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Topic of the talk: Given ϕ : Rd → R, estimation of

I(ϕ) =
∫
ϕ(x)dx

Monte-Carlo
(X1, . . . ,Xn) i.i.d. with law f

n1/2

(
n−1

n∑
i=1

ϕ(Xi)

f (Xi)
− I(ϕ)

)
= OP(1)

Importance sampling
Optimal sampler f ∗, (X1, . . . ,Xn) i.i.d. with law f ∗

n1/2

(
n−1

n∑
i=1

ϕ(Xi)

f ∗(Xi)
− I(ϕ)

)
= oP(1)

Adaptive to ϕ

Evans and Schwartz (2000, book), Zhang (1996, JASA)
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Main result
(X1, . . . ,Xn) i.i.d. with law f , f̂ is a kernel estimator of f

n1/2

(
n−1

n∑
i=1

ϕ(Xi)

f̂ (Xi)
− I(ϕ)

)
= oP(1)

Adaptive to the design

ϕ is only known at the points Xi

Purpose

I Rates of convergence, asymptotic behaviour
I Regularity of f and ϕ with respect to the dimension, the bandwidth
I In practice: kernel, bandwidth...
I Application to regression modelling
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Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)
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Definition of the estimators

K a d-dimensional kernel

f̂ (i)(x) = (nhd)−1
n∑

j 6=i

K(h−1(x − Xj))

v̂ (i)(x) = ((n − 1)(n − 2))−1
n∑

j 6=i

(h−d K(h−1(x − Xj))− f̂ (i)(x))2

2 estimators of I(ϕ)

Î(ϕ) = n−1
n∑

i=1

ϕ(Xi)

f̂ (i)(Xi)

Îc(ϕ) = n−1
n∑

i=1

ϕ(Xi)

f̂ (i)(Xi)

(
1− v̂ (i)(Xi)

f̂ (i)(Xi)2

)
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Assumptions

Nikol’ski class Hs , s = k + α, k ∈ N, 0 < α ≤ 1∫
(ϕ(l)(x + u)− ϕ(l)(x))2dx ≤ C |u|2α l = (l1, . . . ld),

∑
li ≤ k

(⇒ ψ is α-Hölder inside Q ⇒ s = min(1/2, α))
Tsybakov (2009, book)

(A1) ϕ ∈ Hs on Rd and has compact support Q

(A2) The r -th order derivatives of f are bounded

(A3) For every x ∈ Q, f (x) ≥ b > 0

(A4) K symmetric with order r and K(x) ≤ C1 exp(−C2‖x‖)
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Theorem
Assume (A1-A4), we have

n1/2
(̂

I(ϕ)− I(ϕ)
)
= OP

(
hs + n1/2hr + n−1/2h−d) (1)

if the OP
n→+∞→ 0

Remarks

I Curse of dimensionality: r > d

I For r , s large, hopt ∝ n−
1

r+d , the rate = n−
r−d

2(r+d)

I f is undersmooth because hopt < n−
1

2r+d Stone (1980, AoS)
I Regularity of ϕ is not crucial
I Trimming method ? Härdle and Stocker (1989, JASA)
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Theorem
Assume (A1-A4), we have

n1/2
(̂

Ic(ϕ)− I(ϕ)
)
= OP

(
hs + n1/2hr + n−1/2h−d/2 + n−1h−3d/2)

instead of OP
(

hs + n1/2hr + n−1/2h−d
)

if the OP
n→+∞→ 0

Remarks

I Curse of dimensionality : r > 3d/4

I For r , s large, hopt ∝ n−
1

r+d/2 , the optimal rate = n−
r−d/2

2(r+d/2)

I Leave-one out better than the classical
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Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)
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Î(ϕ)− I(ϕ) = B̃n + Mn + neglectable

Îc(ϕ)− I(ϕ) = Bn + Mn + Un + neglectable

with Bn and B̃n non-random, Mn martingale, Un U-stat

I If ϕ is very smooth: Mn = oP(Un)

I If ϕ is not regular: Un = oP(Mn)

Hall (1984, JMVA), Hall and Heyde (1980, book)
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Regular case

Theorem
Under (A1) to (A4), if nh2d → +∞, nhr+d/2 → 0 and nh2s+d → 0,

nhd/2(̂Ic(ϕ)− I(ϕ))

is asymptotically normally distributed with zero-mean and variance given by∫ (∫
(K(u + v)− K(v))K(u)du

)2

dv
∫
ϕ(x)2f (x)−2dx
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A non smooth example

(B1) For some s > 1/2 the function ϕ belongs to Hs on Q and is bounded,
with compact support Q.

(B2) The set Q is compact with C 2 boundary.

