# Online Learning & Game Theory A quick overview with recent results

Vianney Perchet

Laboratoire Probabilités et Modèles Aléatoires Univ. Paris-Diderot



Journées MAS 2014 27 Août 2014



### **Starting Examples**



# **Starting Examples**

| Gmail -                                        |  |  |  |  |  |
|------------------------------------------------|--|--|--|--|--|
| COMPOSE                                        |  |  |  |  |  |
| Inbox<br><mark>Spam (640)</mark><br>arxiv (28) |  |  |  |  |  |
| <b>1</b> 92 ● • <b> </b>                       |  |  |  |  |  |
| Search people                                  |  |  |  |  |  |
| Alexander Rakhlin<br>Philly                    |  |  |  |  |  |
| Alexandre Cham                                 |  |  |  |  |  |
| Axelle Ziegler                                 |  |  |  |  |  |
| Eilon Solan                                    |  |  |  |  |  |
| julie billet                                   |  |  |  |  |  |
| Laurent Menard                                 |  |  |  |  |  |
| Luis Briceño                                   |  |  |  |  |  |
| Matias Nunez                                   |  |  |  |  |  |
| Nicolas Mahler                                 |  |  |  |  |  |
| Stephane Bouche                                |  |  |  |  |  |
| Anaïs HERVOUET                                 |  |  |  |  |  |
| Arvind Singh                                   |  |  |  |  |  |
| Clément ESCRIH…                                |  |  |  |  |  |
| Corentin Piwtorak                              |  |  |  |  |  |
| Elad Hazan                                     |  |  |  |  |  |
| Emile RICHARD                                  |  |  |  |  |  |

| · ·                                                                                        |   | C M                       | lore -    |                                                                                       |
|--------------------------------------------------------------------------------------------|---|---------------------------|-----------|---------------------------------------------------------------------------------------|
| Delete all spam messages now (messages that have been in Spam more than 30 days will be at |   |                           |           |                                                                                       |
|                                                                                            | * | LeLynx.fr par Guide Comp. |           | Votre assurance voiture au meilleur prix! - Cliquez ici pour la Version en ligne Vot  |
|                                                                                            | * | Votre Supermarché         |           | Votre coupon de 50EUR à valoir pour tout achat au supermarché de votre cho            |
|                                                                                            | * | 1Mutuelle                 |           | La Mutuelle à petit prix - Vous recevez cet e-mail car vous êtes inscrit sur Planduw  |
|                                                                                            | * | Confirmation de g         | ain NZ    | Votre Volkswagen Golf vous attend - Si vous avez des difficultés pour visualiser c    |
|                                                                                            | * | Auchan.fr par FWU         | J         | Les Essentiels Auchan : jusqu'à moins 50 pourcent - Si le message ne s'affiche        |
|                                                                                            | * | Devis santé               |           | RE: Le meilleur tarif mutuelle - Si ce message ne s'affiche pas correctement, cons    |
|                                                                                            | * | La NET agence             |           | Ouvrez votre compte : 1 an de gratuite - Agence en ligne de BNP Paribas Bonjour       |
|                                                                                            | * | Conforama by Exc          | lusivité. | Record à battre : un PC portable à 349e - Vianney Vous recevez cet email car vou      |
|                                                                                            | * | Fortuneo par Dom          | osource   | Anais, votre carte bancaire a 0 euro et 80 euros de prime - Offre valable jusqu'au    |
|                                                                                            |   | Xtra (2)                  |           | Nous vous offrons ce bon de reduction - Si vous avez des difficultés pour visualis    |
|                                                                                            |   | Caves d'Alsace            |           | Trésors du Vignoble alsacien - Si cet email ne s'affiche pas correctement, vous po    |
|                                                                                            | * | Spartoo special re        | ntree     | Jusqu'a moins 35 pour cent sur notre selection rentree - Livraison OFFERTE -          |
|                                                                                            | * | Formations Englis         | h Town    | Demandez votre guide pour parler en Anglais sereinement - Profitez enfin de vo        |
|                                                                                            | * | vertbaudet par Gu         | ide Com.  | Pour la rentrée c'est jusqu'à -30 pourcent*, profitez-en ! - Cliquez ici pour la Vers |
|                                                                                            | * | Fan d'Expresso            |           | A ne pas manquer: vos 60 caspules Expresso à 1 Euro - Si vous n'arrivez pas à         |
|                                                                                            | * | Maisons du Mond           | e - BSY   | La rentree c'est le moment ideal pour refaire votre deco - Pour visualiser correcte   |
|                                                                                            | * | Coffee Box                |           | Capsules pour Nespresso + tasse design pour 1 euro - Si ce message ne s'affici        |
|                                                                                            | * | Super U                   |           | remportez un bon d'achat de 500 euros - Vous recevez cet e-mail car vous êtes in      |
|                                                                                            | - | Moine 3 kilos en 6        | iours     | Vianney Profitez de votre cadeau minceur - Vianney Vous recevez cet email car v       |



