# A General Solution to Eigenvalue Distributions of Hermitian Random Matrix Models 

Carlos Vargas Obieta

joint work with<br>Tobias Mai, Roland Speicher<br>Universitaet des Saarlandes, Saarbrücken<br>Toulouse, August 28th, 2014

## A General Random Matrix Problem

Let $P$ be a self-adjoint polynomial on non-commutative indeterminates $x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}$.

## A General Random Matrix Problem

Let $P$ be a self-adjoint polynomial on non-commutative indeterminates $x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}$.
A Hermitian random matrix model can be obtained by evaluating $P$ on random and/or deterministic matrices $X_{1}, \ldots, X_{n}$.

## A General Random Matrix Problem

Let $P$ be a self-adjoint polynomial on non-commutative indeterminates $x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}$.
A Hermitian random matrix model can be obtained by evaluating $P$ on random and/or deterministic matrices $X_{1}, \ldots, X_{n}$. If the matrices are large (but not necessarilly TOO large) and are either Deterministic, Wigner or Haar Unitary, we can approximate the averaged eigenvalue distribution.

Let $P$ be a self-adjoint polynomial on non-commutative indeterminates $x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}$.
A Hermitian random matrix model can be obtained by evaluating $P$ on random and/or deterministic matrices $X_{1}, \ldots, X_{n}$. If the matrices are large (but not necessarilly TOO large) and are either Deterministic, Wigner or Haar Unitary, we can approximate the averaged eigenvalue distribution.
The matrices may have different sizes and the deterministic matrices can even be rectangular.

Let $P$ be a self-adjoint polynomial on non-commutative indeterminates $x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}$.
A Hermitian random matrix model can be obtained by evaluating $P$ on random and/or deterministic matrices $X_{1}, \ldots, X_{n}$. If the matrices are large (but not necessarilly TOO large) and are either Deterministic, Wigner or Haar Unitary, we can approximate the averaged eigenvalue distribution.
The matrices may have different sizes and the deterministic matrices can even be rectangular.
We only ask that the monomials of $P\left(X_{1}, \ldots, X_{n}\right)$ are square and have the same size.

## Classic Examples/Previous work

GUE ( $N=4$ ):


## Classic Examples/Previous work

GUE ( $\mathrm{N}=8$ ):


## Classic Examples/Previous work

## GUE ( $\mathrm{N}=15$ ):



## Classic Examples/Previous work

EED of Bernoulli Wigner Matrix ( $\mathrm{N}=10$ ):


## Classic Examples/Previous work

EED of Bernoulli Wigner Matrix ( $\mathrm{N}=100$ ):


## Classic Examples/Previous work

## EED of Bernoulli Wigner Matrix ( $\mathrm{N}=1000$ ):



## Classic Examples/Previous work

4000 Eigenvalues of Bernoulli Matrices ( $\mathrm{N}=5$ ):


## Classic Examples/Previous work

## 4000 Eigenvalues of Bernoulli Matrices ( $\mathrm{N}=10$ ):



## Classic Examples/Previous work

4000 Eigenvalues of Bernoulli Matrices ( $\mathrm{N}=20$ ):


## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.

## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.
(1) General Wigner matrices: $P(x)=x, x$ Wigner.

## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.
(1) General Wigner matrices: $P(x)=x, x$ Wigner. $\mu_{P}--->$ Semicircle Law

## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.
(1) General Wigner matrices: $P(x)=x, x$ Wigner. $\mu_{P}--->$ Semicircle Law
(2) Wishart Matrices: $P\left(x, x^{*}\right)=x x^{*}, x$ Wigner.

## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.
(1) General Wigner matrices: $P(x)=x, x$ Wigner. $\mu_{P}--->$ Semicircle Law
(2) Wishart Matrices: $P\left(x, x^{*}\right)=x x^{*}, x$ Wigner. $\mu_{P}--->$ Marchenko-Pastur Law

## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.
(1) General Wigner matrices: $P(x)=x, x$ Wigner. $\mu_{P}--->$ Semicircle Law
(2) Wishart Matrices: $P\left(x, x^{*}\right)=x x^{*}, x$ Wigner. $\mu_{P}--->$ Marchenko-Pastur Law
(3) $P=u d_{1} u^{*}+d_{2}$ : u Haar-unitary, $d_{i}$ Det. with limit $\mu_{i}$.

## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.
(1) General Wigner matrices: $P(x)=x, x$ Wigner. $\mu_{P}--->$ Semicircle Law
(2) Wishart Matrices: $P\left(x, x^{*}\right)=x x^{*}, x$ Wigner. $\mu_{P}--->$ Marchenko-Pastur Law
(3) $P=u d_{1} u^{*}+d_{2}$ : u Haar-unitary, $d_{i}$ Det. with limit $\mu_{i}$. $\mu_{P}--->\mu_{1} \boxplus \mu_{2}$

## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.
(1) General Wigner matrices: $P(x)=x, x$ Wigner. $\mu_{P}--->$ Semicircle Law
(2) Wishart Matrices: $P\left(x, x^{*}\right)=x x^{*}, x$ Wigner. $\mu_{P}--->$ Marchenko-Pastur Law
(3) $P=u d_{1} u^{*}+d_{2}$ : u Haar-unitary, $d_{i}$ Det. with limit $\mu_{i}$. $\mu_{P}--->\mu_{1} \boxplus \mu_{2}$
(9) $P=d_{2}^{1 / 2} u d_{1} u^{*} d_{2}^{1 / 2}: u$ Haar-unitary, $d_{i}$ Det. with limit $\mu_{i}$.

## Classic Examples/Previous work

In general, it is not possible compute the distribution for finite $N$. One usually considers the asymptotic regime and uses it as an approximation for the finite case.
(1) General Wigner matrices: $P(x)=x, x$ Wigner. $\mu_{P}--->$ Semicircle Law
(2) Wishart Matrices: $P\left(x, x^{*}\right)=x x^{*}, x$ Wigner. $\mu_{P}--->$ Marchenko-Pastur Law
(3) $P=u d_{1} u^{*}+d_{2}$ : u Haar-unitary, $d_{i}$ Det. with limit $\mu_{i}$. $\mu_{P}--->\mu_{1} \boxplus \mu_{2}$
(9) $P=d_{2}^{1 / 2} u d_{1} u^{*} d_{2}^{1 / 2}$ : u Haar-unitary, $d_{i}$ Det. with limit $\mu_{i}$. $\mu_{P}--->\mu_{1} \boxtimes \mu_{2}$

## Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to approximate $\mu_{P}$ for ANY polynomial and ANY tuple of matrices $X_{1}, \ldots, X_{n}$ such that $X_{1}, \ldots, X_{n}$ are asymptotically free. Their method is based on:

## Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to approximate $\mu_{P}$ for ANY polynomial and ANY tuple of matrices $X_{1}, \ldots, X_{n}$ such that $X_{1}, \ldots, X_{n}$ are asymptotically free. Their method is based on:

- Considering the asymptotic regime.


## Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to approximate $\mu_{P}$ for ANY polynomial and ANY tuple of matrices $X_{1}, \ldots, X_{n}$ such that $X_{1}, \ldots, X_{n}$ are asymptotically free. Their method is based on:

- Considering the asymptotic regime.
- Haagerup and Thorbjornsen / Anderson 's Linearization trick.


## Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to approximate $\mu_{P}$ for ANY polynomial and ANY tuple of matrices $X_{1}, \ldots, X_{n}$ such that $X_{1}, \ldots, X_{n}$ are asymptotically free. Their method is based on:

- Considering the asymptotic regime.
- Haagerup and Thorbjornsen / Anderson 's Linearization trick.
- Analytic subordination approach to (operator-valued) additive free convolution.


## Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to approximate $\mu_{P}$ for ANY polynomial and ANY tuple of matrices $X_{1}, \ldots, X_{n}$ such that $X_{1}, \ldots, X_{n}$ are asymptotically free. Their method is based on:

- Considering the asymptotic regime.
- Haagerup and Thorbjornsen / Anderson 's Linearization trick.
- Analytic subordination approach to (operator-valued) additive free convolution.

Examples of such tuples are $\left\{X_{1}, \ldots, X_{p}, U_{1} D_{1} U_{1}^{*}, \ldots U_{q} D_{q} U_{q}^{*}\right\}$.
Where the $D_{i}$ 's are Det. with limit distribution $\mu_{i}$.

## Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to approximate $\mu_{P}$ for ANY polynomial and ANY tuple of matrices $X_{1}, \ldots, X_{n}$ such that $X_{1}, \ldots, X_{n}$ are asymptotically free. Their method is based on:

- Considering the asymptotic regime.
- Haagerup and Thorbjornsen / Anderson 's Linearization trick.
- Analytic subordination approach to (operator-valued) additive free convolution.

Examples of such tuples are $\left\{X_{1}, \ldots, X_{p}, U_{1} D_{1} U_{1}^{*}, \ldots U_{q} D_{q} U_{q}^{*}\right\}$.
Where the $D_{i}$ 's are Det. with limit distribution $\mu_{i}$. In wireless communications, one is interested in:

## Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to approximate $\mu_{P}$ for ANY polynomial and ANY tuple of matrices $X_{1}, \ldots, X_{n}$ such that $X_{1}, \ldots, X_{n}$ are asymptotically free. Their method is based on:

- Considering the asymptotic regime.
- Haagerup and Thorbjornsen / Anderson 's Linearization trick.
- Analytic subordination approach to (operator-valued) additive free convolution.

Examples of such tuples are $\left\{X_{1}, \ldots, X_{p}, U_{1} D_{1} U_{1}^{*}, \ldots U_{q} D_{q} U_{q}^{*}\right\}$.
Where the $D_{i}$ 's are Det. with limit distribution $\mu_{i}$. In wireless communications, one is interested in:

- Keeping joint distributions of deterministic matrices.


## Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to approximate $\mu_{P}$ for ANY polynomial and ANY tuple of matrices $X_{1}, \ldots, X_{n}$ such that $X_{1}, \ldots, X_{n}$ are asymptotically free. Their method is based on:

- Considering the asymptotic regime.
- Haagerup and Thorbjornsen / Anderson 's Linearization trick.
- Analytic subordination approach to (operator-valued) additive free convolution.

Examples of such tuples are $\left\{X_{1}, \ldots, X_{p}, U_{1} D_{1} U_{1}^{*}, \ldots U_{q} D_{q} U_{q}^{*}\right\}$.
Where the $D_{i}$ 's are Det. with limit distribution $\mu_{i}$. In wireless communications, one is interested in:

- Keeping joint distributions of deterministic matrices.
- Matrices of different sizes/ rectangular matrices.


## A Rectangular Example

Coulliet Hoydis and Debbah considered the following matrix model for wireless communications:

## A Rectangular Example

Coulliet Hoydis and Debbah considered the following matrix model for wireless communications:
$P=Q U R U^{*} Q^{*}+S V T V^{*} S^{*}$, where $Q, S, R, T$ are deterministic matrices of sizes $5 \times 8,5 \times 4,8 \times 8$ and $4 \times 4$, respectively, and $U \in \mathcal{U}(8), V \in \mathcal{U}(4)$ are unitary matrices chosen independently with uniform distribution on the compact unitary groups $\mathcal{U}(8)$ and $\mathcal{U}(4)$.

## A Rectangular Example

Coulliet Hoydis and Debbah considered the following matrix model for wireless communications:
$P=Q U R U^{*} Q^{*}+S V T V^{*} S^{*}$, where $Q, S, R, T$ are deterministic matrices of sizes $5 \times 8,5 \times 4,8 \times 8$ and $4 \times 4$, respectively, and $U \in \mathcal{U}(8), V \in \mathcal{U}(4)$ are unitary matrices chosen independently with uniform distribution on the compact unitary groups $\mathcal{U}(8)$ and $\mathcal{U}(4)$.
We can blow-up the model by considering
$P_{N}=Q_{N} U_{N} R_{N} U_{N}^{*} Q_{N}^{*}+S_{N} V_{N} T_{N} V_{N}^{*} S_{N}^{*}$, where $A_{N}:=A \otimes I_{N}$ for $A \in\{Q, R, S, T\}$ and letting $U_{N} \in \mathcal{U}(8 N) V_{N} \in \mathcal{U}(4 N)$ be independent, with uniform distribution.

## A Rectangular Example

Coulliet Hoydis and Debbah considered the following matrix model for wireless communications:
$P=Q U R U^{*} Q^{*}+S V T V^{*} S^{*}$, where $Q, S, R, T$ are deterministic matrices of sizes $5 \times 8,5 \times 4,8 \times 8$ and $4 \times 4$, respectively, and $U \in \mathcal{U}(8), V \in \mathcal{U}(4)$ are unitary matrices chosen independently with uniform distribution on the compact unitary groups $\mathcal{U}(8)$ and $\mathcal{U}(4)$.
We can blow-up the model by considering
$P_{N}=Q_{N} U_{N} R_{N} U_{N}^{*} Q_{N}^{*}+S_{N} V_{N} T_{N} V_{N}^{*} S_{N}^{*}$, where $A_{N}:=A \otimes I_{N}$ for $A \in\{Q, R, S, T\}$ and letting $U_{N} \in \mathcal{U}(8 N) V_{N} \in \mathcal{U}(4 N)$ be independent, with uniform distribution.
While the question of obtaining the AED $\mu_{P_{N}}$ seems now completely out of reach, one observes once more that the measures $\mu_{P_{N}}$ converge towards a deterministic shape.

## A Rectangular Example

20000 eigenvalues of $P_{N}(N=1)$ :


## A Rectangular Example

20000 eigenvalues of $P_{N}(N=3)$ :


## A Rectangular Example

20000 eigenvalues of $P_{N}(N=10)$ :


## A Rectangular Example

20000 eigenvalues of $P_{N}(N=40)$ :


## Main Goal



## Main Result

Let $P=P\left(X_{1}, X_{1}^{*}, \ldots, X_{n}, X_{n}^{*}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ be a self-adjoint polynomial on non-commutative indeterminates $X_{1}, \ldots, X_{n}$ (and its adjoints $\left.X_{1}^{*}, \ldots X_{n}^{*}\right)$.

