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Outline

1 First, in a stochastic environment (i.i.d. processes)

2 Then, in an adversarial environment (or individual sequences)

3 Finally, some links with game theory



Stochastic Environment Regret Regret Minimization Extensions

First Part

Stochastic environment



Stochastic Environment Regret Regret Minimization Extensions

Estimation of Means

K = 2 discrete-time proc.: X (1)
n ,X (2)

n in [0,1]

“The payoff of the ad 1/2 on query n”

Estimate the means µ(1), µ(2)

Hoeffding inequality: exponential decay∣∣∣X (k)

n − µk
∣∣∣ > ε with proba at most 2 exp

(
− 2nε2

)
.

Finite number of mistakes:

E
∑
n∈N

1
{∣∣X (k)

n − µk
∣∣ > ε

}
≤ 1
ε2



Stochastic Environment Regret Regret Minimization Extensions

Regret Minimization

– Choose one ad to display kn. Reward: X (kn)
n

Maximize cumulative reward
∑n

m=1 X (km)
m or

∑n
m=1 µ

(km)

Minimize Regret [Hannan’56]

Rn = nµ? −
n∑

m=1

µ(km), with µ? = max{µ(1), µ(2)}

– Equivalent formulation with ∆ = µ? − µk :

Rn = ∆
n∑

m=1

1{km 6= ?}



Stochastic Environment Regret Regret Minimization Extensions

Stochastic & Full Monitoring

– Full Monitoring: all values X (1)
n ,X (2)

n observed.

– Optimal algorithm: kn = arg max X
(k)

n :

ERn ≤
1
∆

and for small n, ERN ≤ n∆

Bounded regret, uniformly in n!

– Given n, worst ∆ is 1/
√

n and ERn ≤
√

n

– But in the examples, only X (kn)
n is observed (bandit monitoring)!



Stochastic Environment Regret Regret Minimization Extensions

Stochastic & Bandit Monitoring

– X
(k)

n = 1
n

∑n
m=1 X (k)

m not available, only X̂ (k)
n =

∑
m:km=k X (k)

m

]{m : km = k}

– with kn = arg max X̂ (k)
n , ERn = Θ(n).

– Balance exploitation (play arg max) and exploration (play
arg min) to get information

Upper Confidence Bound [Auer,Cesa-Bianchi,Fischer’02]

kn = arg max X̂ (k)
n +

√
2 log(n)

]{m : km = k}

ERn ≤ 2
log(n)

∆



Stochastic Environment Regret Regret Minimization Extensions

New policy: Explore Then Commit [P,Rigollet ’13]

– Finite horizon N ∈ N given.

1) Play alternatively arm 1 and 2 as long as∣∣∣X̂ (1)
n − X̂ (2)

n

∣∣∣ ≤ 2

√
2

log(4N/n)

n

2) Then play for ever the best arm.

→ ERN ≤ 2
log(N∆2)

∆
vs

1
∆

with Full Info

→ Worst case ∆ ' 1√
N

Full Monit & ETC:
√

N vs UCB:
√

N log(N)

Bandit vs Full Monitoring
Logarithmic vs bounded regret; same worst case



Stochastic Environment Regret Regret Minimization Extensions

Bounded Regret ? [Lai,Robbins’84],[Bubeck,P,Rigollet ’13]

– Without additional assumption, No: lower bound in log(n)/∆

– With any given intermediate value µ] ∈ (µ(1), µ(2)), yes:

If X̂ (1)
n or X̂ (2)

n above µ], then kn = arg max X̂ (k)
n

Otherwise play alternatively both arms.

X̂ ?
n < µ] on 1

(µ?−µ])2 stages (same argument for other arm).

– If µ∗ and ∆ known: ERn ≤ 2
1
∆

as with Full Monit.

– If only µ∗ known: ERn ≤ 2
log(1/∆2)

∆



Stochastic Environment Regret Regret Minimization Extensions

More General Frameworks & Results
Results in worst case (“distribution independent bounds”)

– Multi-armed bandit. [Auer,Cesa-Bianchi,Freund,Schapire’02],[Audibert,Bubeck’09]

K > 2 arms, ERn ≤ 2
√

Kn

– Continuous bandit. [Kleinberg’08],[Bubeck,Munos,Stoltz,Szepesvari’11]

Infinite set of arms, x ∈ [0,1]d and µ(·) Lipschitz. ERn ≤ 2n
d+1
d+2

– Linear bandit[Dani,Hayes,Kakade’08],[Zinkevich’02],[Abernethy,Hazan,Rakhlin’08]

x ∈ [0,1]d and µ(·) Linear. ERn ≤ 2
√

n

– Bandit with covariates (cf Google Example) [P,Rigollet’13],[Bull’14]

Covariates ω ∈ [0,1]d , E[X (k)|ω] = µ(k)(ω) 1-Lip. ERn ≤ 2n
d+1
d+2

– Higher order bounds/small losses/sparsity[Hazan,Kale’10], [Gershinovitz’13],

[Cappé,Garivier,Maillard,Munos,Stoltz’13], [Gaillard,Stoltz,van Erven’14]

√
n vs

√∑n
m=1

(
X (km)

m − µ(km)
)2

,

√∑n
m=1

∑K
k=1 p(k)

n

(
X (k)

n

)2



Adversarial Environment Distribution Independent An Algorithm Internal Regret

Second Part

Adversarial environment

What we have learned so far:

– In worst case analysis

Regret minimization in 2
√

log(K )n with full monit
Up to

√
K , learning as fast with bandit monit. than with full monit.

