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Topic of the talk:  Given ¢ : RY — R, estimation of
(o) = / o(x)dx

Monte-Carlo
(X1,..., Xp) i.i.d. with law f

/2 (Z ‘;’((jf)) - I(w)) = 0s(1)

Importance sampling

Optimal sampler f*,  (X1,..., X,) i.i.d. with law f*

n1/2 (nl Z ﬁ(())(é’)) _ /(go)) _ O]p(].)

Adaptive to ¢

Evans and Schwartz (2000, book), Zhang (1996, JASA)



Main result

(X1,..., Xp) i.id. with law f,  is a kernel estimator of f
e (X

2 (S ) — e
i=1 F(Xi)

Adaptive to the design

@ is only known at the points X;

Purpose

v

Rates of convergence, asymptotic behaviour

v

Regularity of f and ¢ with respect to the dimension, the bandwidth

> In practice: kernel, bandwidth...

v

Application to regression modelling



Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)



Definition of the estimators

K a d-dimensional kernel

?(i)(x) (nh?)~ Z K(h™*(x —

J#i
Y0(x) = ((n = 1)(n—2)) Z(h‘dK(h_l(x — X)) — F(x))?
J#i
2 estimators of /()
= _ =i . p(Xi)
I(¢)=n £ 0 (X))

Gy N X)) (W)
le(p) =n ;?m(x,-) (1 ?(i)(x,»)z)



Assumptions

Nikol'ski class Hs, s= k+a, keN, 0<a <1
/(go(/)(x—i— u) = @) dx < CluP = (k. ), Y <k

(= v is a-Holder inside @ = s =min(1/2,a))
Tsybakov (2009, book)

(A1) @ € Hs on R and has compact support @
(A2)
(A3) Forevery x € Q, f(x)>b>0
(A4)

The r-th order derivatives of f are bounded

K symmetric with order r and K(x) < C; exp(—G||x]|)



Theorem
Assume (A1-A4), we have

n1/2 (/I\((,O) _ I(@)) _ OJP (hs + n1/2hr + n71/2h7d) (1)
if the Op "3 0
Remarks

> Curse of dimensionality: r > d
1 _r=d_
> For r,s large, hept cx n” +d, the rate =n 2+9)
1
> fis undersmooth because hopr < n~ 2+d Stone (1980, AoS)

> Regularity of ¢ is not crucial
» Trimming method ? Hardle and Stocker (1989, JASA)



Theorem
Assume (A1-A4), we have

/2 (76(90) _ /(80)) 0 (hs e n—lh—Bd/Z)
instead of Op (hs + nl/zh’ + n71/2h7d)
if the Op "3 0
Remarks
» Curse of dimensionality : r > 3d/4

1 _ =92
> For r,s large, hopt o n #4972 the optimal rate = n 2r+d/2)

> Leave-one out better than the classical



Asymptotic behaviour



7(LP) —I(p) = B, + M, + neglectable
7c(<P) — I(¢) = By + M, + U, + neglectable

with B, and B, non-random, M, martingale, U, U-stat

> If ¢ is very smooth: M, = op(U,)
> If ¢ is not regular: U, = op(M,)

Hall (1984, JMVA), Hall and Heyde (1980, book)



Regular case

Theorem
Under (A1) to (A4), if nh*® — +oo, nh™/? — 0 and nh**¢ — 0,

nh?(I(¢) — I(¢))

is asymptotically normally distributed with zero-mean and variance given by

/(/(K(u+ v) — K(v))K(u)du>2dv/@(X)zf(x)de



A non smooth example

(B1) For some s > 1/2 the function ¢ belongs to Hs on Q and is bounded,
with compact support Q.

(B2) The set Q is compact with C? boundary.

Lo(x) = // min((z, u(x)), {(z’, u(x)))+ K(2)K(z")dzdz'
u(x) the normal outer vector of Q at the point x

Theorem

Under the assumptions (A2) to (A4), (B1) and (B2), if nh®¥*Y/2 — 0 and
nh*=1 =0

(nh™ )2 (1) — 1())

is asymptotically normally distributed with zero-mean and variance given by
[ tetosteran=x,
oQ

where HP~! stands for the p — 1 dimensional Hausdorff measure.
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Simulations
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In practice
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In practice
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In practice
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In practice
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In practice

Sample number = 500, h=nA1/3, Epanechnikov
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Bandwidth choice

> Plug-in, e.g. Hardle, Marron and Tsybakov (1992, JASA)

» Simulation-validation

B(x) =™ Z g)’:;hk(xhx)

v

¢ looks like ¢ (convolution estimator)

v

I(¢) is known

h = argmin, [I(2) — I(3)|
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Kernel

Design

K(X) X (d+ 2 — (d + 3)|X|)1|X|<1

Model 1 X; ~ N(3, L1d)

201

Model 2 X; ~ U([0,1]%)

d

o(x) = H 2 Sin(X/()Q]-OSkaL

k=1



Model 1

Error x 10%

Gaussian design in dimension 1

Gaussian design in dimension 4
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Model 2

Uniform design in dimension 1

Uniform design in dimension 4
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Conclusion (Application to regression modelling)
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Regression model

Yi = g(Xi) + o(Xi)ei
» (X;) random i.i.d. with density f
> (Xi) L (&)
» The functions g and o are unknown
Let @ C RY bounded and L»(Q) = {% : Jo¥(x)?dx < +o0}

Purpose

Estimate c=< g, >= / g(x)(x)dx
Q

(nonrandom design case treated by Donoho)



Plug-in estimates

Plug-in of g is difficult
Let g such that

an(8(x) — g(x)) = Gaussian variable  (e.g. NW, NN...)

an = o(+/n), but not tight, then

Vn(<g,v>—-<giv>)=vn<g-—g,v >-4, Gaussian variable

is difficult to handle.

Plug-in of f may be better

Yw(X)} P Z Yi(X)

c=< g, >:IE{ F0X)
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Assumptions

(A2) The r-th order derivatives of f are bounded
(A3) Forevery x € Q, f(x)>b>0
(A4) K symmetric with order r and K(x) < G exp(—C||x||)

Ny

o
N}



Assumptions

(A2) The r-th order derivatives of f are bounded
(A3) Forevery x € Q, f(x)>b>0
(A4) K symmetric with order r and K(x) < G exp(—C||x||)

(A5) 1 is Holder on its support Q@ C RY nonempty bounded and convex
(A6) g is Holder on Q and o is bounded

(A7) n2h "3 0 and nt/2h? "3 400



Theorem
Assume (A1-A7) we have

n2(¢ = c) =% N(0, v)

where v is the variance of the random variable Yl g U y(X1)

Remarks

» Rates in root n
» The variance is smaller than when f = f is known
» Trimming method ? (Hardle and Stoker (1989, JASA))
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