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A General Random Matrix Problem

Let P be a self-adjoint polynomial on non-commutative
indeterminates x1, . . . , xn, x

∗
1 , . . . , x

∗
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A General Random Matrix Problem

Let P be a self-adjoint polynomial on non-commutative
indeterminates x1, . . . , xn, x

∗
1 , . . . , x

∗
n .

A Hermitian random matrix model can be obtained by evaluating
P on random and/or deterministic matrices X1, . . . ,Xn.
If the matrices are large (but not necessarilly TOO large) and are
either Deterministic, Wigner or Haar Unitary, we can approximate
the averaged eigenvalue distribution.
The matrices may have different sizes and the deterministic
matrices can even be rectangular.
We only ask that the monomials of P(X1, . . . ,Xn) are square and
have the same size.
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Classic Examples/Previous work

GUE (N=4):

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



Classic Examples/Previous work

GUE (N=8):
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GUE (N=15):
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Classic Examples/Previous work

EED of Bernoulli Wigner Matrix (N=10):
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Classic Examples/Previous work

EED of Bernoulli Wigner Matrix (N=100):
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Classic Examples/Previous work

EED of Bernoulli Wigner Matrix (N=1000):
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Classic Examples/Previous work

4000 Eigenvalues of Bernoulli Matrices (N=5):
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4000 Eigenvalues of Bernoulli Matrices (N=10):
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Classic Examples/Previous work

4000 Eigenvalues of Bernoulli Matrices (N=20):
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Classic Examples/Previous work

In general, it is not possible compute the distribution for finite N.
One usually considers the asymptotic regime and uses it as an
approximation for the finite case.
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1 General Wigner matrices: P(x) = x , x Wigner.
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In general, it is not possible compute the distribution for finite N.
One usually considers the asymptotic regime and uses it as an
approximation for the finite case.

1 General Wigner matrices: P(x) = x , x Wigner.
μP −−− > Semicircle Law

2 Wishart Matrices: P(x , x∗) = xx∗, x Wigner.
μP −−− > Marchenko-Pastur Law

3 P = ud1u
∗ + d2: u Haar-unitary, di Det. with limit μi .

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



Classic Examples/Previous work

In general, it is not possible compute the distribution for finite N.
One usually considers the asymptotic regime and uses it as an
approximation for the finite case.

1 General Wigner matrices: P(x) = x , x Wigner.
μP −−− > Semicircle Law

2 Wishart Matrices: P(x , x∗) = xx∗, x Wigner.
μP −−− > Marchenko-Pastur Law

3 P = ud1u
∗ + d2: u Haar-unitary, di Det. with limit μi .

μP −−− > μ1 � μ2

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



Classic Examples/Previous work

In general, it is not possible compute the distribution for finite N.
One usually considers the asymptotic regime and uses it as an
approximation for the finite case.

1 General Wigner matrices: P(x) = x , x Wigner.
μP −−− > Semicircle Law

2 Wishart Matrices: P(x , x∗) = xx∗, x Wigner.
μP −−− > Marchenko-Pastur Law

3 P = ud1u
∗ + d2: u Haar-unitary, di Det. with limit μi .

μP −−− > μ1 � μ2

4 P = d
1/2
2 ud1u

∗d1/2
2 : u Haar-unitary, di Det. with limit μi .

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



Classic Examples/Previous work

In general, it is not possible compute the distribution for finite N.
One usually considers the asymptotic regime and uses it as an
approximation for the finite case.

1 General Wigner matrices: P(x) = x , x Wigner.
μP −−− > Semicircle Law

2 Wishart Matrices: P(x , x∗) = xx∗, x Wigner.
μP −−− > Marchenko-Pastur Law

3 P = ud1u
∗ + d2: u Haar-unitary, di Det. with limit μi .

μP −−− > μ1 � μ2

4 P = d
1/2
2 ud1u

∗d1/2
2 : u Haar-unitary, di Det. with limit μi .

μP −−− > μ1 � μ2

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



Classic Examples/Previous work

Belinschi, Mai and Speicher recently gave an algorithm to
approximate μP for ANY polynomial and ANY tuple of matrices
X1, . . . ,Xn such that X1, . . . ,Xn are asymptotically free. Their
method is based on:
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Belinschi, Mai and Speicher recently gave an algorithm to
approximate μP for ANY polynomial and ANY tuple of matrices
X1, . . . ,Xn such that X1, . . . ,Xn are asymptotically free. Their
method is based on:

Considering the asymptotic regime.