## Main Result

Let $P=P\left(X_{1}, X_{1}^{*}, \ldots, X_{n}, X_{n}^{*}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ be a self-adjoint polynomial on non-commutative indeterminates $X_{1}, \ldots, X_{n}$ (and its adjoints $\left.X_{1}^{*}, \ldots X_{n}^{*}\right)$.
For each $m \geq 1$, let $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ be independent (random and deterministic) matrices such that $Y_{i}^{(m)}$ is either an $m N_{i} \times m N_{i}$ Wigner or Haar-unitary random matrix or $Y_{i}^{(m)}=Y_{i}^{(1)} \otimes I_{m}$ is a $m N_{i} \times m M_{i}$ deterministic matrix and let $P_{m}=P\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)$.

## Main Result

Let $P=P\left(X_{1}, X_{1}^{*}, \ldots, X_{n}, X_{n}^{*}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ be a self-adjoint polynomial on non-commutative indeterminates $X_{1}, \ldots, X_{n}$ (and its adjoints $\left.X_{1}^{*}, \ldots X_{n}^{*}\right)$.
For each $m \geq 1$, let $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ be independent (random and deterministic) matrices such that $Y_{i}^{(m)}$ is either an $m N_{i} \times m N_{i}$ Wigner or Haar-unitary random matrix or $Y_{i}^{(m)}=Y_{i}^{(1)} \otimes I_{m}$ is a $m N_{i} \times m M_{i}$ deterministic matrix and let $P_{m}=P\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)$. Assume that $P$ and $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ are such that all the monomials in $P_{m}$ have the same size and the sizes of consecutive matrices on each monomial fit. Let $\mu_{m}$ be the AED of the self-adjoint random matrix $P_{m}$.

## Main Result

Let $P=P\left(X_{1}, X_{1}^{*}, \ldots, X_{n}, X_{n}^{*}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ be a self-adjoint polynomial on non-commutative indeterminates $X_{1}, \ldots, X_{n}$ (and its adjoints $\left.X_{1}^{*}, \ldots X_{n}^{*}\right)$.
For each $m \geq 1$, let $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ be independent (random and deterministic) matrices such that $Y_{i}^{(m)}$ is either an $m N_{i} \times m N_{i}$ Wigner or Haar-unitary random matrix or $Y_{i}^{(m)}=Y_{i}^{(1)} \otimes I_{m}$ is a $m N_{i} \times m M_{i}$ deterministic matrix and let $P_{m}=P\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)$. Assume that $P$ and $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ are such that all the monomials in $P_{m}$ have the same size and the sizes of consecutive matrices on each monomial fit. Let $\mu_{m}$ be the AED of the self-adjoint random matrix $P_{m}$. Then we have:

## Main Result

Let $P=P\left(X_{1}, X_{1}^{*}, \ldots, X_{n}, X_{n}^{*}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ be a self-adjoint polynomial on non-commutative indeterminates $X_{1}, \ldots, X_{n}$ (and its adjoints $\left.X_{1}^{*}, \ldots X_{n}^{*}\right)$.
For each $m \geq 1$, let $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ be independent (random and deterministic) matrices such that $Y_{i}^{(m)}$ is either an $m N_{i} \times m N_{i}$ Wigner or Haar-unitary random matrix or $Y_{i}^{(m)}=Y_{i}^{(1)} \otimes I_{m}$ is a $m N_{i} \times m M_{i}$ deterministic matrix and let $P_{m}=P\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)$. Assume that $P$ and $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ are such that all the monomials in $P_{m}$ have the same size and the sizes of consecutive matrices on each monomial fit. Let $\mu_{m}$ be the AED of the self-adjoint random matrix $P_{m}$. Then we have:

- There exists a probability measure $\mu$ such that $\mu_{m} \rightarrow \mu$.


## Main Result

Let $P=P\left(X_{1}, X_{1}^{*}, \ldots, X_{n}, X_{n}^{*}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ be a self-adjoint polynomial on non-commutative indeterminates $X_{1}, \ldots, X_{n}$ (and its adjoints $\left.X_{1}^{*}, \ldots X_{n}^{*}\right)$.
For each $m \geq 1$, let $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ be independent (random and deterministic) matrices such that $Y_{i}^{(m)}$ is either an $m N_{i} \times m N_{i}$ Wigner or Haar-unitary random matrix or $Y_{i}^{(m)}=Y_{i}^{(1)} \otimes I_{m}$ is a $m N_{i} \times m M_{i}$ deterministic matrix and let $P_{m}=P\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)$. Assume that $P$ and $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ are such that all the monomials in $P_{m}$ have the same size and the sizes of consecutive matrices on each monomial fit. Let $\mu_{m}$ be the AED of the self-adjoint random matrix $P_{m}$. Then we have:

- There exists a probability measure $\mu$ such that $\mu_{m} \rightarrow \mu$.
- $\mu$ is the spectral distribution of the free deterministic equivalent $P^{\square}=P\left(y_{1}, \ldots, y_{n}\right)$ of $P_{1}$.


## Main Result

Let $P=P\left(X_{1}, X_{1}^{*}, \ldots, X_{n}, X_{n}^{*}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ be a self-adjoint polynomial on non-commutative indeterminates $X_{1}, \ldots, X_{n}$ (and its adjoints $\left.X_{1}^{*}, \ldots X_{n}^{*}\right)$.
For each $m \geq 1$, let $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ be independent (random and deterministic) matrices such that $Y_{i}^{(m)}$ is either an $m N_{i} \times m N_{i}$ Wigner or Haar-unitary random matrix or $Y_{i}^{(m)}=Y_{i}^{(1)} \otimes I_{m}$ is a $m N_{i} \times m M_{i}$ deterministic matrix and let $P_{m}=P\left(Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}\right)$. Assume that $P$ and $Y_{1}^{(m)}, \ldots, Y_{n}^{(m)}$ are such that all the monomials in $P_{m}$ have the same size and the sizes of consecutive matrices on each monomial fit. Let $\mu_{m}$ be the AED of the self-adjoint random matrix $P_{m}$. Then we have:

- There exists a probability measure $\mu$ such that $\mu_{m} \rightarrow \mu$.
- $\mu$ is the spectral distribution of the free deterministic equivalent $P^{\square}=P\left(y_{1}, \ldots, y_{n}\right)$ of $P_{1}$.
- $\mu$ can be nummerically computed.


## Operator/Matrix/Rectangular-Probability Spaces

## Definitions

(1). Let $\mathcal{A}$ be a unital ${ }^{*}$-algebra. A $\mathcal{B}$-probability space is a pair $(\mathcal{A}, \mathbf{F})$ and a linear map $\mathbf{F}: \mathcal{A} \rightarrow \mathcal{B} \subseteq \mathcal{A}$ satisfying

$$
\begin{aligned}
\mathbf{F}\left(b a b^{\prime}\right) & =b \mathbf{F}(a) b^{\prime}, \quad \forall b, b^{\prime} \in \mathcal{B}, a \in \mathcal{A} \\
\mathbf{F}(1) & =1 .
\end{aligned}
$$

## Operator/Matrix/Rectangular-Probability Spaces

## Definitions

(1). Let $\mathcal{A}$ be a unital ${ }^{*}$-algebra. A $\mathcal{B}$-probability space is a pair $(\mathcal{A}, \mathbf{F})$ and a linear map $\mathbf{F}: \mathcal{A} \rightarrow \mathcal{B} \subseteq \mathcal{A}$ satisfying

$$
\begin{aligned}
\mathbf{F}\left(b a b^{\prime}\right) & =b \mathbf{F}(a) b^{\prime}, \quad \forall b, b^{\prime} \in \mathcal{B}, a \in \mathcal{A} \\
\mathbf{F}(1) & =1 .
\end{aligned}
$$