- First, in a stochastic environment (i.i.d. processes)
- 2 Then, in an adversarial environment (or individual sequences)
- Finally, some links with game theory

Extensions



# Stochastic environment



#### **Estimation of Means**

K = 2 discrete-time proc.:  $X_n^{(1)}, X_n^{(2)}$  in [0, 1] "The payoff of the ad 1/2 on query *n*"

Estimate the means  $\mu^{(1)}, \mu^{(2)}$ 

#### Hoeffding inequality: exponential decay

$$\left|\overline{X}_{n}^{(k)}-\mu^{k}\right|>\varepsilon$$
 with proba at most  $2\exp\left(-2n\varepsilon^{2}\right)$ .

Finite number of mistakes:

$$\mathbb{E}\sum_{n\in\mathbb{N}}\mathbb{1}\left\{\left|\overline{X}_{n}^{(k)}-\mu^{k}\right|>\varepsilon\right\}\leq\frac{1}{\varepsilon^{2}}$$



### **Regret Minimization**

- Choose **one** ad to display  $k_n$ . Reward:  $X_n^{(k_n)}$ 

Maximize cumulative reward  $\sum_{m=1}^{n} X_m^{(k_m)}$  or  $\sum_{m=1}^{n} \mu^{(k_m)}$ 

Minimize Regret [Hannan'56]

$$R_n = n\mu^* - \sum_{m=1}^n \mu^{(k_m)}, \text{ with } \mu^* = \max\{\mu^{(1)}, \mu^{(2)}\}$$

- Equivalent formulation with  $\Delta = \mu^* - \mu^k$ :

$$R_n = \Delta \sum_{m=1}^n \mathbb{1}\{k_m \neq \star\}$$

#### **Stochastic & Full Monitoring**

- Full Monitoring: all values  $X_n^{(1)}, X_n^{(2)}$  observed.
- Optimal algorithm:  $k_n = \arg \max \overline{X}_n^{(k)}$ :

$$\mathbb{E} R_n \leq rac{1}{\Delta}$$
 and for small  $n, \ \mathbb{E} R_N \leq n \Delta$ 

Bounded regret, uniformly in n!

- **Given** *n*, worst  $\Delta$  is  $1/\sqrt{n}$  and  $\mathbb{E}R_n \leq \sqrt{n}$
- But in the examples, **only**  $X_n^{(k_n)}$  is observed (bandit monitoring)!

(1.)

#### Stochastic & Bandit Monitoring

$$- \overline{X}_n^{(k)} = \frac{1}{n} \sum_{m=1}^n X_m^{(k)} \text{ not available, only } \widehat{X}_n^{(k)} = \frac{\sum_{m:k_m=k} X_m^{(k)}}{\#\{m:k_m=k\}}$$

- with  $k_n = \arg \max \widehat{X}_n^{(k)}, \mathbb{E}R_n = \Theta(n).$
- Balance exploitation (play arg max) and exploration (play arg min) to get information