Haagerup and Thorbjornsen / Anderson ’s Linearization trick.

Analytic subordination approach to (operator-valued) additive
free convolution.

Examples of such tuples are {X1, . . . ,Xp,U1D1U
∗
1 , . . .UqDqU

∗
q}.

Where the Di ’s are Det. with limit distribution μi .
In wireless communications, one is interested in:

Keeping joint distributions of deterministic matrices.

Matrices of different sizes/ rectangular matrices.
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A Rectangular Example

Coulliet Hoydis and Debbah considered the following matrix model
for wireless communications:
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A Rectangular Example

Coulliet Hoydis and Debbah considered the following matrix model
for wireless communications:
P = QURU∗Q∗ + SVTV ∗S∗, where Q, S ,R ,T are deterministic
matrices of sizes 5× 8, 5× 4, 8× 8 and 4× 4, respectively, and
U ∈ U(8), V ∈ U(4) are unitary matrices chosen independently
with uniform distribution on the compact unitary groups U(8) and
U(4).
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Coulliet Hoydis and Debbah considered the following matrix model
for wireless communications:
P = QURU∗Q∗ + SVTV ∗S∗, where Q, S ,R ,T are deterministic
matrices of sizes 5× 8, 5× 4, 8× 8 and 4× 4, respectively, and
U ∈ U(8), V ∈ U(4) are unitary matrices chosen independently
with uniform distribution on the compact unitary groups U(8) and
U(4).
We can blow-up the model by considering
PN = QNUNRNU

∗
NQ

∗
N + SNVNTNV

∗
NS

∗
N , where AN := A⊗ IN for

A ∈ {Q,R , S ,T} and letting UN ∈ U(8N) VN ∈ U(4N) be
independent, with uniform distribution.

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



A Rectangular Example

Coulliet Hoydis and Debbah considered the following matrix model
for wireless communications:
P = QURU∗Q∗ + SVTV ∗S∗, where Q, S ,R ,T are deterministic
matrices of sizes 5× 8, 5× 4, 8× 8 and 4× 4, respectively, and
U ∈ U(8), V ∈ U(4) are unitary matrices chosen independently
with uniform distribution on the compact unitary groups U(8) and
U(4).
We can blow-up the model by considering
PN = QNUNRNU

∗
NQ

∗
N + SNVNTNV

∗
NS

∗
N , where AN := A⊗ IN for

A ∈ {Q,R , S ,T} and letting UN ∈ U(8N) VN ∈ U(4N) be
independent, with uniform distribution.
While the question of obtaining the AED μPN

seems now
completely out of reach, one observes once more that the measures
μPN

converge towards a deterministic shape.
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A Rectangular Example

20000 eigenvalues of PN (N=1):
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A Rectangular Example

20000 eigenvalues of PN (N=3):
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A Rectangular Example

20000 eigenvalues of PN (N=10):
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A Rectangular Example

20000 eigenvalues of PN (N=40):
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Main Goal
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Main Result

Let P = P(X1,X
∗
1 , . . . ,Xn,X

∗
n ) = P(X1, . . . ,Xn) be a self-adjoint

polynomial on non-commutative indeterminates X1, . . . ,Xn (and
its adjoints X ∗

1 , . . .X
∗
n ).
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(m)
n be independent (random and

deterministic) matrices such that Y
(m)
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Assume that P and Y
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n are such that all the

monomials in Pm have the same size and the sizes of consecutive
matrices on each monomial fit. Let μm be the AED of the
self-adjoint random matrix Pm. Then we have:

There exists a probability measure μ such that μm → μ.

μ is the spectral distribution of the free deterministic
equivalent P� = P(y1, . . . , yn) of P1.

μ can be nummerically computed.
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Operator/Matrix/Rectangular-Probability Spaces

Definitions

(1). Let A be a unital *-algebra. A B-probability space is a pair
(A,F) and a linear map F : A → B ⊆ A satisfying

F
(
bab′

)
= bF(a)b′, ∀b, b′ ∈ B, a ∈ A

F (1) = 1.
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Operator/Matrix/Rectangular-Probability Spaces

Definitions

(1). Let A be a unital *-algebra. A B-probability space is a pair
(A,F) and a linear map F : A → B ⊆ A satisfying

F
(
bab′

)
= bF(a)b′, ∀b, b′ ∈ B, a ∈ A

F (1) = 1.