(2). Let $(\mathcal{A}, \mathbf{F})$ be a $\mathcal{B}$-probability space and let $\bar{a}:=a-\mathbf{F}(a) 1_{\mathcal{A}}$ for any $a \in \mathcal{A}$. The ${ }^{*}$-subalgebras $\mathcal{B} \subseteq A_{1}, \ldots, A_{k} \subseteq \mathcal{A}$ are $\mathcal{B}$-free (or free over $\mathcal{B}$, or free with amalgamation over $\mathcal{B}$ ) (with respect to F) iff

$$
\begin{equation*}
\mathbf{F}\left(\overline{a_{1}} \overline{a_{2}} \cdots \overline{a_{m}}\right)=0, \tag{1}
\end{equation*}
$$

where for all $m \geq 1$ and all tuples $a_{1}, \ldots, a_{m} \in \mathcal{A}$ such that $a_{i} \in A_{j(i)}$ with $j(1) \neq j(2) \neq \cdots \neq j(m)$.

Let $(\mathcal{A}, \tau)$ be a tracial $*$-probability space endowed with pairwise orthogonal, non-trivial projections $p_{1}, \ldots, p_{k} \in \mathcal{A}$ adding up to one.

Let $(\mathcal{A}, \tau)$ be a tracial $*$-probability space endowed with pairwise orthogonal, non-trivial projections $p_{1}, \ldots, p_{k} \in \mathcal{A}$ adding up to one.
Let $\mathcal{D}:=\left\langle p_{1}, \ldots, p_{k}\right\rangle$.
Then there exists a unique conditional expectation $\mathbf{F}: \mathcal{A} \rightarrow \mathcal{D}$ such that $\tau \circ \mathbf{F}=\tau$, which is given by

$$
\begin{equation*}
\mathbf{F}(a)=\sum_{i=1}^{k} p_{i} \tau\left(p_{i}\right)^{-1} \tau\left(p_{i} a\right) . \tag{2}
\end{equation*}
$$

Let $(\mathcal{A}, \tau)$ be a tracial $*$-probability space endowed with pairwise orthogonal, non-trivial projections $p_{1}, \ldots, p_{k} \in \mathcal{A}$ adding up to one.
Let $\mathcal{D}:=\left\langle p_{1}, \ldots, p_{k}\right\rangle$.
Then there exists a unique conditional expectation $\mathbf{F}: \mathcal{A} \rightarrow \mathcal{D}$ such that $\tau \circ \mathbf{F}=\tau$, which is given by

$$
\begin{equation*}
\mathbf{F}(a)=\sum_{i=1}^{k} p_{i} \tau\left(p_{i}\right)^{-1} \tau\left(p_{i} a\right) . \tag{2}
\end{equation*}
$$

With this, $(\mathcal{A}, \mathbf{F})$ becomes a $\mathcal{D}$-valued probability space.

## Rectangular-Probability Spaces

Consider the model $\Phi=\sum_{i=1}^{K} R_{i} U_{i} T_{i} U_{i}^{*} R_{i}^{*}$. We embed our matrices in a rectangular probability space:

## Rectangular-Probability Spaces

Consider the model $\Phi=\sum_{i=1}^{K} R_{i} U_{i} T_{i} U_{i}^{*} R_{i}^{*}$. We embed our matrices in a rectangular probability space:

| $P_{0}$ | $\tilde{R}_{1}$ | $\cdots$ | $\tilde{R}_{k}$ |
| :---: | :---: | :---: | :---: |
| $\tilde{R}_{1}^{*}$ | $\tilde{T}_{1}, P_{1}$ <br> $\tilde{U}_{1}, \tilde{U}_{1}^{*}$ |  |  |
|  |  | $\ddots$ |  |
|  |  |  | $\tilde{T}_{k}, P_{k}$ <br> $\tilde{R}_{k}^{*}$ |
|  |  | $\tilde{U}_{k}, \tilde{U}_{k}^{*}$ |  |

## Rectangular-Probability Spaces

Consider the model $\Phi=\sum_{i=1}^{K} R_{i} U_{i} T_{i} U_{i}^{*} R_{i}^{*}$. We embed our matrices in a rectangular probability space:

| $P_{0}$ | $\tilde{R}_{1}$ | $\cdots$ | $\tilde{R}_{k}$ |
| :---: | :---: | :---: | :---: |
| $\tilde{R}_{1}^{*}$ | $\tilde{T}_{1}, P_{1}$ <br> $\tilde{U}_{1}, \tilde{U}_{1}^{*}$ |  |  |
|  |  | $\ddots$ |  |
|  |  |  | $\tilde{T}_{k}, P_{k}$ |
| $\tilde{R}_{k}^{*}$ |  |  | $\tilde{U}_{k}, \tilde{U}_{k}^{*}$ |

## Theorem (Benaych-Georges)

$\left\{\tilde{R}_{1} \otimes I_{m}, \ldots, \tilde{R}_{K} \otimes I_{m}, \tilde{T}_{1} \otimes I_{m}, \ldots, \tilde{T}_{k} \otimes I_{m}\right\}$ and $\left\{\tilde{U}_{1}^{m}, \ldots \tilde{U}_{K}^{m}\right\}$ are asymptotically free over $\left\langle P_{0} \otimes I_{m}, \ldots, P_{k} \otimes I_{m}\right\rangle$.

## Matrix-valued Probability Spaces

## Example (Matrix-valued probability spaces)

Let $(\mathcal{A}, \tau)$ be a $*$-probability space and consider the algebra $M_{n}(\mathcal{A}) \cong M_{n}(\mathbb{C}) \otimes \mathcal{A}$ of $n \times n$ matrices with entries in $\mathcal{A}$. The maps

$$
\mathbf{F}_{3}:\left(a_{i j}\right)_{i j} \mapsto\left(\tau\left(a_{i j}\right)\right)_{i j} \in M_{n}(\mathbb{C}),
$$

## Matrix-valued Probability Spaces

## Example (Matrix-valued probability spaces)

Let $(\mathcal{A}, \tau)$ be a $*$-probability space and consider the algebra $M_{n}(\mathcal{A}) \cong M_{n}(\mathbb{C}) \otimes \mathcal{A}$ of $n \times n$ matrices with entries in $\mathcal{A}$. The maps

$$
\begin{gathered}
\mathbf{F}_{3}:\left(a_{i j}\right)_{i j} \mapsto\left(\tau\left(a_{i j}\right)\right)_{i j} \in M_{n}(\mathbb{C}), \\
\mathbf{F}_{2}:\left(a_{i j}\right)_{i j} \mapsto\left(\delta_{i j} \tau\left(a_{i j}\right)\right)_{i j} \in D_{n}(\mathbb{C}),
\end{gathered}
$$

