
Introduction Communities in networks Wavelets on graphs Multiscale community mining Conclusion +

Graph Wavelets and Multiscale Community
Mining in networks

Pierre Borgnat, Nicolas Tremblay

CR1 CNRS – Laboratoire de Physique, ENS de Lyon, Université de Lyon

Équipe SISYPHE : Signaux, Systèmes et Physique

08/2014

p. 1



Introduction Communities in networks Wavelets on graphs Multiscale community mining Conclusion +

Content of the talk

• General objective: revisit the classical question of finding
communities in networks using multiscale processing
methods on graphs.

• The things that will be discussed:

1. Recall the notion of community in networks
2. Recall spectral graph wavelets
3. Multiscale community mining with graph wavelets
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Examples of networks from our digital world

LinkedIn Network Citation Graph Vehicle Network

USA Power grid Web Graph Protein Network
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Communities in networks

• Observed, real-world, networks are often inhomogeneous,
made of communities (or modules):
groups of nodes having a larger proportion of links inside
the group than with the outside

• This is observed in various types of networks: social,
technological, biological,...

• There exist several extensive surveys:

[S. Fortunato, Physic Reports, 2010]

[von Luxburg, Statistics and Computating, 2007]

...
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Purpose of community detection?
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Purpose of community detection?
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Purpose of community detection?

1) It gives us a sketch of the network:
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Purpose of community detection?
1) It gives us a sketch of the network:

2) It gives us intuition about its components:

p. 6
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Some examples of networks with communities or
modules

• Social face-to-face interaction networks [Sociopatterns;
Barrat, Cattuto, et al.]

(Lab. physique, ENSL, 2013) (école primaire; Sociopatterns, 2011)

• Brain networks [Bullmore, Achard, 2006]

10   neurons11

fMRI
10  voxels

0.3 Hz
5

Parcellation

Time series

Connectivity
using wavelets

Graphs of 
cerebral connections

GRAPHSIP j t h ll
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Classical methods to find communities in networks
• I will not pretend to make a full survey... Some important

steps are:
• Cut algorithms (legacy from computer science)
• Spectral clustering (relaxed cut problem)
• Modularity optimization (physicists’ contribution) [Newman,

Girvan , 2004]
• Greedy modularity optimization a la Louvain (computer

science strikes back) [Blondel et al., 2008]

• Using information compression [Rosvall, Bergstrom, 2008]
• Inference for stochastic-block models (e.g. with BP

[Decelle et al., 2012]; with spectral approach [Lelarge,
Massoulié,... 2012, 2014])
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Parenthesis: Stochastic Block Model
• Representation: as a matrix, as a network

• Conjectured phase diagram of identifiability

[Decelle, Krzakala, Moore, Zdeborova, 2011]
[Lelarge, Massoulié, Xu, 2013]p. 9
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Spectral analysis of networks
Spectral theory for network
This is the study of graphs through the spectral analysis
(eigenvalues, eigenvectors) of matrices related to the graph:
the adjacency matrix, the Laplacian matrices,....

Notations
G = (V ,E ,w) a weighted graph

N = |V | number of nodes
A adjacency matrix Aij = wij
d vector of strengths di =

∑
j∈V wij

D matrix of strengths D = diag(d)
f signal (vector) defined on V

p. 10
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Definition of the Laplacian matrix of graphs

Laplacian matrix
L laplacian matrix L = D − A

(λi) L’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L’s eigenvectors Lχi = λi χi

Note: χ0 = 1.

A simple example: the straight line

←→ L =

⎛
⎜⎜⎜⎝

...

... −1 0 0 0 0

... 2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2 ...
0 0 0 0 −1 ...

...

⎞
⎟⎟⎟⎠

For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator).

p. 11
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Spectral clustering vs. Modularity
• Spectral clustering: relaxation of the optimization of the

minimal cut. The cut size between groups of assignment

si = ±1 is: R =
1
2

∑
i,j

Aij(1− sisj) =
1
4

s�Ls

• By spectral decomposition of L, Lij =
∑N−1

k=1 λk (χk )i(χk )j ,
the minimum is for si = (χ1)i → relaxed in si = sign((χ1)i).