(2). Let (A,F) be a B-probability space and let ā := a− F(a)1A
for any a ∈ A. The *-subalgebras B ⊆ A1, . . . ,Ak ⊆ A are B-free
(or free over B, or free with amalgamation over B) (with respect
to F) iff

F(ā1ā2 · · · ām) = 0, (1)

where for all m ≥ 1 and all tuples a1, . . . , am ∈ A such that
ai ∈ Aj(i) with j(1) �= j(2) �= · · · �= j(m).
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Rectangular-Probability Spaces

Let (A, τ) be a tracial ∗-probability space endowed with pairwise
orthogonal, non-trivial projections p1, . . . , pk ∈ A adding up to
one.
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Rectangular-Probability Spaces

Let (A, τ) be a tracial ∗-probability space endowed with pairwise
orthogonal, non-trivial projections p1, . . . , pk ∈ A adding up to
one.
Let D := 〈p1, . . . , pk〉.
Then there exists a unique conditional expectation F : A → D
such that τ ◦ F = τ , which is given by

F (a) =
k∑

i=1

piτ (pi )
−1 τ (pia) . (2)
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Rectangular-Probability Spaces

Let (A, τ) be a tracial ∗-probability space endowed with pairwise
orthogonal, non-trivial projections p1, . . . , pk ∈ A adding up to
one.
Let D := 〈p1, . . . , pk〉.
Then there exists a unique conditional expectation F : A → D
such that τ ◦ F = τ , which is given by

F (a) =
k∑

i=1

piτ (pi )
−1 τ (pia) . (2)

With this, (A,F) becomes a D-valued probability space.
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Rectangular-Probability Spaces

Consider the model Φ =
∑K

i=1 RiUiTiU
∗
i R

∗
i . We embed our

matrices in a rectangular probability space:
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Consider the model Φ =
∑K

i=1 RiUiTiU
∗
i R

∗
i . We embed our

matrices in a rectangular probability space:

P0

T̃1,P1

Ũ1, Ũ
∗
1

R̃1 R̃k

R̃∗
1

R̃∗
k

. . .
...

. . .

T̃k ,Pk

Ũk , Ũ
∗
k
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Rectangular-Probability Spaces

Consider the model Φ =
∑K

i=1 RiUiTiU
∗
i R

∗
i . We embed our

matrices in a rectangular probability space:

P0

T̃1,P1

Ũ1, Ũ
∗
1

R̃1 R̃k

R̃∗
1

R̃∗
k

. . .
...

. . .

T̃k ,Pk

Ũk , Ũ
∗
k

Theorem (Benaych-Georges)

{R̃1 ⊗ Im, . . . , R̃K ⊗ Im, T̃1 ⊗ Im, . . . , T̃k ⊗ Im} and {Ũm
1 , . . . Ũm

K }
are asymptotically free over 〈P0 ⊗ Im, . . . ,Pk ⊗ Im〉.
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Matrix-valued Probability Spaces

Example (Matrix-valued probability spaces)

Let (A, τ) be a ∗-probability space and consider the algebra
Mn(A) ∼= Mn(C)⊗A of n × n matrices with entries in A. The
maps

F3 : (aij)ij �→ (τ(aij))ij ∈ Mn(C),
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Matrix-valued Probability Spaces

Example (Matrix-valued probability spaces)

Let (A, τ) be a ∗-probability space and consider the algebra
Mn(A) ∼= Mn(C)⊗A of n × n matrices with entries in A. The
maps

F3 : (aij)ij �→ (τ(aij))ij ∈ Mn(C),

F2 : (aij)ij �→ (δijτ(aij))ij ∈ Dn(C),

and

F1 : (aij)ij �→
n∑

i=1

1

n
τ(aii )In ∈ In(C)
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Matrix-valued Probability Spaces

Example (Matrix-valued probability spaces)

Let (A, τ) be a ∗-probability space and consider the algebra
Mn(A) ∼= Mn(C)⊗A of n × n matrices with entries in A. The
maps