## Matrix-valued Probability Spaces

## Example (Matrix-valued probability spaces)

Let $(\mathcal{A}, \tau)$ be a $*$-probability space and consider the algebra $M_{n}(\mathcal{A}) \cong M_{n}(\mathbb{C}) \otimes \mathcal{A}$ of $n \times n$ matrices with entries in $\mathcal{A}$. The maps

$$
\begin{gathered}
\mathbf{F}_{3}:\left(a_{i j}\right)_{i j} \mapsto\left(\tau\left(a_{i j}\right)\right)_{i j} \in M_{n}(\mathbb{C}), \\
\mathbf{F}_{2}:\left(a_{i j}\right)_{i j} \mapsto\left(\delta_{i j} \tau\left(a_{i j}\right)\right)_{i j} \in D_{n}(\mathbb{C}),
\end{gathered}
$$

and

$$
\mathbf{F}_{1}:\left(a_{i j}\right)_{i j} \mapsto \sum_{i=1}^{n} \frac{1}{n} \tau\left(a_{i j}\right) I_{n} \in I_{n}(\mathbb{C})
$$

## Matrix-valued Probability Spaces

## Example (Matrix-valued probability spaces)

Let $(\mathcal{A}, \tau)$ be a $*$-probability space and consider the algebra $M_{n}(\mathcal{A}) \cong M_{n}(\mathbb{C}) \otimes \mathcal{A}$ of $n \times n$ matrices with entries in $\mathcal{A}$. The maps

$$
\begin{gathered}
\mathbf{F}_{3}:\left(a_{i j}\right)_{i j} \mapsto\left(\tau\left(a_{i j}\right)\right)_{i j} \in M_{n}(\mathbb{C}), \\
\mathbf{F}_{2}:\left(a_{i j}\right)_{i j} \mapsto\left(\delta_{i j} \tau\left(a_{i j}\right)\right)_{i j} \in D_{n}(\mathbb{C}),
\end{gathered}
$$

and

$$
\mathbf{F}_{1}:\left(a_{i j}\right)_{i j} \mapsto \sum_{i=1}^{n} \frac{1}{n} \tau\left(a_{i i}\right) I_{n} \in I_{n}(\mathbb{C})
$$

are respectively, conditional expectations onto the algebras $M_{n}(\mathbb{C}) \supset D_{n}(\mathbb{C}) \supset I_{n}(\mathbb{C})$ of constant matrices, diagonal matrices and multiples of the identity.

## Matrix\&Rectangular-Probability Spaces

Matrices on free elements are matrix-valued free!

## Matrix $\otimes$ Rectangular-Probability Spaces

Matrices on free elements are matrix-valued free!

## Proposition

Let $(\mathcal{A}, \mathbf{F})$ be a $\mathcal{B}$-probability space, and consider the $M_{n}(\mathcal{B})$-valued probability space $\left(M_{n}(\mathbb{C}) \otimes \mathcal{A}\right.$, id $\left.\otimes \mathbf{F}\right)$. If $A_{1}, \ldots, A_{k} \subseteq \mathcal{A}$ are $\mathcal{B}$-free, then $\left(M_{n}(\mathbb{C}) \otimes A_{1}\right), \ldots,\left(M_{n}(\mathbb{C}) \otimes A_{k}\right) \subseteq\left(M_{n}(\mathbb{C}) \otimes \mathcal{A}\right)$ are $\left(M_{n}(\mathcal{B})\right)$-free.
$G_{x}^{\mathcal{B}}(b)=E\left((b-x)^{-1}\right)$,

$$
G_{x}^{\mathcal{B}}(b)=E\left((b-x)^{-1}\right),
$$

maps the operatorial upper half-plane $\mathbb{H}^{+}(\mathcal{B}):=\left\{b \in \mathcal{B} \mid-i\left(b-b^{*}\right)>0\right\}$ into the lower half-plane $\mathbb{H}^{-}(\mathcal{B})=-\mathbb{H}^{+}(\mathcal{B})$.

$$
G_{x}^{\mathcal{B}}(b)=E\left((b-x)^{-1}\right),
$$

maps the operatorial upper half-plane $\mathbb{H}^{+}(\mathcal{B}):=\left\{b \in \mathcal{B} \mid-i\left(b-b^{*}\right)>0\right\}$ into the lower half-plane $\mathbb{H}^{-}(\mathcal{B})=-\mathbb{H}^{+}(\mathcal{B})$.
Very often $(\mathcal{A})$ may have several operator-valued structures $\mathbf{F}_{i}: \mathcal{A} \rightarrow \mathcal{B}_{i}$ simmultaneusly, with $\mathbb{C}=\mathcal{B}_{1} \subset \mathcal{B}_{2} \subset \cdots \subset \mathcal{B}_{k}$, and $\mathbf{F}_{i} \circ \mathbf{F}_{i+1}=\mathbf{F}_{i}$.

$$
G_{x}^{\mathcal{B}}(b)=E\left((b-x)^{-1}\right),
$$

maps the operatorial upper half-plane $\mathbb{H}^{+}(\mathcal{B}):=\left\{b \in \mathcal{B} \mid-i\left(b-b^{*}\right)>0\right\}$ into the lower half-plane $\mathbb{H}^{-}(\mathcal{B})=-\mathbb{H}^{+}(\mathcal{B})$.
Very often $(\mathcal{A})$ may have several operator-valued structures $\mathbf{F}_{i}: \mathcal{A} \rightarrow \mathcal{B}_{i}$ simmultaneusly, with $\mathbb{C}=\mathcal{B}_{1} \subset \mathcal{B}_{2} \subset \cdots \subset \mathcal{B}_{k}$, and $\mathbf{F}_{i} \circ \mathbf{F}_{i+1}=\mathbf{F}_{i}$.
We have that, for all $b \in \mathcal{B}_{i}$

$$
G_{x}^{\mathcal{B}}(b)=E\left((b-x)^{-1}\right)
$$

maps the operatorial upper half-plane

$$
\begin{aligned}
& \mathbb{H}^{+}(\mathcal{B}):=\left\{b \in \mathcal{B} \mid-i\left(b-b^{*}\right)>0\right\} \text { into the lower half-plane } \\
& \mathbb{H}^{-}(\mathcal{B})=-\mathbb{H}^{+}(\mathcal{B})
\end{aligned}
$$

Very often $(\mathcal{A})$ may have several operator-valued structures $\mathbf{F}_{i}: \mathcal{A} \rightarrow \mathcal{B}_{i}$ simmultaneusly, with $\mathbb{C}=\mathcal{B}_{1} \subset \mathcal{B}_{2} \subset \cdots \subset \mathcal{B}_{k}$, and

$$
\mathbf{F}_{i} \circ \mathbf{F}_{i+1}=\mathbf{F}_{i}
$$

We have that, for all $b \in \mathcal{B}_{i}$

$$
\mathbf{F}_{i}\left(G_{x}^{\mathcal{B}_{i+1}}(b)\right)=\mathbf{F}_{i} \circ \mathbf{F}_{i+1}\left((b-x)^{-1}\right)=\mathbf{F}_{i}\left((b-x)^{-1}\right)=G_{x}^{\mathcal{B}_{i}}(z)
$$

$$
G_{x}^{\mathcal{B}}(b)=E\left((b-x)^{-1}\right)
$$

maps the operatorial upper half-plane
$\mathbb{H}^{+}(\mathcal{B}):=\left\{b \in \mathcal{B} \mid-i\left(b-b^{*}\right)>0\right\}$ into the lower half-plane
$\mathbb{H}^{-}(\mathcal{B})=-\mathbb{H}^{+}(\mathcal{B})$.
Very often $(\mathcal{A})$ may have several operator-valued structures
$\mathbf{F}_{i}: \mathcal{A} \rightarrow \mathcal{B}_{i}$ simmultaneusly, with $\mathbb{C}=\mathcal{B}_{1} \subset \mathcal{B}_{2} \subset \cdots \subset \mathcal{B}_{k}$, and $\mathbf{F}_{i} \circ \mathbf{F}_{i+1}=\mathbf{F}_{i}$.
We have that, for all $b \in \mathcal{B}_{i}$

$$
\mathbf{F}_{i}\left(G_{x}^{\mathcal{B}_{i+1}}(b)\right)=\mathbf{F}_{i} \circ \mathbf{F}_{i+1}\left((b-x)^{-1}\right)=\mathbf{F}_{i}\left((b-x)^{-1}\right)=G_{x}^{\mathcal{B}_{i}}(z)
$$

