∗
1), ..., (X∗n ,Y

∗
n) and we

look for a map g : X ∗ → Y∗

Our learning context

If the X∗i 's are observed ?

Data at disposal:
(X∗1 ,Y

∗
1), ..., (X∗n ,Y

∗
n) + (X1, h(X1, θ)), ..., (Xm, h(Xm, θ)), m >> n

The framework Y∗1 , ...,Y
∗
n + X1, ...,Xm may be seen between Supervised and

Semi-supervised learning...

If the X∗i 's are NOT observed ?
Data at disposal: Y∗1 , ...,Y

∗
n + h(X1, θ), ..., h(Xm, θ), m >> n

The framework Y∗1 , ...,Y
∗
n + X1, ...,Xm may be seen between Unsupervised

and Semi-supervised learning...Page 7
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Other Questions ?

Prediction problem: even if they are observed, should we always use regression
models for predicting some quantity of interest ?

for instance, what is the meaning of

P(h(X, θ̂reg ) > s) or pdf
h(X,θ̂reg )

?

where θ̂reg is the mean-squares estimator of the model Yi = h(Xi , θ) + εi

... "duality" between estimation procedure and target prediction ...
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Unsupervised Learning & Computer Experiments

Example 1: Inverse Problem

N. Rachdi, J-C. Fort, T. Klein [2]

Fuel Mass data:

Reference Fuel Masses [kg]

7918 7671 7719 7839 7912 7963 7693 7815
7872 7679 8013 7935 7794 8045 7671 7985
7755 7658 7684 7658 7690 7700 7876 7769
8058 7710 7746 7698 7666 7749 7764 7667

Model (noisy simulator):

Goal: Identify SFC(=θ) (Speci�c Fuel Consumption) under uncertainties X

Rq: We do not have at disposal the inputs providing the Fuel Mass data
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Example 1: Inverse Problem

Idea: Minimize the "distance" between the distribution of Fuel Mass reference
data Yi and the distribution of the noisy computer code h(X, θ) (X =
uncertainties, θ=SFC)

Kullback-Leibler minimization:

KL(f1, f2) =

∫
Y
log

(
f1

f2

)
f1

Set f = density of Y , fθ = density of h(X,θ)

Goal: Find θ that minimizes KL(f , fθ) .

2 Di�culties

- f is unknown → replaced by f n = 1
n

∑n
i=1 δYi

- fθ intractable → replaced by a simulation density (Kernel,

projection, etc...)
(
f mθ = 1

m

∑m
j=1 Kbm (· − h(Xj ,θ)), Xj ∼

i.i.d
Px

)
Estimator
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Remark: This Estimator doesn't depend on the (unknown) Xi 's providing the Yi 's !
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Example 2: Density prediction (f̂MS)

N. Rachdi, J-C. Fort, T. Klein [1]

Suppose that X∗ = X and that (X1,Y1), ..., (Xn,Yn) are available.

Goal: Estimate the pdf of Y from a computer code h(X,θ) where X ∼ Px

Mean-Squares minimization

θ̂MS = Argmin
θ∈Θ

1

n

n∑
i=1

(Yi − h(Xi ,θ))2

Prediction
Compute the probability density of h(X, θ̂MS ) under X ∼ Px

→ f̂MS
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Example 2: Density prediction (f̂MS , f̂M)

Other Estimation Procedures...

Mean-Squares minimization (version 2)

θ̂M = Argmin
θ∈Θ

1

n

n∑
i=1

Yi −
1

m

m∑
j=1

h(Xj ,θ)

2

Rq : This version of mean squares minimizes the distance between the
"expectations", whereas the previous estimator θ̂MS minimizes the distance
between "conditional expectations".

Prediction
Compute the probability density of h(X, θ̂M) under X ∼ Px

→ f̂M
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Example 2: Density prediction (f̂MS , f̂M , f̂KL)
Other Estimation Procedures...
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∫
Y log( f1

f2
) f1
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Example 2: Density prediction (f̂MS , f̂M , f̂KL)

Question ?

What is the "best" estimator of the density f of Y,

f̂MS , f̂M or f̂KL ?
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Toy application

I Y = sin(X∗) + 0.01 ε, X∗, ε ∼ N (0, 1) independents

I h(X ,θ) = θ1 + θ2 X + θ3 X 3, X ∼ Px = N (0, 1)

I n = 50 and m = 103

true pdf, f̂MS , f̂M , f̂KL
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Issues

Inverse problem:
Formalize Stochastic Inverse Problems in a Statistical Learning framework

Prediction problem:
De�ne "adapted" estimation procedures (learning algorithms) for a computer
code based prediction
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General Framework

Reference data : set X∗ = X (i.e " phenomenon causes = code inputs ")

Z1 = (X1,Y1), ...,Zn = (Xn,Yn)

with (unknown) dist. Qz and denote by Q the marginal dist. of Y
−→ X1, ...,Xn may be unobserved

Model : {x ∈ X 7→ h(x,θ) ∈ Y , θ ∈ Θ}

- mathematical model : h(x,θ) =
∑l=q

l=1 φ(x)θ etc ...
- physical/simulation model : h(x,θ) is the result of a computer code

Uncertainty : Equip X with a prob. measure Px : X ∈ (X ,Px)

- stochastic codes, Monte-Carlo codes, uncertain variables etc...