Upper Confidence Bound [Auer,Cesa-Bianchi,Fischer'02]

$$k_n = rg \max \widehat{X}_n^{(k)} + \sqrt{rac{2\log(n)}{\sharp\{m:k_m=k\}}}$$

$$\mathbb{E} \boldsymbol{R}_n \leq \Box \frac{\log(n)}{\Delta}$$

### New policy: Explore Then Commit [P,Rigollet '13]

- Finite horizon  $N \in \mathbb{N}$  given.
- 1) Play alternatively arm 1 and 2 as long as

$$\left|\widehat{X}_{n}^{(1)}-\widehat{X}_{n}^{(2)}\right|\leq 2\sqrt{2rac{\log(4N/n)}{n}}$$

2) Then play for ever the best arm.

$$ightarrow \mathbb{E}\mathbb{R}_{N} \leq \Box rac{\log(N\Delta^{2})}{\Delta}$$
 vs  $rac{1}{\Delta}$  with Full Info

→ Worst case  $\Delta \simeq \frac{1}{\sqrt{N}}$ Full Monit & ETC:  $\sqrt{N}$  vs UCB:  $\sqrt{N} \log(N)$ 

#### **Bandit vs Full Monitoring**

Logarithmic vs bounded regret;

same worst case

### Bounded Regret ? [Lai,Robbins'84],[Bubeck,P,Rigollet '13]

- Without additional assumption, No: lower bound in  $log(n)/\Delta$
- With any given intermediate value  $\mu^{\sharp} \in (\mu^{(1)}, \mu^{(2)})$ , yes:
- If  $\widehat{X}_n^{(1)}$  or  $\widehat{X}_n^{(2)}$  above  $\mu^{\sharp}$ , then  $k_n = rg \max \widehat{X}_n^{(k)}$
- Otherwise play alternatively both arms.

 $\widehat{X}_n^{\star} < \mu^{\sharp}$  on  $rac{1}{(\mu^{\star} - \mu^{\sharp})^2}$  stages (same argument for other arm).

- If  $\mu^*$  and  $\Delta$  known:  $\mathbb{E}R_n \leq \Box \frac{1}{\Lambda}$  as with Full Monit.
- If only  $\mu^*$  known:  $\mathbb{E}R_n \leq \Box \frac{\log(1/\Delta^2)}{\Delta}$

# More General Frameworks & Results

Results in worst case ("distribution independent bounds")

- Multi-armed bandit. [Auer,Cesa-Bianchi,Freund,Schapire'02],[Audibert,Bubeck'09]  $K > 2 \text{ arms}, \mathbb{E}R_n \leq \Box \sqrt{Kn}$
- Continuous bandit. [Kleinberg'08],[Bubeck,Munos,Stoltz,Szepesvari'11] Infinite set of arms,  $x \in [0, 1]^d$  and  $\mu(\cdot)$  Lipschitz.  $\mathbb{E}R_n \leq \Box n^{\frac{d+1}{d+2}}$
- Linear bandit[Dani,Hayes,Kakade'08],[Zinkevich'02],[Abernethy,Hazan,Rakhlin'08]  $x \in [0, 1]^d$  and  $\mu(\cdot)$  Linear.  $\mathbb{E}R_n \leq \Box \sqrt{n}$
- Bandit with covariates (cf Google Example) [P.Rigollet 13],[Bull'14] Covariates  $\omega \in [0, 1]^d$ ,  $\mathbb{E}[X^{(k)}|\omega] = \mu^{(k)}(\omega)$  1-Lip.  $\mathbb{E}R_n \leq \Box n^{\frac{d+1}{d+2}}$
- Higher order bounds/small losses/sparsity[Hazan,Kale'10], [Gershinovitz'13], [Cappé,Garivier,Maillard,Munos,Stoltz'13], [Gaillard,Stoltz,van Erven'14]

$$\sqrt{n} \operatorname{vs} \sqrt{\sum_{m=1}^{n} \left(X_m^{(k_m)} - \mu^{(k_m)}\right)^2}, \sqrt{\sum_{m=1}^{n} \sum_{k=1}^{K} p_n^{(k)} \left(X_n^{(k)}\right)^2}$$

An Algorithm

**Internal Regret** 



### Adversarial environment

What we have learned so far:

#### - In worst case analysis

- Regret minimization in  $\Box \sqrt{\log(K)n}$  with full monit
- Up to  $\sqrt{K}$ , learning as fast with bandit monit. than with full monit.
- In distribution dependent (not worst case)
  - Bounded regret in  $\Box \sum \frac{1}{\Delta r}$
  - Additional assumption required to learn as fast in bandit monit

#### **Adversarial World**

 In the examples, data are not i.i.d.. Spam senders can even adapt to spam filters, that is:

The law of  $X_{n+1}^{(k)}$  can depend on  $X_1^{(1)}, \ldots, X_n^{(1)}, X_1^{(K)}, \ldots, X_n^{(K)}$  but **even** on the previous choices  $k_1, \ldots, k_n$ .