• Problems with spectral clustering:
1) No assessment of the quality of the partitions
2) No reference to comparison to some null hypothesis

• Modularity [Newman, 2003] (with 2m =
∑

i di )

Q =
1

2m

∑
ij

[
Aij −

didj

2m

]
δ(ci , cj)

• Null model: Bernoulli random graph with prob. di dj
2m

• Q is between −1 and +1 (≤ 1− 1/nc if nc groups)p. 12
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Spectral clustering vs. Modularity

• Comparison of optimization of cut and optimization of Q
• Modularity works well, better than spectral clustering

• More efficient algorithm: the greedy (ascending) Louvain
approach (ok for millions of nodes !) [Blondel et al., 2008]

p. 13
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Existence of multiscale community structure in a graph
16 com. Q=0.80

4 com. Q=0.74

8 com. Q=0.83

2 com. Q=0.50

• All representations correct; modularity favours one
• Note: one could integrate a ad-hoc scale into modularity

[Arenas et al., 2008; Reichardt and Bornholdt, 2006]
p. 14
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Relating the Laplacian of graphs to Signal Processing

Laplacian matrix

L or L laplacian matrix L = D − A or L = I − D−1/2AD−1/2

(λi) L’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L’s eigenvectors Lχi = λi χi

A simple example: the straight line

←→ L =

⎛
⎜⎜⎜⎝

...

... −1 0 0 0 0

... 2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2 ...
0 0 0 0 −1 ...

...

⎞
⎟⎟⎟⎠

For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator):

its eigenvectors are the Fourier vectors, and its eigenvalues the
associated (squared) frequenciesp. 15
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Objective and Fundamental analogy
[Shuman, Vandergheynst et al., IEEE SP Mag, 2013]

Objective: Definition of a Fourier Transform adapted to
graph signals

f : signal defined on V ←→ f̂ : Fourier transform of f

Fundamental analogy
On any graph, the eigenvectors χi of the Laplacian matrix L or
L will be considered as the Fourier vectors, and its
eigenvalues λi the associated (squared) frequencies.

• Works exactly for all regular graphs (+ Beltrami-Laplace)
• Conduct to natural generalizations of signal processing

p. 16
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The graph Fourier transform

• f̂ is obtained from f ’s decomposition on the eigenvectors χi :

f̂ =

⎛
⎜⎜⎜⎜⎝

< χ0, f >
< χ1, f >
< χ2, f >

...
< χN − 1, f >

⎞
⎟⎟⎟⎟⎠

Define χ = (χ0|χ1|...|χN − 1) : f̂ = χ� f

• Reciprocally, the inverse Fourier transform reads: f = χ f̂

• Parseval theorem: ∀(g, h) < g, h >=< ĝ, ĥ >

• Filtering: apply g(λi) in the Fourier domain on the f̂ (i).

p. 17
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Fourier modes: examples in 1D and in graphs
LOW FREQUENCY: HIGH FREQUENCY:

• Alternative Fourier transform: use the adjacency matrix A
[Sandryhaila, Moura, IEEE TSP, 2013]

p. 18



Introduction Communities in networks Wavelets on graphs Multiscale community mining Conclusion +

Spectral analysis: the χi and λi of a multiscale toy graph
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Spectral Graph Wavelets
[Hammond et al., ACHA 2011]

• Fourier is a global analysis. Fourier modes (eigenvectors of
the laplacian) are used in classical spectral clustering, but
do not enable a jointly local and scale dependent analysis.

• For that classical signal processing (or harmonic analysis)
teach us that we need wavelets.

• Wavelets : local functions that act as well as a filter around
a chosen scale.
A wavelet:

– Translated:

– Scaled
• Classical wavelets

by analogy−−−−−−→ Graph waveletsp. 20
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Classical wavelets
by analogy−−−−−−→ Graph wavelets

Classical (continuous) world Graph world

Real domain x node a

Fourier domain ω eigenvalues λi

Filter kernel ψ̂(ω) g(λi)⇔ Ĝ

Filter bank ψ̂(sω) g(sλi)⇔ Ĝs

Fourier modes exp−iωx eigenvectors χi

Fourier transf. of f f̂ (ω) =
∫∞
−∞ f (x) exp−iωx dx f̂ = χ� f

The wavelet at scale s centered around a is given by:

ψs,a(x) =
1
s
ψ

(
x − a

s

)
=

∫ ∞

−∞
δ̂a(ω)ψ̂(sω) expiωx dω

In the graph world: ψs,a = χ Ĝsδ̂a = χ Ĝsχ� δap. 21
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Examples of graph wavelets
A WAVELET:

TRANSLATING: SCALING:

p. 22
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Examples of wavelets: they encode the local topology

ψs=1,a

ψs=35,a

ψs=25,a

ψs=50,a

p. 23
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Example of wavelet filters
• More precisely, we will use the following kernel:

g(x ;α, β, x1, x2) =

⎧⎪⎨
⎪⎩

x−α
1 xα for x < x1

p(x) for x1 ≤ x ≤ x2

xβ
2 x−β for x > x2.