Stochastic Output: h(X,θ) supposed known through input/output simulations

- for instance x 7→ h(x,θ) is has an analytical form but too
complicated to compute the distribution h(X,θ)

- or x 7→ h(x,θ) is an input/output simulation code
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From Loss function to Contrast function

Loss function: Given an action set A and an output set Y (for us A = Y)

` : Y × Y −→ R
(a, y) 7−→ `(a, y)

→ here think a ∈ A as: a = h(x,θ)
→ ex: the square loss writes `(h(x,θ), y) = (h(x,θ)− y)2

Towards Contrast functions: For instance in the case of the square loss, we
de�ne the associated "contrast" function as

`(h(x,θ), y) = (h(x,θ)− y)2 = Ψ(h(·,θ), (x, y))

De�nition: Denote by F some feature space, a contrast Ψ is de�ned as

Ψ : F −→ L1(Qz)

ρ 7−→ Ψ(ρ, ·) : (x, y) ∈ X × Y 7−→ Ψ(ρ, (x, y))

In the example before, if we consider F = {ρ : X → Y, ‖ρ‖L2(Px) <∞}, we may
de�ne F = {ρθ : x 7→ h(x,θ), θ ∈ Θ} ⊂ F .
We will call F as (computer code based) Model

The contrast function emphasizes the quantity of interest in F involved
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Notion of Risk

Risk with Loss function:

R(f ) = E[`(f (X ),Y )] =
e.g

E(f (X )− Y )2

Risk with Contrast function, Ψ-Risk :

RΨ(ρ) := EΨ (ρ , (X,Y ))

Target :
ρ∗ = Argmin

ρ∈F
RΨ(ρ) if it exists

Interpretation:
In Computer Experiments framework, the "target" de�ned before will be the
"quantity of interest" (QoI) depending on the contrast considered
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Examples of contrasts and associated QoI

(Abuse of notation: we will write Ψ(ρ, y) a contrast function which does not depend
on the joint data (x, y))

F = {ρ : X → Y, ‖ρ‖L2(Px) <∞}

regression-contrast: Ψ (ρ, (x, y)) = (y − ρ(x))2 → ρ∗(·) = E(Y |X = ·)
F = R

mean-contrast: Ψ (ρ, y) = (y − ρ)2 → ρ∗ = E(Y )

prob-contrast: Ψ (ρ, y) = (1 y≥s − ρ)2 → ρ∗ = P(Y ≥ s)

(α)quantile-contrast: Ψ (ρ, y) = (y − ρ)(α− 1y≤ρ) → ρ∗ = qα(Y )

F = {density functions on Y}
(log)pdf-contrast: Ψ (ρ, y) = − log ρ(y) → ρ∗ = pdfY

(L2)pdf-contrast: Ψ (ρ, y) = ||ρ||22 − 2 ρ(y) → ρ∗ = pdfY

In practice we de�ne a model F ⊂ F based on a code h(X,θ) where X ∼ Px

F = {ρθ : x 7→ h(x,θ), θ ∈ Θ} ⊂ {ρ : X → Y}
F = {ρθ = pdf of h(X,θ), θ ∈ Θ} ⊂ {density functions on Y}
Etc.

F = {ρ(θ), θ ∈ Θ}
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Empirical Risk Minimisation

Given a set Y1, ...,Yn and a simulation code h(X,θ), with X ∼ Px.
Consider a contrast Ψ : F → L1(Q) (i.e contrasts only the data y)
and a Model F = {ρ(θ), θ ∈ Θ} ⊂ F provided by the simulation code

Goal: estimate the parameter

θ∗Ψ = Argmin
θ∈Θ

RΨ(θ) = Argmin
θ∈Θ

EΨ (ρ(θ) , Y )

But Q is unknown and ρ(θ) is not analytically tractable !

Risk "Empirization":

EΨ (ρ(θ) , Y ) V
1

n

n∑
i=1

Ψ(ρm(θ),Yi )

where ρm(θ) is a kernel estimate of ρ(θ)

ρm(θ) =
1

m

m∑
j=1

κ(h(Xj ,θ)), Xj ∼
i.i.d

Px .

Example: F = "means", κ(y) = y
F = "densities", κ(y)(·) = 1√

2π b
exp((y − ·)2/2 b2)

etc...
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Empirical Risk Minimisation

Given a set Y1, ...,Yn and a simulation code h(X,θ), with X ∼ Px.
Consider a contrast Ψ : F → L1(Q) (i.e contrasts only the data y)
and a Model F = {ρ(θ), θ ∈ Θ} ⊂ F provided by the simulation code

Goal: estimate the parameter

θ∗Ψ = Argmin
θ∈Θ

RΨ(θ) = Argmin
θ∈Θ

EΨ (ρ(θ) , Y )

But Q is unknown and ρ(θ) is not analytically tractable !

