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Introduction

Finite network with nodes {1, . . . , d}: users of a social network,
of an e-commerce platform, etc.

For each node j ∈ {1, . . . , d} we observe the timestamps
{tj ,1, tj ,2, . . .} of nodes’ actions

Goal: recover levels of interactions between users based on the
timestamps patterns



Introduction

From

Quantify interactions between users



Introduction

Do inference directly from actions of users

Understand the community structure of users underlying the
actions

Exploit the hidden lower-dimensional structure of the network
for inference/prediction



Model: Multivariate Hawkes Process (MHP)

Counting process Nj(t) =
∑

i≥1 1tj,i≤t

Data: a d-dimensional counting process N = [N1, . . . ,Nd ]
�

d is large

Observed on [0,T ]. “Asymptotics” in T → +∞
Nj has intensity λj , namely

P
(
j does something at time t knowning the past

)
= P

(
Nj has a jump in [t, t + dt] | Ft

)
= λj(t)dt

for j = 1, . . . , d where Ft some filtration



Model: Multivariate Hawkes Process (MHP)

MHP assumes an autoregressive structure on the intensities:

λj(t) = μj(t) +

∫
(0,t)

d∑
k=1

ϕj ,k(t − s)dNk(s),

μj(t) ≥ 0 baseline intensity of the j-th coordinate

ϕj ,k : R+ → R
+ self-exciting component: influence of k → j

Write this in matrix form

λ(t) = μ+

∫
(0,t)

ϕ(t − s)dN(s),

with μ = [μ1, . . . , μd ]
� and ϕ(t) = [ϕj ,k(t)]1≤j ,k≤d .

Notation: ∫
(0,t)

ϕ(t − s)dNj(s) =
∑

i :tj,i<t

ϕ(t − tj ,i )



A brief history of MHP

Introduced by Hawkes in 1971

Earthquakes and geophysics : Kagan and Knopoff (1981),
Zhuang, Harte, Werner, Hainzl and Zhou (2012)

Genomics : Reynaud-Bouret and Schbath (2010)

High-frequency Finance : Bacry Delattre Hoffmann and Muzy
(2013)

Terrorist activity : Porter and White (2012)

Neurobiology : Hansen, Reynaud-Bouret and Rivoirard (2012)

Social networks : Carne and Sornette (2008), Simma and
Jordan (2010), Zhou Song and Zha (2013)

And even FPGA-based implementation : Guo and Luk (2013)



A brief history of MHP



Estimation for MHP: some references

Parametric estimation (Maximum likelihood)

First work : Ogata 78

Simma and Jordan (2010), Zhou Song and Zha (2013)
→ Expected Maximization (EM) algorithms, with priors

Non parametric estimation

Marsan Lengliné (2008), generalized by Lewis, Mohler (2010)
→ EM for penalized likelihood function
→ Monovariate Hawkes processes, Small amount of data, No
theoretical results

Reynaud-Bouret and Schbath (2010)
→ Developed for small amount of data (Sparse penalization)

Bacry and Muzy (2014)
→ Larger amount of data



MHP in large dimension

Dimension d is large:

Need a simple parametric model on μ and ϕ

We want a convex optimization problem with smooth loss

We want to encode some prior assumptions by penalizing this
loss



A simple parametrization of the MHP

Simple parametrization:

Constant baselines μj(·) ≡ μj

Take
ϕj ,k(t) = aj ,ke

−αj,k t

aj ,k = level of interaction between nodes j and k

αj ,k = lifetime of instantaneous excitation of node j by node k

The matrix
A = [aj ,k ]1≤j ,k≤d

is understood has a weighted adjacency matrix of mutual
excitement of th nodes {1, . . . , d}

A is non-symmetric



A simple parametrization of the MHP

We end up with intensities

λj ,θ(t) = μj +

∫
(0,t)

d∑
k=1

aj ,ke
−αj,k (t−s)dNk(s)

for j ∈ {1, . . . , d} where

θ = [μ,A,α]

with

baselines μ = [μ1, . . . , μd ]
� ∈ R

d
+

adjacencies A = [aj ,k ]1≤j ,k≤d ∈ R
d×d
+

decays α = [αj ,k ]1≤j ,k≤d ∈ R
d×d
+



A simple parametrization of the MHP

For d = 1, intensity λθ looks like this:



Maximum Likelihood Estimation

Goodness-of-fit = − log-likelihood is given by:

−�T (θ) =
d∑

j=1

{∫ T

0
(λj ,θ(t)− 1)dt −

∫ T

0
log λj ,θ(t)dNj(t)