• To emphasize χ1, the parameters are:

smin =
1
λ2

, x2 =
1
λ2

, smax =
1
λ2

2
, x1 = 1, β = 1/log10

(
λ3

λ2

)

• This leads to: (choice α = 2)
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A new method for multiscale community detection
[N. Tremblay, P. Borgnat, 2013]

General Ideas
• Take advantage of local topological information encoded in

Graph Wavelets.
Wavelet = ego-centered vision from a node

• Group together nodes whose local environments are
similar at the description scale

• This will naturally offer a multiscale vision of communities

The method is based on:
1. wavelets (resp. scaling functions) as feature vectors
2. the correlation distance to compare them
3. the complete linkage clustering algorithm

p. 25
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1) Wavelets as features
Each node a has feature vector ψs,a.
Globally, one will need Ψs, all wavelets at a given scale s, i.e.

Ψs =
(
ψs,1|ψs,2| . . . |ψs,N

)
= χGsχ

�.

NODE

A:

NODE

B:

AT SMALL SCALE: AT LARGE SCALE:

p. 26
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2) Correlation distances

Ds(a, b) = 1− ψ�
s,aψs,b

||ψs,a||2 ||ψs,b||2
.

NODE

A:

NODE

B:
CORR.
COEF.: -0.50 0.97

p. 27
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3) Complete linkage clustering and dendrogram

• Bottom to top hierarchical algorithm:
start with as many clusters as nodes and work the way up
to fewer clusters (by linking subclusters together) until
reaching one global cluster.

• Computation of the distance between two subclusters:
the maximum distance between all pairs of nodes, taking
one from each cluster

• Output: a dendrogram

p. 28
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Example of a dendrogram at a given scale s
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The big question: where should we cut the dendrogram?

p. 29



Introduction Communities in networks Wavelets on graphs Multiscale community mining Conclusion +

Dendrogram cut at maximal gap

Simplest method: cut the dendrogram at its maximal gap.
At small scale:
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Note: we use the toy graph
p. 30
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Dendrogram cut at maximal gap

Simplest method: cut the dendrogram at its maximal gap.
At small scale:
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Note: we use the toy graph
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Dendrogram cut at maximal gap
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• Improvement: cut at average maximal gap
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The Sales-Pardo benchmark
• Three community structures nested in one another
• Parameters:

• sizes of the communities (N = 640)
• ρ tunes how well separated the different scales are
• k̄ is the average degree; the sparser is the graph, the

harder it is to recover the communities.

p. 32
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Results on the Sales-Pardo benchmark
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The case of larger networks

• Limit of the method: computation of the N ×N matrix of the
wavelets Ψs.

• Improvement: use of random features.
• Let r ∈ R

N be a random vector on the nodes of the graph,
composed of N independent normal random variables of
zero mean and finite variance σ2.

• Define the feature fs,a ∈ R at scale s associated to node a
as

fs,a = ψ�
s,ar =

N∑
k=1

ψs,a(k)r(k).

p. 34
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The case of larger networks
• Let us define the correlation between features

Cor(fs,a, fs,b)=
E((fs,a − E(fs,a))(fs,b − E(fs,b)))√

Var(fs,a)Var(fs,b)
.

• It is easy to show that:

Cor(fs,a, fs,b) =
ψ�

s,aψs,b

||ψs,a||2 ||ψs,b||2
.

• Therefore, the sample correlation estimator Ĉab,η satisfies:

lim
η→+∞ Ĉab,η =

ψ�
s,aψs,b

||ψs,a||2 ||ψs,b||2
= 1− Ds(a, b).