F3 : (aij)ij �→ (τ(aij))ij ∈ Mn(C),

F2 : (aij)ij �→ (δijτ(aij))ij ∈ Dn(C),

and

F1 : (aij)ij �→
n∑

i=1

1

n
τ(aii )In ∈ In(C)

are respectively, conditional expectations onto the algebras
Mn(C) ⊃ Dn(C) ⊃ In(C) of constant matrices, diagonal matrices
and multiples of the identity.
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Matrix⊗Rectangular-Probability Spaces

Matrices on free elements are matrix-valued free!
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Matrix⊗Rectangular-Probability Spaces

Matrices on free elements are matrix-valued free!

Proposition

Let (A,F) be a B-probability space, and consider the Mn(B)-valued
probability space (Mn(C)⊗A, id ⊗ F). If A1, . . . ,Ak ⊆ A are
B-free, then (Mn(C)⊗ A1), . . . , (Mn(C)⊗ Ak) ⊆ (Mn(C)⊗A) are
(Mn(B))-free.
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The Cauchy Transform

GB
x (b) = E ((b − x)−1),
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The Cauchy Transform

GB
x (b) = E ((b − x)−1),

maps the operatorial upper half-plane
H

+(B) := {b ∈ B| − i(b − b∗) > 0} into the lower half-plane
H

−(B) = −H
+(B).
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Very often (A) may have several operator-valued structures
Fi : A → Bi simmultaneusly, with C = B1 ⊂ B2 ⊂ · · · ⊂ Bk , and
Fi ◦ Fi+1 = Fi .
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Fi ◦ Fi+1 = Fi .
We have that, for all b ∈ Bi

Fi (G
Bi+1
x (b)) = Fi ◦ Fi+1((b − x)−1) = Fi ((b − x)−1) = GBi
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The Cauchy Transform

GB
x (b) = E ((b − x)−1),

maps the operatorial upper half-plane
H

+(B) := {b ∈ B| − i(b − b∗) > 0} into the lower half-plane
H

−(B) = −H
+(B).

Very often (A) may have several operator-valued structures
Fi : A → Bi simmultaneusly, with C = B1 ⊂ B2 ⊂ · · · ⊂ Bk , and
Fi ◦ Fi+1 = Fi .
We have that, for all b ∈ Bi

Fi (G
Bi+1
x (b)) = Fi ◦ Fi+1((b − x)−1) = Fi ((b − x)−1) = GBi

x (z).

Remark:
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The Cauchy Transform

GB
x (b) = E ((b − x)−1),

maps the operatorial upper half-plane
H

+(B) := {b ∈ B| − i(b − b∗) > 0} into the lower half-plane
H

−(B) = −H
+(B).

Very often (A) may have several operator-valued structures
Fi : A → Bi simmultaneusly, with C = B1 ⊂ B2 ⊂ · · · ⊂ Bk , and
Fi ◦ Fi+1 = Fi .
We have that, for all b ∈ Bi

Fi (G
Bi+1
x (b)) = Fi ◦ Fi+1((b − x)−1) = Fi ((b − x)−1) = GBi

x (z).

Remark:

GC
x (z) =

∫
R

(z − t)−1dμx(t)
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The Cauchy Transform

GB
x (b) = E ((b − x)−1),

maps the operatorial upper half-plane
H

+(B) := {b ∈ B| − i(b − b∗) > 0} into the lower half-plane
H

−(B) = −H
+(B).

Very often (A) may have several operator-valued structures
Fi : A → Bi simmultaneusly, with C = B1 ⊂ B2 ⊂ · · · ⊂ Bk , and
Fi ◦ Fi+1 = Fi .
We have that, for all b ∈ Bi

Fi (G
Bi+1
x (b)) = Fi ◦ Fi+1((b − x)−1) = Fi ((b − x)−1) = GBi

x (z).

Remark:

G
Mn(C)
c⊗x (b) =

∫
R

(b − c ⊗ t)−1dμx(t)
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Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)

Let (A,F) be a C ∗-operator valued space.

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)

Let (A,F) be a C ∗-operator valued space.Let x , y ∈ A be
self-adjoint, B-free
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Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)

Let (A,F) be a C ∗-operator valued space.Let x , y ∈ A be
self-adjoint, B-free, there exist an analytic map
ω : H+(B) → H

+(B) such that Gx(ω(b)) = Gx+y (b).

