

Sample Size Computation with *r*-power control in the context of co-primary endpoints

Philippe Delorme^a, Pierre Lafaye de Micheaux^a, Benoît Liquet^{c,d} and **Jérémie Riou**^{b,c,d}

^a Mathematics and statistics department, University of Montréal, CANADA ^b Danone Research, Clinical Studies Plateform, Centre Daniel Carasso, FRANCE ^c Research Center INSERM U897, ISPED, FRANCE ^d University of Bordeaux Segalen, ISPED, FRANCE

Background	Methods	Application	Performance	Conclusion

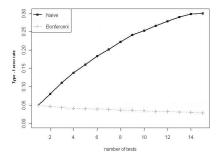
Clinical Context

- The use of **multiple endpoints** to characterize product **safety and efficacy** measures is an increasingly common feature in recent clinical trials;
- Usually, these endpoints are divided into **one** primary endpoint and several secondary endpoints;
- Nevertheless, when we observed a **multi factorial effect** it is necessary to use some **multiple primary endpoint** or a **composite endpoint**.

Multiple Testing Context

Underlying problem

Multiple Co-primary endpoints implies multiple testing problem.



Background Aims Methods Application Performance Conclusion

Multiple Testing Context

Table : Possible scenarios for m Tests

Null Hypotheses	Not Rejected	Rejected	Total
True	U	V	m_0
False	Т	S	$m - m_0$
Total	W	R	т

In confirmatory context, during data analysis statistician use Type-I FWER control:

Type – I
$$FWER = \mathbb{P}(V \ge 1)$$
.

Endpoint definition

The choice of the sample size computation procedure depends on primary endpoint definition.

Primary endpoint definition

- At least one win: At least one test significant among the m;
- At least r win: At least r tests significants among the m,(1 ≤ r ≤ m);
- All must win: All the *m* tests significants.

Background	Methods	Application	Performance	Conclusion
r-Power				

Decision rule: At least r wins

At least r tests significant among the m $(1 \le r \le m)$;

In this context, we want to control the Type-II gFWER:

 $\beta_{r,m}(P) = pr(make at least p - (r - 1) individual Type II errors),$

which is defined by 1- "*r*-power" ¹:

 $1 - \beta_{r,m}(P) = pr(reject at least r of the p false null hypotheses).$

¹Dunnett, C.W. and Tamhane, A.C.(1992), JASA.

Specific aims

- Find a power definition for the interest decision rule (at least r among m), and a given multiple testing procedure;
- Compute the Sample Size for a given multiple testing procedure;
- Overlop an Package to make the work available (rPowerSampleSize).

Background	Methods	Application	Performance	Conclusion
D .				

Reminders

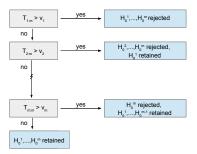
- *m* co-primary endpoints;
- Success of the trial is defined by: **at least** *r* co-primary endpoints are significant;
- r-Power control;
- Single step and Stepwise methods.

Step up methods

We **focus** in this presentation on **Step-up methods**. Nevertheless, the methodology is available for all Single step and StepWise methods.

Step-up methods Principle

- Let the order statistics: $T_{1:m} \leq T_{2:m} \leq \ldots \leq T_{m:m}$ corresponding respectively to $\mathcal{H}_0^1, \mathcal{H}_0^2, \ldots, \mathcal{H}_0^m$;
- **2** Algorithm:



A.

Background	Methods	Application	Performance	Conclusion

Step-up r-Power Formula

$$\begin{split} 1 - \beta_{r,m}^{u}(P) &= pr\left(\bigcup_{t=0}^{p-r} (\text{Reject exactly } p-t \text{ false null hypotheses})\right) \\ &= pr\left(\bigcup_{t=0}^{p-r} \left[\left(T_{(t+1):p} > v_{t+1}\right) \cap \left(\bigcap_{j=1}^{t} \left(T_{j:p} \le v_{j}\right)\right)\right] \right) \\ &= \sum_{t=0}^{p-r} pr\left(\left(T_{(t+1):p} > v_{t+1}\right) \cap \left(\bigcap_{j=1}^{t} \left(T_{j:p} \le v_{j}\right)\right)\right). \end{split}$$

where the v_j 's are critical values for step-up procedures among the false null hypotheses. In the package, we use procedures which control the gFWER.

