Integral approximation by kernel smoothing

François Portier
Université catholique de Louvain - ISBA

August, 292014

In collaboration with Bernard Delyon

Topic of the talk: Given $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, estimation of

$$
I(\varphi)=\int \varphi(x) d x
$$

Monte-Carlo

$\left(X_{1}, \ldots, X_{n}\right)$ i.i.d. with law f

$$
n^{1 / 2}\left(n^{-1} \sum_{i=1}^{n} \frac{\varphi\left(X_{i}\right)}{f\left(X_{i}\right)}-I(\varphi)\right)=O_{\mathbb{P}}(1)
$$

Importance sampling
Optimal sampler $f^{*}, \quad\left(X_{1}, \ldots, X_{n}\right)$ i.i.d. with law f^{*}

$$
n^{1 / 2}\left(n^{-1} \sum_{i=1}^{n} \frac{\varphi\left(X_{i}\right)}{f^{*}\left(X_{i}\right)}-I(\varphi)\right)=o_{\mathbb{P}}(1)
$$

Adaptive to φ
Evans and Schwartz (2000, book), Zhang (1996, JASA)

Main result

$\left(X_{1}, \ldots, X_{n}\right)$ i.i.d. with law f, \widehat{f} is a kernel estimator of f

$$
n^{1 / 2}\left(n^{-1} \sum_{i=1}^{n} \frac{\varphi\left(X_{i}\right)}{\widehat{f}\left(X_{i}\right)}-I(\varphi)\right)=o_{\mathbb{P}}(1)
$$

Adaptive to the design
φ is only known at the points X_{i}

Purpose

- Rates of convergence, asymptotic behaviour
- Regularity of f and φ with respect to the dimension, the bandwidth
- In practice: kernel, bandwidth...
- Application to regression modelling

Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)

Definition of the estimators

K a d-dimensional kernel

$$
\begin{aligned}
& \widehat{f}^{(i)}(x)=\left(n h^{d}\right)^{-1} \sum_{j \neq i}^{n} K\left(h^{-1}\left(x-X_{j}\right)\right) \\
& \widehat{v}^{(i)}(x)=((n-1)(n-2))^{-1} \sum_{j \neq i}^{n}\left(h^{-d} K\left(h^{-1}\left(x-X_{j}\right)\right)-\widehat{f}^{(i)}(x)\right)^{2}
\end{aligned}
$$

2 estimators of $I(\varphi)$

$$
\begin{aligned}
& \widehat{\imath}(\varphi)=n^{-1} \sum_{i=1}^{n} \frac{\varphi\left(X_{i}\right)}{\widehat{f}^{(i)}\left(X_{i}\right)} \\
& \widehat{I}_{c}(\varphi)=n^{-1} \sum_{i=1}^{n} \frac{\varphi\left(X_{i}\right)}{\widehat{f}^{(i)}\left(X_{i}\right)}\left(1-\frac{\widehat{v}^{(i)}\left(X_{i}\right)}{\hat{f}^{(i)}\left(X_{i}\right)^{2}}\right)
\end{aligned}
$$

Assumptions

Nikol'ski class $\mathcal{H}_{s}, \boldsymbol{s}=k+\alpha, k \in \mathbb{N}, 0<\alpha \leq 1$

$$
\begin{gathered}
\int\left(\varphi^{(I)}(x+u)-\varphi^{(I)}(x)\right)^{2} d x \leq C|u|^{2 \alpha} \quad I=\left(I_{1}, \ldots I_{d}\right), \quad \sum I_{i} \leq k \\
(\Rightarrow \psi \text { is } \alpha \text {-Hölder inside } Q \Rightarrow \quad s=\min (1 / 2, \alpha)) \\
\text { Tsybakov (2009, book) }
\end{gathered}
$$

(A1) $\varphi \in \mathcal{H}_{s}$ on \mathbb{R}^{d} and has compact support Q
(A2) The r-th order derivatives of f are bounded
(A3) For every $x \in Q, \quad f(x) \geq b>0$
(A4) K symmetric with order r and $K(x) \leq C_{1} \exp \left(-C_{2}\|x\|\right)$