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)

Let (A,F) be a C ∗-operator valued space.Let x , y ∈ A be
self-adjoint, B-free, there exist an analytic map
ω : H+(B) → H

+(B) such that Gx(ω(b)) = Gx+y (b).
Furthermore, for any b ∈ H

+(B) the subordination function ω(b)
satisfies
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Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)

Let (A,F) be a C ∗-operator valued space.Let x , y ∈ A be
self-adjoint, B-free, there exist an analytic map
ω : H+(B) → H

+(B) such that Gx(ω(b)) = Gx+y (b).
Furthermore, for any b ∈ H

+(B) the subordination function ω(b)
satisfies

ω(b) = lim
n→∞ f ◦nb (w),

where, for any b,w ∈ H
+(B), fb(w) = hy (hx(w) + b) + b
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Additive Free Convolution via Analytic Subordination

Theorem (Belinschi, Mai, Speicher 2013)

Let (A,F) be a C ∗-operator valued space.Let x , y ∈ A be
self-adjoint, B-free, there exist an analytic map
ω : H+(B) → H

+(B) such that Gx(ω(b)) = Gx+y (b).
Furthermore, for any b ∈ H

+(B) the subordination function ω(b)
satisfies

ω(b) = lim
n→∞ f ◦nb (w),

where, for any b,w ∈ H
+(B), fb(w) = hy (hx(w) + b) + b and h is

the auxiliary analytic self-map hx(b) = (E ((b − x)−1))−1 − b on
H

+(B).
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Anderson’s Self-adjoint Linearization

Theorem

Let (A,F) be a D-rectangular-probability space and let
x1, . . . , xn1 , d1, . . . , dn2 ∈ A.

Carlos Vargas Obieta A General Solution to Eigenvalue Distributions of Hermitian Rand



Anderson’s Self-adjoint Linearization

Theorem

Let (A,F) be a D-rectangular-probability space and let
x1, . . . , xn1 , d1, . . . , dn2 ∈ A.
Let P = P(x1, . . . , xn1 , d1, . . . , dn2) be a self-adjoint polynomial
evaluated on x1, . . . , xn1 , d1, . . . , dn2 and their adjoints.
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Anderson’s Self-adjoint Linearization

Theorem

Let (A,F) be a D-rectangular-probability space and let
x1, . . . , xn1 , d1, . . . , dn2 ∈ A.
Let P = P(x1, . . . , xn1 , d1, . . . , dn2) be a self-adjoint polynomial
evaluated on x1, . . . , xn1 , d1, . . . , dn2 and their adjoints.
There exist m ≥ 1 and an element
LP = c1⊗ x1+ c∗1 ⊗ x∗1 + . . . cn1 ⊗ xn1 + c∗n1 ⊗ x∗n1 + c ∈ Mm(C)⊗A,
with c ∈ Mm(C)⊗ 〈d1, . . . dn2〉 and, for i ≥ 1 ci ∈ Mm(C), such
that
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Anderson’s Self-adjoint Linearization

Theorem

Let (A,F) be a D-rectangular-probability space and let
x1, . . . , xn1 , d1, . . . , dn2 ∈ A.
Let P = P(x1, . . . , xn1 , d1, . . . , dn2) be a self-adjoint polynomial
evaluated on x1, . . . , xn1 , d1, . . . , dn2 and their adjoints.
There exist m ≥ 1 and an element
LP = c1⊗ x1+ c∗1 ⊗ x∗1 + . . . cn1 ⊗ xn1 + c∗n1 ⊗ x∗n1 + c ∈ Mm(C)⊗A,
with c ∈ Mm(C)⊗ 〈d1, . . . dn2〉 and, for i ≥ 1 ci ∈ Mm(C), such
that

(G
Mm(D)
LP

(d̂))11 = GD
P (d)
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Anderson’s Self-adjoint Linearization