Remark:

$$
G_{x}^{\mathcal{B}}(b)=E\left((b-x)^{-1}\right)
$$

maps the operatorial upper half-plane
$\mathbb{H}^{+}(\mathcal{B}):=\left\{b \in \mathcal{B} \mid-i\left(b-b^{*}\right)>0\right\}$ into the lower half-plane
$\mathbb{H}^{-}(\mathcal{B})=-\mathbb{H}^{+}(\mathcal{B})$.
Very often $(\mathcal{A})$ may have several operator-valued structures
$\mathbf{F}_{i}: \mathcal{A} \rightarrow \mathcal{B}_{i}$ simmultaneusly, with $\mathbb{C}=\mathcal{B}_{1} \subset \mathcal{B}_{2} \subset \cdots \subset \mathcal{B}_{k}$, and $\mathbf{F}_{i} \circ \mathbf{F}_{i+1}=\mathbf{F}_{i}$.
We have that, for all $b \in \mathcal{B}_{i}$

$$
\mathbf{F}_{i}\left(G_{x}^{\mathcal{B}_{i+1}}(b)\right)=\mathbf{F}_{i} \circ \mathbf{F}_{i+1}\left((b-x)^{-1}\right)=\mathbf{F}_{i}\left((b-x)^{-1}\right)=G_{x}^{\mathcal{B}_{i}}(z) .
$$

Remark:

$$
G_{x}^{\mathbb{C}}(z)=\int_{\mathbb{R}}(z-t)^{-1} d \mu_{x}(t)
$$

$$
G_{x}^{\mathcal{B}}(b)=E\left((b-x)^{-1}\right)
$$

maps the operatorial upper half-plane
$\mathbb{H}^{+}(\mathcal{B}):=\left\{b \in \mathcal{B} \mid-i\left(b-b^{*}\right)>0\right\}$ into the lower half-plane
$\mathbb{H}^{-}(\mathcal{B})=-\mathbb{H}^{+}(\mathcal{B})$.
Very often $(\mathcal{A})$ may have several operator-valued structures $\mathbf{F}_{i}: \mathcal{A} \rightarrow \mathcal{B}_{i}$ simmultaneusly, with $\mathbb{C}=\mathcal{B}_{1} \subset \mathcal{B}_{2} \subset \cdots \subset \mathcal{B}_{k}$, and $\mathbf{F}_{i} \circ \mathbf{F}_{i+1}=\mathbf{F}_{i}$.
We have that, for all $b \in \mathcal{B}_{i}$

$$
\mathbf{F}_{i}\left(G_{x}^{\mathcal{B}_{i+1}}(b)\right)=\mathbf{F}_{i} \circ \mathbf{F}_{i+1}\left((b-x)^{-1}\right)=\mathbf{F}_{i}\left((b-x)^{-1}\right)=G_{x}^{\mathcal{B}_{i}}(z) .
$$

Remark:

$$
G_{c \otimes x}^{M_{n}(\mathbb{C})}(b)=\int_{\mathbb{R}}(b-c \otimes t)^{-1} d \mu_{x}(t)
$$

## Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)
Let $(\mathcal{A}, \mathbf{F})$ be a $C^{*}$-operator valued space.

## Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)
Let $(\mathcal{A}, \mathbf{F})$ be a $C^{*}$-operator valued space. Let $x, y \in \mathcal{A}$ be self-adjoint, $\mathcal{B}$-free

## Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)
Let $(\mathcal{A}, \mathbf{F})$ be a $C^{*}$-operator valued space. Let $x, y \in \mathcal{A}$ be self-adjoint, $\mathcal{B}$-free, there exist an analytic map $\omega: \mathbb{H}^{+}(\mathcal{B}) \rightarrow \mathbb{H}^{+}(\mathcal{B})$ such that $G_{x}(\omega(b))=G_{x+y}(b)$.

Theorem (Belinschi, Mai, Speicher 2013)
Let $(\mathcal{A}, \mathbf{F})$ be a $C^{*}$-operator valued space.Let $x, y \in \mathcal{A}$ be self-adjoint, $\mathcal{B}$-free, there exist an analytic map $\omega: \mathbb{H}^{+}(\mathcal{B}) \rightarrow \mathbb{H}^{+}(\mathcal{B})$ such that $G_{x}(\omega(b))=G_{x+y}(b)$.
Furthermore, for any $b \in \mathbb{H}^{+}(\mathcal{B})$ the subordination function $\omega(b)$ satisfies

## Theorem (Belinschi, Mai, Speicher 2013)

Let $(\mathcal{A}, \mathbf{F})$ be a $C^{*}$-operator valued space.Let $x, y \in \mathcal{A}$ be self-adjoint, $\mathcal{B}$-free, there exist an analytic map $\omega: \mathbb{H}^{+}(\mathcal{B}) \rightarrow \mathbb{H}^{+}(\mathcal{B})$ such that $G_{x}(\omega(b))=G_{x+y}(b)$.
Furthermore, for any $b \in \mathbb{H}^{+}(\mathcal{B})$ the subordination function $\omega(b)$ satisfies

$$
\omega(b)=\lim _{n \rightarrow \infty} f_{b}^{\circ n}(w)
$$

where, for any $b, w \in \mathbb{H}^{+}(\mathcal{B}), f_{b}(w)=h_{y}\left(h_{x}(w)+b\right)+b$

## Theorem (Belinschi, Mai, Speicher 2013)

Let $(\mathcal{A}, \mathbf{F})$ be a $C^{*}$-operator valued space.Let $x, y \in \mathcal{A}$ be self-adjoint, $\mathcal{B}$-free, there exist an analytic map
$\omega: \mathbb{H}^{+}(\mathcal{B}) \rightarrow \mathbb{H}^{+}(\mathcal{B})$ such that $G_{x}(\omega(b))=G_{x+y}(b)$.
Furthermore, for any $b \in \mathbb{H}^{+}(\mathcal{B})$ the subordination function $\omega(b)$ satisfies

$$
\omega(b)=\lim _{n \rightarrow \infty} f_{b}^{\circ n}(w)
$$

where, for any $b, w \in \mathbb{H}^{+}(\mathcal{B}), f_{b}(w)=h_{y}\left(h_{x}(w)+b\right)+b$ and $h$ is the auxiliary analytic self-map $h_{x}(b)=\left(E\left((b-x)^{-1}\right)\right)^{-1}-b$ on $\mathbb{H}^{+}(\mathcal{B})$.