LQ(x) =
∫∫

min(〈z, u(x)〉, 〈z ′, u(x)〉)+K(z)K(z ′)dzdz ′

u(x) the normal outer vector of Q at the point x

Theorem
Under the assumptions (A2) to (A4), (B1) and (B2), if nh(3d+1)/2 → 0 and
nh2r−1 → 0

(nh−1)1/2(̂Ic(ϕ)− I(ϕ))

is asymptotically normally distributed with zero-mean and variance given by∫
∂Q

LQ(x)ϕ(x)2dHp−1(x),

where Hp−1 stands for the p − 1 dimensional Hausdorff measure.
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Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)
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In practice

MC Boundary pb No boundary pb
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Figure : Boxplots over 100 samples of the error for MC and kernel smoothing
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In practice

MC Boundary pb No boundary pb
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Figure : Boxplots over 100 samples of the error for MC and kernel smoothing
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In practice
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Figure : Boxplots over 100 samples of the error for MC and kernel smoothing
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In practice

MC Boundary pb No boundary pb
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Figure : Boxplots over 100 samples of the error for MC and kernel smoothing
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In practice

MC Boundary pb No boundary pb
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Figure : Boxplots over 100 samples of the error for MC and kernel smoothing
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Bandwidth choice

I Plug-in, e.g. Härdle, Marron and Tsybakov (1992, JASA)
I Simulation-validation

ϕ̃(x) = n−1
n∑

i=1

ϕ(Xi)

f̂ (Xi)
h−d

0 K̃
(x − Xi

h0

)
,

I ϕ̃ looks like ϕ (convolution estimator)
I I(ϕ̃) is known

ĥ = argminh |̂Ic(ϕ̃)− I(ϕ̃)|
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Kernel

K(x) ∝ (d + 2− (d + 3)|x |)1|x|<1

Design

Model 1 Xi ∼ N ( 1
2 ,

1
4 Id)

Model 2 Xi ∼ U([0, 1]d)

ϕ(x) =
d∏

k=1

2 sin(xk)
210≤xk≤1.
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Model 1

200 1000 5000

Gaussian design in dimension 1
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Gaussian design in dimension 4
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Figure : 100 estimates Îc(ϕ), Î(ϕ) and Monte-Carlo method noted ÎMC
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Model 2

200 1000 5000

Uniform design in dimension 1
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200 1000 5000

Uniform design in dimension 4

E
rr

o
r

×
1

0
2

Sample size

−
2
0

−
1
0

0
1
0

−
2
0

−
1
0

0
1
0

−
5

0
5

1
0

−
5

0
5

1
0

−
4

−
2

0
2

4
−

4
−

2
0

2
4

Ι
^

C

Ι
^

Ι
^

MC     

Figure : 100 estimates Îc(ϕ), Î(ϕ) and Monte-Carlo method noted ÎMC
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Rates of convergence

Asymptotic behaviour

Simulations

Conclusion (Application to regression modelling)
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Regression model

Yi = g(Xi) + σ(Xi)ei

I (Xi) random i.i.d. with density f
I (Xi) ⊥⊥ (ei)

I The functions g and σ are unknown

Let Q ⊂ Rd bounded and L2(Q) = {ψ :
∫

Q ψ(x)
2dx < +∞}

Purpose

Estimate c =< g , ψ >=

∫
Q

g(x)ψ(x)dx

(nonrandom design case treated by Donoho)
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Plug-in estimates

Plug-in of g is difficult
Let ĝ such that

an(ĝ(x)− g(x)) d−→ Gaussian variable (e.g. NW, NN...)

an = o(
√

n), but not tight, then
√

n(< ĝ , ψ > − < g , ψ >) =
√

n < ĝ − g , ψ > d−→ Gaussian variable

is difficult to handle.

Plug-in of f may be better

c =< g , ψ >= E
[

Yψ(X)

f (X)

]
ĉ = n−1

n∑
i=1

Yiψ(Xi)

f̂ (Xi)
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Assumptions

(A2) The r -th order derivatives of f are bounded
(A3) For every x ∈ Q, f (x) ≥ b > 0
(A4) K symmetric with order r and K(x) ≤ C1 exp(−C2‖x‖)

(A5) ψ is Hölder on its support Q ⊂ Rd nonempty bounded and convex

(A6) g is Hölder on Q and σ is bounded

(A7) n1/2hr n→+∞→ 0 and n1/2hd n→+∞→ +∞

26 / 27
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Theorem
Assume (A1-A7) we have

n1/2(ĉ − c) d−→ N (0, v)

where v is the variance of the random variable Y1−g(X1)
f (X1)

ψ(X1)

Remarks

I Rates in root n
I The variance is smaller than when f̂ = f is known
I Trimming method ? (Härdle and Stoker (1989, JASA))
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