Theorem

Let (A,F) be a D-rectangular-probability space and let
x1, . . . , xn1 , d1, . . . , dn2 ∈ A.
Let P = P(x1, . . . , xn1 , d1, . . . , dn2) be a self-adjoint polynomial
evaluated on x1, . . . , xn1 , d1, . . . , dn2 and their adjoints.
There exist m ≥ 1 and an element
LP = c1⊗ x1+ c∗1 ⊗ x∗1 + . . . cn1 ⊗ xn1 + c∗n1 ⊗ x∗n1 + c ∈ Mm(C)⊗A,
with c ∈ Mm(C)⊗ 〈d1, . . . dn2〉 and, for i ≥ 1 ci ∈ Mm(C), such
that

(G
Mm(D)
LP

(d̂))11 = GD
P (d)

where d̂ = diag(d , 0, 0, . . . , 0) ∈ Mm(D).
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Linearization: example

If P(X1,X2, . . . ,Xn) = X1X2 · · ·XnX
∗
n · · ·X ∗

2X
∗
1 then

LP(X1, . . . ,Xn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 X1

0 0 0 · · · 0 X2 −1
0 0 0 · · · X3 −1 0
...

...
...

. . .
...

...
...

0 0 X ∗
3 · · · 0 0 0

0 X ∗
2 −1 · · · 0 0 0

X ∗
1 −1 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The algorithm

1 Embed X1, . . . ,Xn1 ,D1, . . . ,Dn2 in a suitable
〈P1, . . . ,Pk〉-rectangular space.
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The algorithm

1 Embed X1, . . . ,Xn1 ,D1, . . . ,Dn2 in a suitable
〈P1, . . . ,Pk〉-rectangular space.

2 According to Voiculescu/Benaych Georges asymptotic
freeness, replace {X̃1, . . . , X̃n} by the corresponding limiting
elements {y1, . . . , yn} in the 〈p1, . . . , pk〉-rectangular
probability space and consider
P� := P(y1, . . . , yn,D1, . . . ,Dm)
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The algorithm

1 Embed X1, . . . ,Xn1 ,D1, . . . ,Dn2 in a suitable
〈P1, . . . ,Pk〉-rectangular space.

2 According to Voiculescu/Benaych Georges asymptotic
freeness, replace {X̃1, . . . , X̃n} by the corresponding limiting
elements {y1, . . . , yn} in the 〈p1, . . . , pk〉-rectangular
probability space and consider
P� := P(y1, . . . , yn,D1, . . . ,Dm)

3 Consider a linearization
LP� = c1 ⊗ y1 + c∗1 ⊗ y∗1 + . . . cn ⊗ yn + c∗n ⊗ y∗n + c0 of P�

(c0 ∈ Mm(C)⊗ 〈D̃1, . . . ,Dn2〉, ci ∈ Mm(C))

4 Compute (or approximate) each Mm ⊗ 〈p1, . . . , pk〉 Cauchy
transform of Gci⊗yi+c∗i ⊗y∗

i
,
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4 Compute (or approximate) each Mm ⊗ 〈p1, . . . , pk〉 Cauchy
transform of Gci⊗yi+c∗i ⊗y∗

i
,as well as Gc0
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The algorithm

1 Embed X1, . . . ,Xn1 ,D1, . . . ,Dn2 in a suitable
〈P1, . . . ,Pk〉-rectangular space.

2 According to Voiculescu/Benaych Georges asymptotic
freeness, replace {X̃1, . . . , X̃n} by the corresponding limiting
elements {y1, . . . , yn} in the 〈p1, . . . , pk〉-rectangular
probability space and consider
P� := P(y1, . . . , yn,D1, . . . ,Dm)

3 Consider a linearization
LP� = c1 ⊗ y1 + c∗1 ⊗ y∗1 + . . . cn ⊗ yn + c∗n ⊗ y∗n + c0 of P�

(c0 ∈ Mm(C)⊗ 〈D̃1, . . . ,Dn2〉, ci ∈ Mm(C))

4 Compute (or approximate) each Mm ⊗ 〈p1, . . . , pk〉 Cauchy
transform of Gci⊗yi+c∗i ⊗y∗

i
,as well as Gc0

5 Since (c1 ⊗ y1 + c∗1 ⊗ y∗1 ), . . . (cn ⊗ yn + c∗n ⊗ y∗n ), c0 are
Mm(C)⊗ 〈p1, . . . , pk〉-free and self-adjoint, compute GL

P� by
the fixed point method of Belinschi et al.
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Thanks for your attention!
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