## Anderson's Self-adjoint Linearization

## Theorem <br> Let $(\mathcal{A}, \mathbf{F})$ be a $\mathcal{D}$-rectangular-probability space and let $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}} \in \mathcal{A}$.

## Anderson's Self-adjoint Linearization

## Theorem <br> Let $(\mathcal{A}, \mathbf{F})$ be a $\mathcal{D}$-rectangular-probability space and let $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}} \in \mathcal{A}$. <br> Let $P=P\left(x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}}\right)$ be a self-adjoint polynomial evaluated on $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}}$ and their adjoints.

## Anderson's Self-adjoint Linearization

## Theorem

Let $(\mathcal{A}, \mathbf{F})$ be a $\mathcal{D}$-rectangular-probability space and let $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}} \in \mathcal{A}$.
Let $P=P\left(x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}}\right)$ be a self-adjoint polynomial evaluated on $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}}$ and their adjoints.
There exist $m \geq 1$ and an element
$L_{P}=c_{1} \otimes x_{1}+c_{1}^{*} \otimes x_{1}^{*}+\ldots c_{n_{1}} \otimes x_{n_{1}}+c_{n_{1}}^{*} \otimes x_{n_{1}}^{*}+c \in M_{m}(\mathbb{C}) \otimes \mathcal{A}$, with $c \in M_{m}(\mathbb{C}) \otimes\left\langle d_{1}, \ldots d_{n_{2}}\right\rangle$ and, for $i \geq 1 c_{i} \in M_{m}(\mathbb{C})$, such that

## Anderson's Self-adjoint Linearization

## Theorem

Let $(\mathcal{A}, \mathbf{F})$ be a $\mathcal{D}$-rectangular-probability space and let $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}} \in \mathcal{A}$.
Let $P=P\left(x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}}\right)$ be a self-adjoint polynomial evaluated on $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}}$ and their adjoints.
There exist $m \geq 1$ and an element
$L_{P}=c_{1} \otimes x_{1}+c_{1}^{*} \otimes x_{1}^{*}+\ldots c_{n_{1}} \otimes x_{n_{1}}+c_{n_{1}}^{*} \otimes x_{n_{1}}^{*}+c \in M_{m}(\mathbb{C}) \otimes \mathcal{A}$, with $c \in M_{m}(\mathbb{C}) \otimes\left\langle d_{1}, \ldots d_{n_{2}}\right\rangle$ and, for $i \geq 1 c_{i} \in M_{m}(\mathbb{C})$, such that

$$
\left(G_{L_{P}}^{M_{m}(\mathcal{D})}(\hat{d})\right)_{11}=G_{P}^{\mathcal{D}}(d)
$$

## Anderson's Self-adjoint Linearization

## Theorem

Let $(\mathcal{A}, \mathbf{F})$ be a $\mathcal{D}$-rectangular-probability space and let $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}} \in \mathcal{A}$.
Let $P=P\left(x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}}\right)$ be a self-adjoint polynomial evaluated on $x_{1}, \ldots, x_{n_{1}}, d_{1}, \ldots, d_{n_{2}}$ and their adjoints.
There exist $m \geq 1$ and an element
$L_{P}=c_{1} \otimes x_{1}+c_{1}^{*} \otimes x_{1}^{*}+\ldots c_{n_{1}} \otimes x_{n_{1}}+c_{n_{1}}^{*} \otimes x_{n_{1}}^{*}+c \in M_{m}(\mathbb{C}) \otimes \mathcal{A}$, with $c \in M_{m}(\mathbb{C}) \otimes\left\langle d_{1}, \ldots d_{n_{2}}\right\rangle$ and, for $i \geq 1 c_{i} \in M_{m}(\mathbb{C})$, such that

$$
\left(G_{L_{P}}^{M_{m}(\mathcal{D})}(\hat{d})\right)_{11}=G_{P}^{\mathcal{D}}(d)
$$

where $\hat{d}=\operatorname{diag}(d, 0,0, \ldots, 0) \in M_{m}(\mathcal{D})$.

If $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{1} X_{2} \cdots X_{n} X_{n}^{*} \cdots X_{2}^{*} X_{1}^{*}$ then

$$
L_{P}\left(X_{1}, \ldots, X_{n}\right)=\left(\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & X_{1} \\
0 & 0 & 0 & \cdots & 0 & X_{2} & -1 \\
0 & 0 & 0 & \cdots & X_{3} & -1 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & X_{3}^{*} & \cdots & 0 & 0 & 0 \\
0 & X_{2}^{*} & -1 & \cdots & 0 & 0 & 0 \\
X_{1}^{*} & -1 & 0 & \cdots & 0 & 0 & 0
\end{array}\right)
$$