Theorem

Assume (A1-A4), we have

$$
\begin{equation*}
n^{1 / 2}(\hat{I}(\varphi)-I(\varphi))=O_{\mathbb{P}}\left(h^{s}+n^{1 / 2} h^{r}+n^{-1 / 2} h^{-d}\right) \tag{1}
\end{equation*}
$$

if the $O_{\mathbb{P}} \xrightarrow{n \rightarrow+\infty} 0$

Remarks

- Curse of dimensionality: $r>d$
- For r, s large, $\quad h_{\text {opt }} \propto n^{-\frac{1}{r+d}}, \quad$ the rate $=n^{-\frac{r-d}{2(r+d)}}$
- f is undersmooth because $h_{\text {opt }}<n^{-\frac{1}{2 r+d}}$ Stone (1980, AoS)
- Regularity of φ is not crucial
- Trimming method ? Härdle and Stocker (1989, JASA)

Theorem

Assume (A1-A4), we have

$$
\begin{array}{r}
n^{1 / 2}\left(\hat{I}_{c}(\varphi)-I(\varphi)\right)=O_{\mathbb{P}}\left(h^{s}+n^{1 / 2} h^{r}+n^{-1 / 2} h^{-d / 2}+n^{-1} h^{-3 d / 2}\right) \\
\text { instead of } O_{\mathbb{P}}\left(h^{s}+n^{1 / 2} h^{r}+n^{-1 / 2} h^{-d}\right)
\end{array}
$$

if the $O_{\mathbb{P}} \xrightarrow{n \rightarrow+\infty} 0$

Remarks

- Curse of dimensionality : $r>3 d / 4$
- For r, s large, $h_{\text {opt }} \propto n^{-\frac{1}{r+d / 2}}$, the optimal rate $=n^{-\frac{r-d / 2}{2(r+d / 2)}}$
- Leave-one out better than the classical

Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)

$$
\begin{aligned}
& \widehat{I}(\varphi)-I(\varphi)=\widetilde{B}_{n}+M_{n}+\text { neglectable } \\
& \widehat{I}_{c}(\varphi)-I(\varphi)=B_{n}+M_{n}+U_{n}+\text { neglectable }
\end{aligned}
$$

with B_{n} and \widetilde{B}_{n} non-random, M_{n} martingale, $U_{n} U$-stat

- If φ is very smooth: $M_{n}=o_{\mathbb{P}}\left(U_{n}\right)$
- If φ is not regular: $U_{n}=o_{\mathbb{P}}\left(M_{n}\right)$

Hall (1984, JMVA), Hall and Heyde (1980, book)

Regular case

Theorem
Under (A1) to (A4), if $n h^{2 d} \rightarrow+\infty, n h^{r+d / 2} \rightarrow 0$ and $n h^{2 s+d} \rightarrow 0$,

$$
n h^{d / 2}\left(\widehat{I}_{c}(\varphi)-I(\varphi)\right)
$$

is asymptotically normally distributed with zero-mean and variance given by

$$
\int\left(\int(K(u+v)-K(v)) K(u) d u\right)^{2} d v \int \varphi(x)^{2} f(x)^{-2} d x
$$

A non smooth example

(B1) For some $s>1 / 2$ the function φ belongs to \mathcal{H}_{s} on Q and is bounded, with compact support Q.
(B2) The set Q is compact with C^{2} boundary.

$$
L_{Q}(x)=\iint \min \left(\langle z, u(x)\rangle,\left\langle z^{\prime}, u(x)\right\rangle\right)+K(z) K\left(z^{\prime}\right) d z d z^{\prime}
$$

$u(x)$ the normal outer vector of Q at the point x

Theorem

Under the assumptions (A2) to (A4), (B1) and (B2), if $n h^{(3 d+1) / 2} \rightarrow 0$ and $n h^{2 r-1} \rightarrow 0$

$$
\left(n h^{-1}\right)^{1 / 2}\left(\widehat{I}_{c}(\varphi)-I(\varphi)\right)
$$

is asymptotically normally distributed with zero-mean and variance given by

$$
\int_{\partial Q} L_{Q}(x) \varphi(x)^{2} d \mathcal{H}^{p-1}(x),
$$

where \mathcal{H}^{p-1} stands for the $p-1$ dimensional Hausdorff measure.

Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)

In practice
Sample number $=20, h=n^{\wedge 1} / 3$, Epanechnikov

In practice
Sample number $=50, h=n^{\wedge 1} / 3$, Epanechnikov

In practice

Sample number $=100, h=n^{\wedge 1} 13$, Epanechnikov

In practice

Sample number = 200, h=n^1/3, Epanechnikov

In practice
Sample number $=500, h=n^{\wedge} 1 / 3$, Epanechnikov

Bandwidth choice

- Plug-in, e.g. Härdle, Marron and Tsybakov (1992, JASA)
- Simulation-validation

$$
\widetilde{\varphi}(x)=n^{-1} \sum_{i=1}^{n} \frac{\varphi\left(X_{i}\right)}{\widehat{f}\left(X_{i}\right)} h_{0}^{-d} \widetilde{K}\left(\frac{x-X_{i}}{h_{0}}\right)
$$

- $\widetilde{\varphi}$ looks like φ (convolution estimator)
- I($\widetilde{\varphi})$ is known

$$
\widehat{h}=\operatorname{argmin}_{h} \widehat{I}_{c}(\widetilde{\varphi})-I(\widetilde{\varphi}) \mid
$$

Kernel

$$
K(x) \propto(d+2-(d+3)|x|) 1_{|x|<1}
$$

Design

$$
\begin{array}{ll}
\text { Model } 1 & X_{i} \sim \mathcal{N}\left(\frac{1}{2}, \frac{1}{4} I d\right) \\
\text { Model } 2 & X_{i} \sim \mathcal{U}\left([0,1]^{d}\right)
\end{array}
$$

$$
\varphi(x)=\prod_{k=1}^{d} 2 \sin \left(x_{k}\right)^{2} 1_{0 \leq x_{k} \leq 1}
$$

Model 1

Figure : 100 estimates $\widehat{I}_{c}(\varphi), \widehat{I}(\varphi)$ and Monte-Carlo method noted $\widehat{I}_{M C}$

Model 2

Uniform design in dimension 1

Uniform design in dimension 4

Figure : 100 estimates $\widehat{I}_{c}(\varphi), \widehat{I}(\varphi)$ and Monte-Carlo method noted $\widehat{I}_{M C}$

Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)

Regression model

$$
Y_{i}=g\left(X_{i}\right)+\sigma\left(X_{i}\right) e_{i}
$$

- $\left(X_{i}\right)$ random i.i.d. with density f
- $\left(X_{i}\right) \perp\left(e_{i}\right)$
- The functions g and σ are unknown

Let $Q \subset \mathbb{R}^{d}$ bounded and $L_{2}(Q)=\left\{\psi: \int_{Q} \psi(x)^{2} d x<+\infty\right\}$

Purpose

$$
\text { Estimate } \quad c=<g, \psi>=\int_{Q} g(x) \psi(x) d x
$$

(nonrandom design case treated by Donoho)

Plug-in estimates

Plug-in of g is difficult
Let \hat{g} such that

$$
a_{n}(\widehat{g}(x)-g(x)) \xrightarrow{d} \text { Gaussian variable (e.g. NW, NN...) }
$$

$a_{n}=o(\sqrt{n})$, but not tight, then

$$
\sqrt{n}(<\widehat{g}, \psi>-<g, \psi>)=\sqrt{n}<\widehat{g}-g, \psi>\xrightarrow{\mathrm{d}} \text { Gaussian variable }
$$

is difficult to handle.
Plug-in of f may be better

$$
c=<g, \psi>=\mathbb{E}\left[\frac{Y \psi(X)}{f(X)}\right] \quad \widehat{c}=n^{-1} \sum_{i=1}^{n} \frac{Y_{i} \psi\left(X_{i}\right)}{\widehat{f}\left(X_{i}\right)}
$$

Assumptions

(A2) The r-th order derivatives of f are bounded
(A3) For every $x \in Q, f(x) \geq b>0$
(A4) K symmetric with order r and $K(x) \leq C_{1} \exp \left(-C_{2}\|x\|\right)$

Assumptions

(A2) The r-th order derivatives of f are bounded
(A3) For every $x \in Q, f(x) \geq b>0$
(A4) K symmetric with order r and $K(x) \leq C_{1} \exp \left(-C_{2}\|x\|\right)$
(A5) ψ is Hölder on its support $Q \subset \mathbb{R}^{d}$ nonempty bounded and convex
(A6) g is Hölder on Q and σ is bounded
(A7) $n^{1 / 2} h^{r} \xrightarrow{n \rightarrow+} 0$ and $n^{1 / 2} h^{d} \xrightarrow{n \rightarrow \infty}+\infty$

Theorem

Assume (A1-A7) we have

$$
n^{1 / 2}(\hat{c}-c) \xrightarrow{d} \mathcal{N}(0, v)
$$

where v is the variance of the random variable $\frac{Y_{1}-g\left(X_{1}\right)}{f\left(X_{1}\right)} \psi\left(X_{1}\right)$

Remarks

- Rates in root n
- The variance is smaller than when $\widehat{f}=f$ is known
- Trimming method ? (Härdle and Stoker (1989, JASA))