The environment can adapt and choose rewards strategically.

- Same def of regret (except argmax changes with time)

$$R_n = \max_k \sum_{m=1}^n X_m^{(k)} - \sum_{m=1}^n X_m^{(k_m)}$$

- Goal: a policy with sublinear regret o(n) against **ANY** possible strategy of the environment (in particular any sequences  $X_n^{(k)}$ )

### A Popular Algorithm with Full Monitoring

- With  $k_n = \operatorname{argmax} \overline{X}_n^{(k)}, \mathbb{E}R_n = \Theta(n)$ .
- With any **deterministic** policy,  $\mathbb{E}R_n = \Theta(n)$ . '

k with proba 
$$\frac{\exp\left(\eta \sum_{m=1}^{n} X_{m}^{(k)}\right)}{\sum_{j=1}^{K} \exp\left(\eta \sum_{m=1}^{n} X_{m}^{(j)}\right)}; \text{temperature } \eta \simeq \sqrt{\log(K)n}$$

- Regret of "exponential weights" [Auer,Cesa-Bianchi,Freund,Schapire'02]

$$\mathbb{E}\boldsymbol{R}_{\boldsymbol{n}} \leq \Box \sqrt{\log(K)\boldsymbol{n}}, \qquad \forall \boldsymbol{n} \in \mathbb{N}$$

- Same dependency in *n* as worst case i.i.d., optimal in *K*.

(An Algorithm)

### **Optimality and Bandit Monitoring**

- **Optimality:** 
$$\mathbb{E}R_n \ge \Box \sqrt{\log(K)n}$$
 if  $X_n^{(k)} = \pm 1$  w.p.  $1/2$ 

$$\mathbb{E}\sum_{m=1}^{n} X_{m}^{(k_{m})} = 0 \text{ but } \mathbb{E}\max_{k} \sum_{m=1}^{n} X_{m}^{(k)} = \Box \sqrt{\log(K)n}$$

- Bandit Monit.: 
$$\widetilde{X}_n^{(k)} = X_n^{(k)} \frac{\mathbb{1}\{k_n = k\}}{\mathbb{P}_n\{k_n = k\}}$$
 unbiased estim. of  $X_n^{(k)}$ 

"Exponential weights" w.r.t.  $\widetilde{X}_n^{(k)}$ :  $\mathbb{E}R_n \leq \Box \sqrt{K \log(K) n}$ 

Remark: Optimal bounds are  $\Box \sqrt{Kn}$ 

\_

#### **Discrete/Continuous Time**

$$-\frac{\exp\left(\eta \sum_{m=1}^{n} X_{m}^{(k)}\right)}{\sum_{j=1}^{K} \exp\left(\eta \sum_{m=1}^{n} X_{m}^{(j)}\right)} = \nabla \Phi(V_{n}) := \frac{1}{\eta} \log\left(\sum_{k=1}^{K} \exp(\eta V_{n}^{(k)})\right)$$
  
with  $V_{n}^{(k)} = \sum_{m=1}^{n} X_{n}^{(k)} - X_{m}^{(k_{m})}$ 

Deterministic continuous approx. of stochastic discrete proc.