– In distribution dependent (not worst case)

Bounded regret in 2
∑ 1

∆k
Additional assumption required to learn as fast in bandit monit



Adversarial Environment Distribution Independent An Algorithm Internal Regret

Adversarial World

– In the examples, data are not i.i.d.. Spam senders can even
adapt to spam filters, that is:

The law of X (k)
n+1 can depend on X (1)

1 , . . . ,X (1)
n ,X (K )

1 , . . . ,X (K )
n but even

on the previous choices k1, . . . , kn.

The environment can adapt and choose rewards strategically.

– Same def of regret (except argmax changes with time)

Rn = max
k

n∑
m=1

X (k)
m −

n∑
m=1

X (km)
m

– Goal: a policy with sublinear regret o(n) against ANY possible
strategy of the environment (in particular any sequences X (k)

n )



Adversarial Environment Distribution Independent An Algorithm Internal Regret

A Popular Algorithm with Full Monitoring

– With kn = argmax X
(k)

n , ERn = Θ(n). ‘

– With any deterministic policy, ERn = Θ(n). ‘

k with proba
exp

(
η
∑n

m=1 X (k)
m

)
∑K

j=1 exp
(
η
∑n

m=1 X (j)
m

) ; temperature η '
√

log(K )n

– Regret of “exponential weights” [Auer,Cesa-Bianchi,Freund,Schapire’02]

ERn ≤ 2
√

log(K )n, ∀n ∈ N

– Same dependency in n as worst case i.i.d., optimal in K .



Adversarial Environment Distribution Independent An Algorithm Internal Regret

Optimality and Bandit Monitoring

– Optimality: ERn ≥ 2
√

log(K )n if X (k)
n = ±1 w.p. 1/2

E

n∑
m=1

X (km)
m = 0 but Emax

k

n∑
m=1

X (k)
m = 2

√
log(K )n

– Bandit Monit.: X̃ (k)
n = X (k)

n
1{kn = k}
Pn{kn = k}

unbiased estim. of X (k)
n

“Exponential weights” w.r.t. X̃ (k)
n : ERn ≤ 2

√
K log(K )n

Remark: Optimal bounds are 2
√

Kn



Adversarial Environment Distribution Independent An Algorithm Internal Regret

Discrete/Continuous Time

–
exp
(
η
∑n

m=1 X (k)
m

)
∑K

j=1 exp
(
η
∑n

m=1 X (j)
m

) = ∇Φ(Vn) := 1
η log

(∑K
k=1 exp(ηV (k)

n )
)

with V (k)
n =

∑n
m=1 X (k)

n − X (km)
m

Deterministic continuous approx. of stochastic discrete proc.
[Benaïm,Hofbauer,Sorin’06],[Benaïm,Faure’13]

– E[Vn+1]− Vn =
(

X (k)
n+1 − 〈∇Φ(Vn),Xn+1〉

)
k=1,...,K

Stochastic Approx of V̇ ∈ F (V ) :=
{

U − 〈∇Φ(V ),U〉~1; U ∈ RK
}

– Differential inclusion with Lyapounov function Φ(V ):
Φ(V )′ = 〈V̇ ,Φ(V )〉 =

〈
U − 〈U,∇Φ(V )〉~1 , ∇Φ(V )

〉
= 0

– lim Rn ≤ lim Vn = V (+∞) = V (0) = log(d)/η



Adversarial Environment Distribution Independent An Algorithm Internal Regret

Refined Regret: Internal-Swap-

– Regret: “As well as the best constant strategy”

– Internal: “On the stages where kn = k , k was the best choice”
[Foster,Vohra’99]

R int
n = max

k

{
max

j

∑
m:km=k

X (j)
m − X (k)

m

}

– Swap: “As well as φ(k) instead of k , φ : [K ]→ [K ]” [Blum,Mansour’07]

Rswap
n = max

φ[k ]→[k ]

n∑
m=1

X (φ(km))
m − X (km)

m



Adversarial Environment Distribution Independent An Algorithm Internal Regret

General regret

– Regret: “As well as the best constant strategy”

– General: “As well as ξ(k1, . . . , kn) instead of kn, ξ ∈ Ξ” [Lehrer’02]

Rgen
n = max

ξ∈Ξ

{
max

j

n∑
m=1

X (ξ(k1,...,km))
m − X (km)

m

}

– Generalized version of “exponential weights” [P’14]

ERgen
n ≤ 2

√
log(|Ξ|)n

– Internal regret ≤ 2
√

log(K )n, Swap regret ≤ 2
√

K log(K )n



Game Theory Nash Equilibria Other equilibria

Third Part

Links with Game Theory

What we have learned in the previous section:

– In worst case analysis

Learning is as fast in adversarial than stochastic environment

– In the adversarial framework

Refined notions of regret can be minimized



Game Theory Nash Equilibria Other equilibria

Against Opponents - Game Theory

X (k)
n not arbitrary, but induced by choices of another player

– TWO players, simultaneous actions in {1, ..,K} and {1, ..,L}

– Payoffs are defined by two matrices A ∈ RK×L and B ∈ RK×L.