• This leads to a faster algorithm.

p. 35
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Results on the Sales-Pardo benchmark

• As a function of η, the number of random vectors used
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Stability of the communities
• Not all partitions are relevant: only those stable enough

convey information about the network
• Lambiotte’s approach to stability:

Create B resampled graphs by randomly adding ±p%
(typically p = 10) to the weight of each link and computing
the corresponding B sets of partitions {Pb

s }b∈[1,B],s∈S .
Then, stability:

γr (s) =
2

B(B − 1)

∑
(b,c)∈[1,B]2,b �=c

ari(Pb
s ,P

c
s ), (1)

• New approach: we have a stochastic algorithm.
Consider J sets of η random signals and compute the
associated sets of partitions {Pj

s}j∈[1,J],s∈S . Let stability be:

γa(s) =
2

J(J − 1)

∑
(i,j)∈[1,J]2,i �=j

ari(Pi
s,P

j
s). (2)

p. 37
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Results with stabilities on the Sales-Pardo benchmark
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In addition: statistical test of relevance of the
communities

• It is possible to design a data-driven test on γa
(computation of a numerical threshold for the configuration
(or Chung-Lu) model).

• Result: threshold for 1− γa above which the partition in
communities is irrelevant.

Sales-Pardo graph Chung-Lu graph
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Comparison on larger Sales-Pardo graphs

N = 6400 nodes

Schaub-Delvenne
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Sensor network on the swiss roll manifold
• Three scale ranges of relevant community structure
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The dynamic social network of a primary school

Collaboration with A. Barrat (CPT Marseille), C. Cattuto (ISI, Turin)
Sociopatterns project

• Acquisition of face-to-face human contacts (resolved in
time) using active RFID tags and + fixed antenna

• Interest: social studies, spreading processes (of
information, of epidemic,...), contact dynamics,...

• Time for a movie!p. 42
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Multi-scale Communities in Primary School

scale s
20 28 37 51 74 103
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Multi-scale Communities in Primary School

p. 44
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Conclusion
• Wavelet ψs,a gives an ”egocentered view“ of the network

seen from node a at scale s
• Correlation between these different views gives us a

distance between nodes at scale s
• This enables multi-scale clustering of nodes in

communities
• Associated to a notion of stability and of statistical

detection of relevance

• I hope also that you were interested in
the emerging field of graph signal processing for networks.

http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Nicolas Tremblay for borrowing
many of his figures or slides.

p. 45
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A toy graph for introducing the method
smallest scale (16 com.): small scale (8 com.):

medium scale (4 com.): large scale (2 com.):

p. 46
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in two clusters
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Using wavelets as features
Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in four clusters
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Using wavelets as features
Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in eight clusters
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Using wavelets as features
Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in sixteen clusters
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Using wavelets as features
Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
The four levels of communities.
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Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with modularity
• By max. of with classical modularity Q
• or by max. of a filtered modularity [Arenas, Delvenne,...]

Classical Modu Opt. Filtered Modu Opt.
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• The solutions are not really good at all scale.
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Dendrogram cut at maximal gap: non robust to outliers
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Dendrogram cut at maximal average gap

0 0.2 0.4 0.6 0.8 1
0

0.5

1

correlation distance

Γ
a

Γ =
1

Nmax(corr. dist.)

∑
a∈V

Γa

At small scale

0 0.2 0.4 0.6 0.8 1
0

0.5

1

correlation distance

Γ

0

0.5

1
co

rr
el

at
io

n 
di

st
an

ce

nodes

p. 50



Introduction Communities in networks Wavelets on graphs Multiscale community mining Conclusion +

Dendrogram cut at maximal average gap
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Dendrogram cut at maximal average gap
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Recall: The Adjusted Rand Index
Let:

• C and C′ be two partitions we want to compare.
• a be the # of pairs of nodes that are in the same

community in C and in the same community in C′
• b be the # of pairs of nodes that are in different

communities in C and in different communities in C′
• c be the # of pairs of nodes that are in the same

community in C and in different communities in C′
• d be the # of pairs of nodes that are in different

communities in C and in the same community in C′

a + b is the number of “agreements“ between C and C′.
c + d is the number of “disagreements“ between C and C′.
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The Adjusted Rand Index

The Rand index, R, is:

R =
a + b

a + b + c + d
=

a + b(n
2

)
The Adjusted Rand index AR is the corrected-for-chance
version of the Rand index:

AR =
R − ExpectedIndex

MaxIndex − ExpectedIndex
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