}

with

λj ,θ(t) = μj +
d∑

k=1

aj ,k

∫
(0,t)

exp
(− αj ,k(t − s)

)
dNk(s)

where θ = (μ,A,α) with μ = [μj ], A = [Aj ,k ], α = [αj ,k ]



Prior encoding by penalization

Prior assumptions

Some users are basically inactive and react only if stimulated:

μ is sparse

Everybody does not interact with everybody:

A is sparse

Interactions have community structure, possibly overlapping, a
small number of factors explain interactions:

A is low-rank

Decays α not sparse, but αj ,k should be regularized
proportionaly to aj ,k



Prior encoding by penalization

Standard convex relaxations [Tibshirani 01, ..., Srebro et al. 05,
Bach 08, Candès & Recht 08, ...]

Tightest convex relaxation of ‖A‖0 =
∑

j ,k 1Aj,k>0 is �1-norm:

‖A‖1 =
∑
j ,k

|Aj ,k |

Tightest convex relaxation of rank is trace-norm:

‖A‖∗ =
∑
j

σj(A) = ‖σ(A)‖1

where σ1(A) ≥ · · · ≥ σd(A) singular values of A



Prior encoding by penalization

So, we use the following penalizations

Use �1 penalization on μ

Use �1 penalization on A
Use trace-norm penalization on A
Use �22 penalization on α, weighted by A

[but other choices might be interesting...]

NB1: to induce sparsity AND low-rank on A, we use the mixed
penalization

A �→ w∗‖A‖∗ + w1‖A‖1

NB2: recent works by Richard et al (2013, 2014): better way to
induce sparsity and low-rank than the sum, but not-scalable /
non-convex



Sparse and low-rank matrices

{A : ‖A‖∗ ≤ 1} {A : ‖A‖1 ≤ 1} {A : ‖A‖1 + ‖A‖∗ ≤ 1}

The balls are computed on the set of 2× 2 symmetric matrices,
which is identified with R

3.

[show video]



Penalized maximum likelihood

Finally, consider

θ̂ ∈ argmin
θ=(μ,A,α)

{
− 1

T
�T (θ) + τ‖μ‖1 + γ1‖A‖1

+ γ∗‖A‖∗ + κ

2
‖A 
α‖2F

}
where we recall

− 1

T
�T (θ) =

1

T

d∑
j=1

{∫ T

0
λj ,θ(t)dt −

∫ T

0
log λj ,θ(t)dNj(t)

}

with

λj ,θ(t) = μj +
d∑

k=1

aj ,k

∫
(0,t)

exp
(− αj ,k(t − s)

)
dNk(s)



Penalized maximum likelihood: a problem

Problem: θ �→ λj ,θ(t) not convex! Indeed

(a, α) �→ ahα(t)

never convex when α �→ hα(t) is convex

We want convexity for:

Convergence to a global optimum

Plethora of optimization algorithms

Generic in the chosen penalization [if proximal operator easy to
compute]



Penalized maximum likelihood: reparametrization

A solution: the perspective function trick:

If α �→ hα(t) is convex, then

(a, α) �→ ahα/a(t)

is convex

Reparametrization β = A ◦α, leading to

λj ,θ(t) = μj +
d∑

k=1

aj ,k

∫
(0,t)

exp
(
− βj ,k

aj ,k
(t − s)

)
dNk(s)

with θ = (μ,A,β) for β = [βj ,k ]1≤j ,k≤d

With this reparametrization

θ �→ λj ,θ(t)

is convex



Penalized maximum likelihood: reparametrization

The reparametrization β = A 
α leads to

θ̂ ∈ argmin
θ=(μ,A,β)

{
− 1

T
�T (θ) + τ‖μ‖1 + γ1‖A‖1

+ γ∗‖A‖∗ + κ

2
‖β‖2F

} (1)

where

− 1

T
�T (θ) =

1

T

d∑
j=1

{∫ T

0
λj ,θ(t)dt −

∫ T

0
log λj ,θ(t)dNj(t)

}

with

λj ,θ(t) = μj +
d∑

k=1

aj ,k

∫
(0,t)

exp
(− βj ,k

aj ,k
(t − s)

)
dNk(s)



Convex optimization – numerical aspects

Can be solved using first-order routines:

Fista [Beck Teboulle (2009)], Prisma [Orabona et al (2012)], GFB
[Peyre et al. (2011)], Primal-Dual [Chambolle et al. (2009), Condat et
al. (2013)], ADMM [Boyd (2012)], etc...