This formula depends on **order statistics**. We need to use the **Margolin and Maurer Theorem (1976)**² in order to obtain a power formula which depends on joint distribution of statistics.

2 Maurer, W. and Margolin, B.H.(1976), The Annals of Statistics.

Background	Methods	Application	Performance	Conclusion

Power Formula without order statistics

Let
$$\underline{a} = (a_1, \dots, a_q)^T \in \mathbb{N}^q$$
 and note $\underline{a}^* = (a_2, \dots, a_{q+1})^T$ with $a_{q+1} = p$ and $a_0 = 0$,
 $\underline{a}_+ = \sum_{i=1}^q a_i$ and $\Delta a_i = a_i - a_{i-1}$, $i \in \mathcal{I}_{q+1}$. Let introduce the set

$$\mathcal{J}(\underline{a},p) = \left\{ \underline{j} \in \mathcal{I}_p^{a_q}; j_r < j_{r+1} \text{ for } r \in \{a_{h-1}+1,\ldots,a_h-1\}, h \in \mathcal{I}_q \text{ and } j_r \neq j_s, 1 \le r < s \le a_q \right\}.$$

$$1 - \beta_{r,m}^{u}(P) \geq 1 - (-1)^{(p-r+1)(p-r+2)/2} \sum_{\underline{a} = \underline{w}}^{\underline{a}^{*}} (-1)^{\underline{a}_{+}} \mathbb{P}_{\underline{a}} \prod_{h=1}^{p-r+1} \begin{pmatrix} (\Delta a_{h}) - 1 \\ a_{h} - h \end{pmatrix},$$

where $\underline{w} = (1, \dots, p - r + 1)$ and $\mathbb{P}_{\underline{a}} = \sum_{\underline{j} \in \mathcal{J}(\underline{a}, p)} \operatorname{pr} \left[\bigcap_{i=0}^{p-r} \left\{ \bigcap_{k=a_i+1}^{a_{i+1}} (\mathsf{T}_{j_k} \leq \mathsf{v}_{i+1}) \right\} \right]$. When p = m, namely for a weak control of the type-II *r*-generalized FWER, the equation of power becomes an equality.

Sample Size Computation

Step up methods

The developed formula depends only on the **joint distribution** and the **sample size**, and if the joint distribution is known, the sample size computation is possible.

So, we decided to focus on the continuous endpoints.

Background	Methods	Application	Performance	Conclusion

Joint distribution

Let $X^k \sim N(\mu_k, \Sigma_k)$ with $k = \{E, C\}$,

- Unstructured Covariance matrix \rightarrow Type-II multivariate non central student distribution
- Asymptotic Context: Multivariate Normal Distribution;

•
$$\Sigma_k = \begin{pmatrix} \sigma_k^2 & \dots & \rho \sigma_k^2 \\ \vdots & \sigma_k^2 & \vdots \\ \rho \sigma_k^2 & \dots & \sigma_k^2 \end{pmatrix}_{m \times m}$$
 Type-I multivariate non-central student distribution ;

So, in these two last contexts it is possible to compute **the** required Sample Size.

Background	Methods	Application	Performance	Conclusion

Context: ANRS 114 Pneumovac Trial

- Endpoints used in this application for the evaluation of immunogenicity in the Vaccine trials are means of log-transformed antibody concentrations for each serotype;
- Data come from ANRS 114 Pneumovac Trial, where the multivalent vaccines yields a response on 7 serotypes;
- We used data from Pedrono et al (2009);
- Covariance matrices are supposed to be the same between groups;
- The analysis will be performed using seven individual superiority Student t-statistics;
- What is the required sample size for confirmatory trial with different decision rules (*r*)?