[Benaïm,Hofbauer,Sorin'06],[Benaïm,Faure'13]

$$- \mathbb{E}[V_{n+1}] - V_n = \left(X_{n+1}^{(k)} - \langle \nabla \Phi(V_n), X_{n+1} \rangle\right)_{k=1,\dots,K}$$

Stochastic Approx of  $\dot{V} \in F(V) := \left\{ U - \langle \nabla \Phi(V), U \rangle \vec{\mathbf{1}}; \ U \in R^{\kappa} \right\}$ 

- Differential inclusion with Lyapounov function  $\Phi(V)$ :  $\Phi(V)' = \langle \dot{V}, \Phi(V) \rangle = \langle U - \langle U, \nabla \Phi(V) \rangle \vec{1}, \nabla \Phi(V) \rangle = 0$ 

 $- \lim R_n \leq \lim V_n = V(+\infty) = V(0) = \log(d)/\eta$ 

#### Refined Regret: Internal-Swap-

- Regret: "As well as the best constant strategy"
- Internal: "On the stages where  $k_n = k$ , k was the best choice" [Foster, Vohra'99]

$$\boldsymbol{R}_{n}^{\text{int}} = \max_{k} \left\{ \max_{j} \sum_{m:k_{m}=k} \boldsymbol{X}_{m}^{(j)} - \boldsymbol{X}_{m}^{(k)} \right\}$$

- Swap: "As well as  $\phi(k)$  instead of  $k, \phi : [K] \to [K]$ " [Blum,Mansour'07]

$$m{R}^{ ext{swap}}_n = \max_{\phi[k] o [k]} \sum_{m=1}^n X^{(\phi(k_m))}_m - X^{(k_m)}_m$$

#### **General regret**

- Regret: "As well as the best constant strategy"
- General: "As well as  $\xi(k_1, \ldots, k_n)$  instead of  $k_n, \xi \in \Xi$ " [Lehrer'02]

$$R_{n}^{\text{gen}} = \max_{\xi \in \Xi} \left\{ \max_{j} \sum_{m=1}^{n} X_{m}^{(\xi(k_{1},...,k_{m}))} - X_{m}^{(k_{m})} \right\}$$

- Generalized version of "exponential weights" [P'14]

$$\mathbb{E}R_n^{gen} \leq \Box \sqrt{\log(|\Xi|)n}$$

− Internal regret  $\leq \Box \sqrt{\log(K)n}$ , Swap regret  $\leq \Box \sqrt{K \log(K)n}$ 

#### **Third Part**

# Links with Game Theory

What we have learned in the previous section:

- In worst case analysis
  - Learning is as fast in adversarial than stochastic environment
- In the adversarial framework
  - Refined notions of regret can be minimized

## Against Opponents - Game Theory

 $X_n^{(k)}$  **not** arbitrary, but induced by choices of another player

- **TWO players**, simultaneous actions in  $\{1, ..., K\}$  and  $\{1, ..., L\}$
- Payoffs are defined by **two matrices**  $A \in \mathbb{R}^{K \times L}$  and  $B \in \mathbb{R}^{K \times L}$ .
  - Player 1 picks row  $k \in \{1, ..., K\}$  and Player 2 column  $\ell \in \{1, ..., L\}$
  - Player 1 gets A<sub>k,ℓ</sub> and Player 2 gets B<sub>k,ℓ</sub>
- Choices can be **random**  $p \in \Delta([K])$  and  $q \in \Delta([L])$ 
  - Player 1 gets  $\sum_{k,\ell} p_k q_\ell A_{k,\ell} = p^T A q$ ; P2 gets  $p^T B q$
- Online learning:  $X_n^{(k)} = A_{k,\ell_n}$  and  $Y_n^{(\ell)} = B_{k_n,\ell}$ .

Assume both players minimize regret independently.

Do they "learn a solution concept" from game theory ?

### Nash Equilibria

"A Nash equilibria is a situation where no player has interest to change his action" [Nash'50], [Nash'51]

- A Nash equilibria is a pair  $(p^*, q^*) \in \Delta([K]) \times \Delta([L])$  such that
  - Player 1 has no interest to change given q\*:

$$(p^*)^T A q^* \ge p^T A q^*, \quad \forall p \in \Delta([K])$$

• Player 2 has no interest to change given p\*:

 $(\boldsymbol{p}^*)^T \boldsymbol{A} \boldsymbol{q}^* \geq (\boldsymbol{p}^*)^T \boldsymbol{A} \boldsymbol{q}, \quad \forall \boldsymbol{q} \in \Delta([L])$ 