Gradient of −�T (θ) using a recursion formula

→ Naively O(n2d) with n = number of events (very large) but O(nd)
when careful (using recursion formulas)

→ Parallelized code for this: gradient of each node j ∈ {1, . . . , d}
computed in parallel

Computation bootleneck: exp and log, accelerated using ugly hacking

Trace norm penalization, truncated SVD: default’s Lanczos’s
implementation of Python is fast enough for d ≈ 1K , use a
non-convex factorized formulation A = UV� for d 
 1K



Numerical experiment

Toy example: take matrix A as



Numerical experiment: dimension 100, 20100 parameters

No penalization �1 penalization

trace-norm penalization �1 + trace norm penalization



Some theory: sharp oracle inequalities

We consider a simplified framework

Fix a set {hj ,k : 1 ≤ j , k ≤ d} and intensities

λj ,θ(t) = μj +

∫
(0,t)

d∑
k=1

aj ,khj ,k(t − s)dNk(s),

where θ = [μ,A] with μ = [μ1, . . . , μd ]
� and A = [aj ,k ]1≤j ,k≤d

Instead of − log likelihood, consider least squares

RT (θ) =
1

T

d∑
j=1

{∫ T

0
λj ,θ(t)

2dt − 2

∫ T

0
λj ,θ(t)dNj(t)

}



Some theory: sharp oracle inequalities

Introduce
θ̂ ∈ argmin

θ∈Rd
+×R

d×d
+

{
RT (θ) + pen(θ)

}
,

with
pen(θ) = ‖μ‖1,ŵ + ‖A‖1,Ŵ + ŵ∗‖A‖∗

Penalization tuned by data-driven weights ŵ , Ŵ and ŵ∗
Comes from sharp controls of the noise terms

Solves the scaling problem for this model (e.g. feature scaling)



Solving the “feature scaling” problem

�1-penalization of μ

‖μ‖1,ŵ =
d∑

j=1

ŵj |μj |

with

ŵj ≈
√

(x + log d)Nj([0,T ])/T

T

where Nj([0,T ]) = # events for node j

Each μj penalized by its average events intensity



Solving the “feature scaling” problem

�1-penalization of A

‖A‖1,Ŵ =
∑

1≤j ,k≤d

Ŵ j ,k |Aj ,k |

with

Ŵ j ,k ≈
√

(x + log d)V̂ j ,k(T )

T

where

V̂ j ,k(t) =
1

t

∫ t

0

(∫
(0,s)

hj ,k(s − u)dNk(u)
)2

dNj(s)

= variance estimation of the self-excitement for k → j



Solving the “feature scaling” problem

Trace-norm penalization of A [difficult]

ŵ∗‖A‖∗ = ŵ∗
d∑

j=1

σj(A)

with

ŵ∗ ≈
√

(x + log d)(‖V̂ 1(T )‖op ∨ ‖V̂ 2(T )‖op)
T

where ‖ · ‖op = operator norm



Solving the “feature scaling” problem

and where V̂ 1(t) diagonal matrix with entries

(V̂ 1(t))j ,j =
1

t

∫ t

0
‖H(s)‖22,∞dNj(s),

V̂ 2(t) matrix with entries

(V̂ 2(t))j ,k =
1

t

∫ t

0
‖H(s)‖22,∞

d∑
l=1

Hj ,l(s)Hk,l(s)

‖H l ,•(s)‖22
dNl(s),

with ‖ · ‖2,∞ = maximum �2 row norm and H(t) matrix with
entries

H j ,k(t) =

∫
(0,t)

hj ,k(t − s)dNk(s)



Solving the “feature scaling” problem

V̂ j,k(t), ‖V̂ 1(t)‖op and ‖V̂ 2(t)‖op are estimations (based on optional
variation) of non-observable variance terms

It comes from new Bernstein’s concentration inequalities, used on
the noise term

We develop a new probabilistic tool: non-commutative
concentration inequality for random matrix martingales in
continuous time (theory given by Tropp (2011) applies to discrete
time only, and depend on unobserved variance terms)

These tools give a sharp data-driven tuning of the penalizations,
solving the scaling problem



Some theory: sharp oracle inequalities

Define

〈λ1, λ2〉T =
1

T

d∑
j=1

∫ T

0
λ1,j(t)λ2,j(t)dt

and ‖λ‖2T = 〈λ, λ〉T
We use a standard assumption to obtain fast rates for the Lasso:
the RE (Restricted Eigenvalue) Assumption [Bickel et al.
(2009), Koltchinkii (2011), ...]