Background	Methods	Application	Performance	Conclusion

Results

Parameters: $d = 0_m, \pi_{r,m} = 0.8, \alpha = 0.05, \delta = (0.55, 0.34, 0.38, 0.20, 0.70, 0.38, 0.86)'$ 0.134 0.137 0.075 0.140 0.128 0.161\ 0.124 $\mathsf{and} \ \Sigma = \begin{pmatrix} 0.124 & 0.134 & 0.137 & 0.075 & 0.140 \\ 0.134 & 0.387 & 0.287 & 0.185 & 0.316 \\ 0.137 & 0.287 & 0.294 & 0.199 & 0.274 \\ 0.075 & 0.185 & 0.199 & 0.369 & 0.192 \\ 0.140 & 0.316 & 0.274 & 0.192 & 0.394 \\ 0.128 & 0.295 & 0.237 & 0.156 & 0.264 \end{pmatrix}$ 0.295 0.396 0.237 0.342 0.156 0.238 0.264 0.397 0.305 0.335 0.161 0.396 0.342 0.238 0.397 0.335 0.651/

Table : Sample Size Computation for various definitions of immunogenicity:

	<i>r</i> = 3	<i>r</i> = 5	<i>r</i> = 7
Bonferroni	22	51	-
Holm	21	41	-
Hochberg	20	40	116

Background		Methods	Application	Performance	Conclusion
Perform	nance (1	(2)			

enormance (1/2)

Recently, authors have used a Monte-Carlo simulation in order to compute the **r**-power of a procedure in a clinical trial 3 . The aim of these slides is to compare it with our approach, in terms of power and computation time.

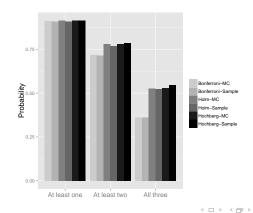
- New treatment against schizophrenia with a primary endpoint based on change from baseline for three dosing groups;
- Continuous endpoints, true mean changes are expected to be given by vector $\delta = (5.0, 5.0, 3.5)^T$
- We considered $\alpha = 0.025$, n = 260, the same standard deviation for each endpoint ($\sigma_k = 18$) and each group, and the same correlation between all tests $(\rho = 0.5)$ for each group;
- We considered Bonferroni, Holm and Hochberg Procedures, and N=100.000 Monte-Carlo simulations.

³Dmitrienko, A. and D'Agostino, R.(2013), *Statistics in Medicine*. nan Jérémie RIOU - 27/09/2014 Journées M.A.S. Toulouse

Performance (2/3) - Comparison of Monte Carlo and

rPowerSampleSize

r-Power Comparison



-

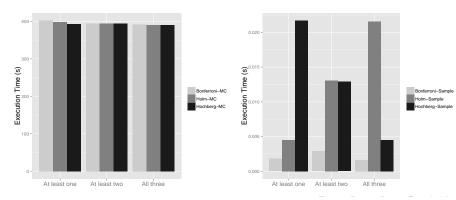
 \equiv \rightarrow

Performance (3/3) - Comparison of Monte Carlo and

rPowerSampleSize

Computation Time (MC) (rPowerSampleSize)

Computation Time



Jérémie RIOU - 27/09/2014

Journées M.A.S, Toulouse

Background		Methods	Application	Performance	Conclusion
Conclus	sion				

- In this example, power results are similar for both procedures, and the computation time of rPowerSampleSize is 20,000 times faster than MC,
 - All developed methods are **completely new** and should be **fully integrated into current clinical practice**.
 - They allow many statisticians to have a methodology for sample size computation in line with their clinical aims, and to obtain more accurate sample sizes.
- The **Package** rPowerSampleSize is available soon on the CRAN.
- This work was submitted for publication.