Player 1 picks row k ∈ {1, ..,K} and Player 2 column ` ∈ {1, .., L}
Player 1 gets Ak,` and Player 2 gets Bk,`

– Choices can be random p ∈ ∆([K ]) and q ∈ ∆([L])

Player 1 gets
∑

k,` pk q`Ak,` = pT Aq; P2 gets pT Bq

– Online learning: X (k)
n = Ak,`n and Y (`)

n = Bkn,`.

Assume both players minimize regret independently.

Do they “learn a solution concept” from game theory ?



Game Theory Nash Equilibria Other equilibria

Nash Equilibria

“A Nash equilibria is a situation where no player has interest to
change his action” [Nash’50], [Nash’51]

A Nash equilibria is a pair (p∗,q∗) ∈ ∆([K ])×∆([L]) such that

Player 1 has no interest to change given q∗:

(p∗)T Aq∗ ≥ pT Aq∗, ∀p ∈ ∆([K ])

Player 2 has no interest to change given p∗:

(p∗)T Aq∗ ≥ (p∗)T Aq, ∀q ∈ ∆([L])

There always exist Nash equilibria; generically an odd number
[Nash’50], [Nash’51], [Shapley’74]



Game Theory Nash Equilibria Other equilibria

Are Nash Equilibria Learnable?

– Both players minimize their regret independently.

kn ∼ pn ∈ ∆([K ]), `n ∼ qn ∈ ∆([L])

Learning Nash equilibria could mean:

(pn, qn) ∈ ∆([K ])×∆([L]) cv to a NE, or to set of NE.( 1
n

∑n
m=1 δkm ,

1
n

∑n
m=1 δ`m

)
∈ ∆([K ])×∆([L]) cv to a NE, or to set of NE( 1

n

∑n
m=1 δkm,`m

)
∈ ∆([K ]× [L]) cv to a NE, or to set of NE

– Nash equilibria are not learnable (independently): [Hart,Mas-Colell’04]

There always exists a game s.t. none of the convergence occur

– What is Learnable?
correlated eq, Minmax-Value, Potential eq [Coucheney, Gaujal, Mertikopolous]



Game Theory Nash Equilibria Other equilibria

Correlated Equilibria

“Players use an external device to correlate (as traffic lights);
when they are told to take an action (as stop or go), it is optimal”

– A correlated equilibrium is a distribution π ∈ ∆([K ]× [L]).
(k∗, `∗) ∼ π; P1 is told secretly to play k∗, P2 to play `∗

if P1 plays k∗ ∈ [K ], he gets
∑

`∈[L] πk∗,`Ak∗,`. If he plays j ∈ [K ]

instead, he would get
∑

`∈[L] πk∗,`Aj,`

–
∑
`∈[L]

πk∗,`Ak∗,` ≥
∑
`∈[L]

πk∗,`Aj,`, for all k∗, j ∈ [K ]

Similar to no internal regret !

If both players minimize internal regret, empirical distribution of
actions converge to the set of correlated equilibria. [Foster,Vohra’99]



Game Theory Nash Equilibria Other equilibria

Minmax Theory

In zero-sum games, players have optimal strategies

– “zero-sum”: B = −A; P1 maximizes and P2 minimizes pT Aq

– Value= max
p∈∆([K ])

min
q∈∆([L])

pT Aq = min
q∈∆([L])

max
p∈∆([K ])

pT Aq

– p∗ optimal if (p∗)T Aq ≥ Value for all q ∈ ∆([L]).

Rn ≤ 0 =⇒ 1
n

∑n
m=1 X (km)

m ≥ Value( 1
n

∑n
m=1 δkm ,

1
n

∑n
m=1 δ`m

)
cv to optimal strat, i.e. to NE

– NE are fast learnable in zero-sum game, at O
( 1

n

)
[Harris’98]



conclusion

Conclusion

– In worst case analysis

With full monitoring, learning is as fast in adversarial than
stochastic environment
Up to

√
K , learning is as fast with bandit monit. than with full

monit.

– In distribution dependent (not worst case)

Additional assumption required to learn as fast in bandit than in
full monitoring

– In game theoretic framework

Nash equilibria are not learnable in general
Correlated equilibria are learnable (by minimizing internal regret)
In zero-sum and potential games, equilibria are learnable.

Fundamental textbook: [Cesa-Bianchi,Lugosi’06]
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