A sharp oracle inequality with fast rates

Theorem 1

We have

‖λθ̂ − λ0‖2T ≤ inf
θ

{
‖λθ − λ0‖2T + κ(θ)2

(5
4
‖(ŵ)supp(μ)‖22

+
9

8
‖(Ŵ )supp(A)‖2F +

9

8
ŵ2
∗ rank(A)

)}
with a probability larger than 1− 146e−x

κ(θ): RE constant

Sharp: leading constant 1



Some theory: sharp oracle inequalities

Take-home message: θ̂ achieves an optimal tradeoff between
approximation and complexity given by

‖μ‖0(x + log d)

T
max

j
Nj([0,T ])/T

+
‖A‖0(x + log d)

T
max
j ,k

V̂ j ,k(T )

+
rank(A)(x + log d)

T
‖V̂ 1(T )‖op ∨ ‖V̂ 2(T )‖op.

Complexity measured by sparsity and rank

Convergence has shape (log d)/T , where T = length of the
observation interval

Terms balanced by empirical variance terms



A new concentration inequality

New Bernstein’s empirical concentration inequality for
continuous-time matrix martingale

Consider the random matrix Z (t) with entries

Z j ,k(t) =

∫ t

0

∫
(0,s)

hj ,k(s − u)dNk(u)dMj(s)

where Mj(t) = Nj(t)−
∫ t
0 λj(s)ds are martingales obtained by

compensation

This is the noise term in our problem



A new concentration inequality

A classical concentration inequality for Z j ,k

[Lipster Shiryayev 1986] is

1

t
(Z (t))j ,k ≤

√
2vx

t
+

bx

3t

for any x > 0, with a probability ≥ 1− e−x whenever

1

t
〈Z j ,k〉t = 1

t

∫ t

0

(∫
(0,s)

hj ,k(s − u)dNk(u)
)2

λj(s)ds ≤ v

and

sup
s∈[0,t]

∫
(0,s)

hj ,k(s − u)dNk(u) ≤ b



A new concentration inequality

Predictable variation 〈Z j ,k〉t depends on non-observed λj : this
concentration is useless for statistics

Need an empirical Bernstein’s inequality, with a variance
term using the optional variation

1

t
[Z j ,k ]t =

1

t

∫ t

0

(∫
(0,s)

hj ,k(s − u)dNk(u)
)2

dNj(s)

We need also to remove the event {〈Z j ,k〉t ≤ tv} from this
inequality

We provide:

A control of all the entries Z j ,k of Z
A control of ‖Z t‖op



A new concentration inequality

Theorem 2

We have

1

t
|Z j ,k(t)| ≤ 2

√
2

√
(x + 2 log d + L̂j ,k(t))V̂ j ,k(t)

t

+ 9.31
(x + 2 log d + L̂j ,k(t))B j ,k(t)

t

for any 1 ≤ j , k ≤ d , with a probability larger than 1− 30.55e−x .

Based on a previous result by G. and Guilloux (2011), see also
Hansen et al (2012)

Reminiscent of previous works by Audibert (2008)



A new concentration inequality

Theorem 3

For any x > 0, we have

‖Z (t)‖op
t

≤ 4

√
(x + log d + �̂x(t))‖V̂ 1(t)‖op ∨ ‖V̂ 2(t)‖op

t

+
(x + log d + �̂x(t))(10.34 + 2.65 supt∈[0,T ] ‖H(t)‖2,∞)

t

with a probability larger than 1− 84.9e−x

First non-commutative Bernstein’s inequality for countinuous
time martingales

Can be extended to a wider class of martingales

Extension of [Tropp (2012)] results



Consequence: a sharp scaling of penalizations

Ground Truth NoPen L1



Consequence: a sharp scaling of penalizations

L1 vs wL1

L1 wL1



Consequence: a sharp scaling of penalizations

Nuclear vs wNuclear

L1Nuclear wL1Nuclear



Consequence: a sharp scaling of penalizations

Error for L1 and
wL1

Error for L1Nuclear
and wL1Nuclear

AUC for L1 and
wL1



Consequence: a sharp scaling of penalizations

Error for L1 and
wL1

Error for L1Nuclear
and wL1Nuclear

AUC for L1 and
wL1



Take-home message

Reparametrization of the problem

Theoretical analysis gives insight to choose the correct scaling of
the penalizations

First oracle inequality for this problem

This required new probabilistic tools for matrix martingales in
continuous time



Perpectives

Larger scale: factorized form A = UV�

Incorporation of features (text, time-varying graph-features,
etc.)

Time varying baseline μ(t) for non-stationarity



Thank you!