 There always exist Nash equilibria; generically an odd number [Nash'50], [Nash'51], [Shapley'74]

### Are Nash Equilibria Learnable?

- Both players minimize their regret independently.

$$k_n \sim p_n \in \Delta([K]), \ \ell_n \sim q_n \in \Delta([L])$$

#### Learning Nash equilibria could mean:

- $(p_n, q_n) \in \Delta([K]) \times \Delta([L])$  cv to a NE, or to set of NE.
- $\left(\frac{1}{n}\sum_{m=1}^{n}\delta_{k_m},\frac{1}{n}\sum_{m=1}^{n}\delta_{\ell_m}\right) \in \Delta([K]) \times \Delta([L])$  cv to a NE, or to set of NE
- $\left(\frac{1}{n}\sum_{m=1}^{n} \delta_{k_m,\ell_m}\right) \in \Delta([K] \times [L])$  cv to a NE, or to set of NE
- Nash equilibria are not learnable (independently): [Hart,Mas-Colell'04]
   There always exists a game s.t. none of the convergence occur
- What is Learnable?

correlated eq, Minmax-Value, Potential eq [Coucheney, Gaujal, Mertikopolous]

### **Correlated Equilibria**

"Players use an external device to correlate (as traffic lights); when they are told to take an action (as stop or go), it is optimal"

- A correlated equilibrium is a distribution π ∈ Δ([K] × [L]).
   (k<sup>\*</sup>, ℓ<sup>\*</sup>) ~ π; P1 is told secretly to play k<sup>\*</sup>, P2 to play ℓ<sup>\*</sup>
  - if P1 plays k<sup>\*</sup> ∈ [K], he gets Σ<sub>ℓ∈[L]</sub> π<sub>k<sup>\*</sup>,ℓ</sub>A<sub>k<sup>\*</sup>,ℓ</sub>. If he plays j ∈ [K] instead, he would get Σ<sub>ℓ∈[L]</sub> π<sub>k<sup>\*</sup>,ℓ</sub>A<sub>j,ℓ</sub>

$$-\sum_{\ell \in [L]} \pi_{k^*,\ell} A_{k^*,\ell} \geq \sum_{\ell \in [L]} \pi_{k^*,\ell} A_{j,\ell}, \quad \text{for all } k^*, j \in [K]$$

• Similar to no internal regret !

If both players minimize internal regret, empirical distribution of actions converge to the set of correlated equilibria. [Foster, Vohra'99]

Nash Equilibria

(Other equilibria)

#### **Minmax Theory**

In zero-sum games, players have optimal strategies

- "zero-sum": B = -A; P1 maximizes and P2 minimizes  $p^{T}Aq$
- $\text{Value} = \max_{p \in \Delta([K])} \min_{q \in \Delta([L])} p^T A q = \min_{q \in \Delta([L])} \max_{p \in \Delta([K])} p^T A q$
- $p^*$  optimal if  $(p^*)^T Aq \ge$ Value for all  $q \in \Delta([L])$ .
- $R_n \leq 0 \Longrightarrow \frac{1}{n} \sum_{m=1}^n X_m^{(k_m)} \geq \text{Value}$
- $\left(\frac{1}{n}\sum_{m=1}^{n}\delta_{k_m},\frac{1}{n}\sum_{m=1}^{n}\delta_{\ell_m}\right)$  cv to optimal strat, i.e. to NE
- NE are fast learnable in zero-sum game, at  $O\left(\frac{1}{n}\right)$  [Harris'98]

conclusion

#### Conclusion

#### - In worst case analysis

- With full monitoring, learning is **as fast** in adversarial than stochastic environment
- Up to  $\sqrt{K}$ , learning is as fast with bandit monit. than with full monit.
- In distribution dependent (not worst case)
  - Additional assumption required to learn as fast in bandit than in full monitoring

#### - In game theoretic framework

- Nash equilibria are not learnable in general
- Correlated equilibria are learnable (by minimizing internal regret)
- In zero-sum and potential games, equilibria are learnable.

Fundamental textbook: [Cesa-Bianchi,Lugosi'06]