## The algorithm

(1) Embed $X_{1}, \ldots, X_{n_{1}}, D_{1}, \ldots, D_{n_{2}}$ in a suitable $\left\langle P_{1}, \ldots, P_{k}\right\rangle$-rectangular space.
(1) Embed $X_{1}, \ldots, X_{n_{1}}, D_{1}, \ldots, D_{n_{2}}$ in a suitable $\left\langle P_{1}, \ldots, P_{k}\right\rangle$-rectangular space.
(2) According to Voiculescu/Benaych Georges asymptotic freeness, replace $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right\}$ by the corresponding limiting elements $\left\{y_{1}, \ldots, y_{n}\right\}$ in the $\left\langle p_{1}, \ldots, p_{k}\right\rangle$-rectangular probability space and consider $P^{\square}:=P\left(y_{1}, \ldots, y_{n}, D_{1}, \ldots, D_{m}\right)$
(1) Embed $X_{1}, \ldots, X_{n_{1}}, D_{1}, \ldots, D_{n_{2}}$ in a suitable $\left\langle P_{1}, \ldots, P_{k}\right\rangle$-rectangular space.
(2) According to Voiculescu/Benaych Georges asymptotic freeness, replace $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right\}$ by the corresponding limiting elements $\left\{y_{1}, \ldots, y_{n}\right\}$ in the $\left\langle p_{1}, \ldots, p_{k}\right\rangle$-rectangular probability space and consider
$P^{\square}:=P\left(y_{1}, \ldots, y_{n}, D_{1}, \ldots, D_{m}\right)$
(3) Consider a linearization $L_{P \square}=c_{1} \otimes y_{1}+c_{1}^{*} \otimes y_{1}^{*}+\ldots c_{n} \otimes y_{n}+c_{n}^{*} \otimes y_{n}^{*}+c_{0}$ of $P^{\square}$
(1) Embed $X_{1}, \ldots, X_{n_{1}}, D_{1}, \ldots, D_{n_{2}}$ in a suitable $\left\langle P_{1}, \ldots, P_{k}\right\rangle$-rectangular space.
(2) According to Voiculescu/Benaych Georges asymptotic freeness, replace $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right\}$ by the corresponding limiting elements $\left\{y_{1}, \ldots, y_{n}\right\}$ in the $\left\langle p_{1}, \ldots, p_{k}\right\rangle$-rectangular probability space and consider
$P^{\square}:=P\left(y_{1}, \ldots, y_{n}, D_{1}, \ldots, D_{m}\right)$
(3) Consider a linearization
$L_{P \square}=c_{1} \otimes y_{1}+c_{1}^{*} \otimes y_{1}^{*}+\ldots c_{n} \otimes y_{n}+c_{n}^{*} \otimes y_{n}^{*}+c_{0}$ of $P^{\square}$ $\left(c_{0} \in M_{m}(\mathbb{C}) \otimes\left\langle\tilde{D}_{1}, \ldots, D_{n_{2}}\right\rangle\right.$
(1) Embed $X_{1}, \ldots, X_{n_{1}}, D_{1}, \ldots, D_{n_{2}}$ in a suitable $\left\langle P_{1}, \ldots, P_{k}\right\rangle$-rectangular space.
(2) According to Voiculescu/Benaych Georges asymptotic freeness, replace $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right\}$ by the corresponding limiting elements $\left\{y_{1}, \ldots, y_{n}\right\}$ in the $\left\langle p_{1}, \ldots, p_{k}\right\rangle$-rectangular probability space and consider $P^{\square}:=P\left(y_{1}, \ldots, y_{n}, D_{1}, \ldots, D_{m}\right)$
(3) Consider a linearization $L_{p \square}=c_{1} \otimes y_{1}+c_{1}^{*} \otimes y_{1}^{*}+\ldots c_{n} \otimes y_{n}+c_{n}^{*} \otimes y_{n}^{*}+c_{0}$ of $P^{\square}$ $\left(c_{0} \in M_{m}(\mathbb{C}) \otimes\left\langle\tilde{D}_{1}, \ldots, D_{n_{2}}\right\rangle, c_{i} \in M_{m}(\mathbb{C})\right)$
(1) Embed $X_{1}, \ldots, X_{n_{1}}, D_{1}, \ldots, D_{n_{2}}$ in a suitable $\left\langle P_{1}, \ldots, P_{k}\right\rangle$-rectangular space.
(2) According to Voiculescu/Benaych Georges asymptotic freeness, replace $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right\}$ by the corresponding limiting elements $\left\{y_{1}, \ldots, y_{n}\right\}$ in the $\left\langle p_{1}, \ldots, p_{k}\right\rangle$-rectangular probability space and consider
$P^{\square}:=P\left(y_{1}, \ldots, y_{n}, D_{1}, \ldots, D_{m}\right)$
(3) Consider a linearization
$L_{p \square}=c_{1} \otimes y_{1}+c_{1}^{*} \otimes y_{1}^{*}+\ldots c_{n} \otimes y_{n}+c_{n}^{*} \otimes y_{n}^{*}+c_{0}$ of $P^{\square}$
$\left(c_{0} \in M_{m}(\mathbb{C}) \otimes\left\langle\tilde{D}_{1}, \ldots, D_{n_{2}}\right\rangle, c_{i} \in M_{m}(\mathbb{C})\right)$
(9) Compute (or approximate) each $M_{m} \otimes\left\langle p_{1}, \ldots, p_{k}\right\rangle$ Cauchy transform of $G_{c_{i} \otimes y_{i}+c_{i}^{*} \otimes y_{i}^{*}}$,
(1) Embed $X_{1}, \ldots, X_{n_{1}}, D_{1}, \ldots, D_{n_{2}}$ in a suitable $\left\langle P_{1}, \ldots, P_{k}\right\rangle$-rectangular space.
(2) According to Voiculescu/Benaych Georges asymptotic freeness, replace $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right\}$ by the corresponding limiting elements $\left\{y_{1}, \ldots, y_{n}\right\}$ in the $\left\langle p_{1}, \ldots, p_{k}\right\rangle$-rectangular probability space and consider
$P^{\square}:=P\left(y_{1}, \ldots, y_{n}, D_{1}, \ldots, D_{m}\right)$
(3) Consider a linearization
$L_{p \square}=c_{1} \otimes y_{1}+c_{1}^{*} \otimes y_{1}^{*}+\ldots c_{n} \otimes y_{n}+c_{n}^{*} \otimes y_{n}^{*}+c_{0}$ of $P^{\square}$ $\left(c_{0} \in M_{m}(\mathbb{C}) \otimes\left\langle\tilde{D}_{1}, \ldots, D_{n_{2}}\right\rangle, c_{i} \in M_{m}(\mathbb{C})\right)$
(9) Compute (or approximate) each $M_{m} \otimes\left\langle p_{1}, \ldots, p_{k}\right\rangle$ Cauchy transform of $G_{c_{i} \otimes y_{i}+c_{i}^{*} \otimes y_{i}^{*}, \text { as well }}$ as $G_{c_{0}}$
(1) Embed $X_{1}, \ldots, X_{n_{1}}, D_{1}, \ldots, D_{n_{2}}$ in a suitable $\left\langle P_{1}, \ldots, P_{k}\right\rangle$-rectangular space.
(2) According to Voiculescu/Benaych Georges asymptotic freeness, replace $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right\}$ by the corresponding limiting elements $\left\{y_{1}, \ldots, y_{n}\right\}$ in the $\left\langle p_{1}, \ldots, p_{k}\right\rangle$-rectangular probability space and consider
$P^{\square}:=P\left(y_{1}, \ldots, y_{n}, D_{1}, \ldots, D_{m}\right)$
(3) Consider a linearization
$L_{P \square}=c_{1} \otimes y_{1}+c_{1}^{*} \otimes y_{1}^{*}+\ldots c_{n} \otimes y_{n}+c_{n}^{*} \otimes y_{n}^{*}+c_{0}$ of $P^{\square}$
$\left(c_{0} \in M_{m}(\mathbb{C}) \otimes\left\langle\tilde{D}_{1}, \ldots, D_{n_{2}}\right\rangle, c_{i} \in M_{m}(\mathbb{C})\right)$
(9) Compute (or approximate) each $M_{m} \otimes\left\langle p_{1}, \ldots, p_{k}\right\rangle$ Cauchy transform of $G_{c_{i} \otimes y_{i}+c_{i}^{*} \otimes y_{i}^{*}, \text { as well }}$ as $G_{c_{0}}$
(5) Since $\left(c_{1} \otimes y_{1}+c_{1}^{*} \otimes y_{1}^{*}\right), \ldots\left(c_{n} \otimes y_{n}+c_{n}^{*} \otimes y_{n}^{*}\right), c_{0}$ are $M_{m}(\mathbb{C}) \otimes\left\langle p_{1}, \ldots, p_{k}\right\rangle$-free and self-adjoint, compute $G_{L_{p \square}}$ by the fixed point method of Belinschi et al.

## Thanks for your attention!

Main References
(1) Voiculescu 85: Symmetries of some free product $C^{*}$-algebras
(2) Voiculescu 91: Limit laws for random matrices and free products.
(3) Voiculescu 95: Operations on certain non-commutative operator-valued random variables.
(3) Haagerup, Thorbjornsen 95: A new application of random matrices: $\operatorname{Ext}\left(c_{r e d}^{*}\left(f_{2}\right)\right)$ is not a group.
(3) Benaych-Georges 09: Rectangular random matrices, related convolution.
(0) Speicher, V. 13: Free deterministic equivalents, rectangular random matrices and operator-valued free probability.
(3) Belinschi, Speicher, Mai (arXiv): Analytic subordination theory of operator-valued free additive convolution and the solution to a general random matrix problem