Risk "Empirization":

EΨ (ρ(θ) , Y ) V
1

n

n∑
i=1
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where ρm(θ) is a kernel estimate of ρ(θ)
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1

m

m∑
j=1

κ(h(Xj ,θ)), Xj ∼
i.i.d

Px .
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2π b
exp((y − ·)2/2 b2)

etc...
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Ψ-Estimator

Generic Ψ-estimator:

θ̂Ψ = Argmin
θ∈Θ

n∑
i=1

Ψ(ρm(θ),Yi )

Examples:

I mean-contrast Ψmean, θ̂mean = Argmin
θ∈Θ

n∑
i=1

 m∑
j=1

(
Yi − h(Xj ,θ)

)2

I log-contrast Ψlog, θ̂log = Argmin
θ∈Θ

−
n∑

i=1

log

 m∑
j=1

Kb(Yi − h(Xj ,θ))


I L2-contrast ΨL2

θ̂L2 = Argmin
θ∈Θ


∥∥∥∥∥∥

m∑
j=1

Kb( · − h(Xj ,θ))

∥∥∥∥∥∥
2

2

−
2m

n

n∑
i=1

m∑
j=1

Kb(Yi − h(Xj ,θ))


I Etc...
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Contrast minimization: "the way of minimizing"

θ̂Ψ
plug
↪→ X 7→ h(X, θ̂Ψ), X ∼ Px

- In blue: Simulated data

- In red: Reference data
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Contrast minimization: "the way of minimizing"

θ̂Ψ
plug
↪→ X 7→ h(X, θ̂Ψ), X ∼ Px

- In blue: Simulated data

- In red: Reference data

Depending on the contrast used ...
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Results

N. Rachdi, J-C. Fort and T. Klein, Risk bounds for new M-estimation problems,
ESAIM : Probability & Statistics, Volume 17 (2013), p. 740�766

Consistency Results

Under regularity and tightness conditions, in probability

θ̂
n,m
Ψ =⇒

n,m→∞
θ∗Ψ = Argmin

θ∈Θ
EΨ (ρ(θ) , Y )

Central Limit Theorem in progress ...
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Back to the questions in Introduction ...

Inverse problem: If the X∗i 's are not observed ? How to calibrate ?
(e.g input code 6= experimental conditions etc...)

Prediction problem: even if they are observed, should we always use regression
models for predicting some quantity of interest ?

for instance, what is the meaning of

P(h(X, θ̂reg ) > s) or pdf
h(X,θ̂reg )

?

where θ̂reg is the mean-squares estimator of the model Yi = h(Xi , θ) + εi

... "duality" between estimation procedure and target prediction

Now, we have tools to study that questions ...
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Back to the introductive example

From (X1,Y1), ..., (Xn,Yn) and a computer code h(X,θ), we built the density

predictions f̂MS , f̂M , f̂KL
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Back to the introductive example

From (X1,Y1), ..., (Xn,Yn) and a computer code h(X,θ), we built the density

predictions f̂MS , f̂M , f̂KL

We used 3 contrasts (Ψreg , Ψmean and Ψpdf ) for parameter estimation

Y = sin(X ) + 0.01ε, (X , ε ∼ N (0, 1) iid)

→ Quantity of Interest: pdf(Y )

→ model: h(x ,θ) = θ1 + θ2 x + θ3 x
3

→ data: n = 50 ((Xi ,Yi )), m = 103

(Xj)

→ output simulations under
Xj ∼ Px = N (0, 1) using

- h(·, θ̂pdf ) (blue)

- h(·, θ̂reg ) (cyan)

- h(·, θ̂mean) (green)

Page 26



Unsupervised Learning & Computer Experiments
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Other example: Conditional expectation
• Y = sin(X ) + ε, X , ε ∼ N (0, 1) independents

• h(X , θ) = θ1 + θ2 X + θ3 X
3, X ∼ Px = N (0, 1)

• n = 50 ((Xi ,Yi )) and m = 103 (Xj )

QoI: ρ∗ = E(Y/X = ·)(= sin(·))

99K Ψ∗ = Ψreg ("adapted" contrast)

consider 3 Ψ-estimators: θ̂Ψ∗ , θ̂Ψlog
and θ̂Ψmean

θ̂Ψ RΨ∗ (θ̂Ψ)

Ψ = Ψ∗ (−0.0049, 0.9259,−0.1048) 0.064

Ψ = Ψlog (0.0057, 1.025,−0.163) 0.36

Ψ = Ψmean (−0.0924, 0.6607, 0.5965) 6.18
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Thank you for your attention !
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