Machine learning and time: "time accounting" learning

Stéphane Gaïffas¹

14 mars 2014

¹CMAP – Ecole Polytechnique

- Finite network with nodes $\{1, \ldots, d\}$: users of a social network, of an e-commerce platform, etc.
- For each node $j \in \{1, ..., d\}$ we observe the timestamps $\{t_{j,1}, t_{j,2}, ...\}$ of nodes' actions
- Goal: recover **levels of interactions** between users based on the timestamps patterns

Introduction

From

Quantify interactions between users

- Do inference directly from actions of users
- Understand the community structure of users underlying the actions
- Exploit the hidden lower-dimensional structure of the network for inference/prediction

- Counting process $N_j(t) = \sum_{i\geq 1} \mathbf{1}_{t_{j,i}\leq t}$
- Data: a *d*-dimensional counting process $N = [N_1, \ldots, N_d]^\top$
- *d* is large
- Observed on [0, T]. "Asymptotics" in $T \to +\infty$
- N_j has intensity λ_j , namely

 $\mathbb{P}(j ext{ does something at time } t ext{ knowning the past}) = \mathbb{P}(N_j ext{ has a jump in } [t, t + dt] | \mathcal{F}_t) = \lambda_j(t)dt$

for $j = 1, \ldots, d$ where \mathcal{F}_t some filtration

Model: Multivariate Hawkes Process (MHP)

• MHP assumes an autoregressive structure on the intensities:

$$\lambda_{j}(t) = \mu_{j}(t) + \int_{(0,t)} \sum_{k=1}^{d} \varphi_{j,k}(t-s) dN_{k}(s),$$

- $\mu_j(t) \ge 0$ baseline intensity of the *j*-th coordinate
- $\varphi_{j,k} : \mathbb{R}^+ \to \mathbb{R}^+$ self-exciting component: influence of $k \to j$
- Write this in matrix form

$$\lambda(t) = \mu + \int_{(0,t)} \varphi(t-s) dN(s),$$

with $\boldsymbol{\mu} = [\mu_1, \dots, \mu_d]^\top$ and $\boldsymbol{\varphi}(t) = [\varphi_{\boldsymbol{j}, \boldsymbol{k}}(t)]_{1 \leq \boldsymbol{j}, \boldsymbol{k} \leq d}$.

• Notation:

$$\int_{(0,t)} \varphi(t-s) dN_j(s) = \sum_{i:t_{j,i} < t} \varphi(t-t_{j,i})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduced by Hawkes in 1971

- Earthquakes and geophysics : Kagan and Knopoff (1981), Zhuang, Harte, Werner, Hainzl and Zhou (2012)
- **Genomics** : Reynaud-Bouret and Schbath (2010)
- **High-frequency Finance** : Bacry Delattre Hoffmann and Muzy (2013)
- **Terrorist activity** : Porter and White (2012)
- **Neurobiology** : Hansen, Reynaud-Bouret and Rivoirard (2012)
- Social networks : Carne and Sornette (2008), Simma and Jordan (2010), Zhou Song and Zha (2013)
- And even FPGA-based implementation : Guo and Luk (2013)

A brief history of MHP

Home / Bitcoin 201 / Analyzing Trade Clustering To Predict Price Movement In Bitcoin Trading

Analyzing Trade Clustering To Predict Price Movement In Bitcoin Trading

Sep 19, 2013 Posted By Jonathan Heusser In Bitcoin 201, Economics, Featured, News, Trading Tagged Analysis, Bitcoin Trading,

E.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Hawkes Process, Jonathan Heusser, London, Price, Trading

Parametric estimation (Maximum likelihood)

- First work : Ogata 78
- Simma and Jordan (2010), Zhou Song and Zha (2013)
 - \rightarrow Expected Maximization (EM) algorithms, with priors

Non parametric estimation

- Marsan Lengliné (2008), generalized by Lewis, Mohler (2010)
 - \rightarrow EM for penalized likelihood function
 - \rightarrow Monovariate Hawkes processes, Small amount of data, No theoretical results
- Reynaud-Bouret and Schbath (2010)
 - \rightarrow Developed for small amount of data (Sparse penalization)
- Bacry and Muzy (2014)
 - \rightarrow Larger amount of data

Dimension *d* is large:

- ullet Need a simple parametric model on μ and φ
- We want a **convex** optimization problem with smooth loss
- We want to encode some prior assumptions by penalizing this loss

Simple parametrization:

- Constant baselines $\mu_j(\cdot) \equiv \mu_j$
- Take

$$\varphi_{j,k}(t) = a_{j,k} e^{-\alpha_{j,k}t}$$

• $a_{j,k}$ = level of interaction between nodes j and k

• $\alpha_{j,k} =$ lifetime of instantaneous excitation of node j by node kThe matrix

$$oldsymbol{A} = [a_{j,k}]_{1 \leq j,k \leq d}$$

is understood has a **weighted adjacency matrix** of mutual excitement of th nodes $\{1, \ldots, d\}$

• **A** is non-symmetric

We end up with intensities

$$\lambda_{j,\theta}(t) = \mu_j + \int_{(0,t)} \sum_{k=1}^d a_{j,k} e^{-\alpha_{j,k}(t-s)} dN_k(s)$$

for $j \in \{1, \ldots, d\}$ where

$$heta = [\mu, oldsymbol{A}, oldsymbol{lpha}]$$

with

- baselines $\mu = [\mu_1, \dots, \mu_d]^\top \in \mathbb{R}^d_+$
- adjacencies $\mathbf{A} = [a_{j,k}]_{1 \leq j,k \leq d} \in \mathbb{R}^{d \times d}_+$
- decays $\boldsymbol{\alpha} = [\alpha_{j,k}]_{1 \leq j,k \leq d} \in \mathbb{R}^{d \times d}_+$

For d = 1, intensity λ_{θ} looks like this:

 Goodness-of-fit = $-\log$ -likelihood is given by:

$$-\ell_{T}(\theta) = \sum_{j=1}^{d} \left\{ \int_{0}^{T} (\lambda_{j,\theta}(t) - 1) dt - \int_{0}^{T} \log \lambda_{j,\theta}(t) dN_{j}(t) \right\}$$

with

$$\lambda_{j,\theta}(t) = \mu_j + \sum_{k=1}^d a_{j,k} \int_{(0,t)} \exp\left(-\alpha_{j,k}(t-s)\right) dN_k(s)$$

where $heta=(oldsymbol{\mu},oldsymbol{A},oldsymbol{lpha})$ with $oldsymbol{\mu}=[\mu_j]$, $oldsymbol{A}=[A_{j,k}]$, $oldsymbol{lpha}=[lpha_{j,k}]$

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prior encoding by penalization

Prior assumptions

• Some users are basically inactive and react only if stimulated:

 μ is sparse

• Everybody does not interact with everybody:

A is sparse

• Interactions have community structure, possibly overlapping, a small number of factors explain interactions:

• Decays α not sparse, but $\alpha_{j,k}$ should be regularized proportionally to $a_{j,k}$

A is low-rank

Standard convex relaxations [Tibshirani 01, ..., Srebro et al. 05, Bach 08, Candès & Recht 08, ...]

• Tightest convex relaxation of $\|\mathbf{A}\|_0 = \sum_{j,k} \mathbf{1}_{\mathbf{A}_{j,k}>0}$ is ℓ_1 -norm:

$$\|oldsymbol{A}\|_1 = \sum_{j,k} |oldsymbol{A}_{j,k}|$$

• Tightest convex relaxation of rank is trace-norm:

$$\|A\|_* = \sum_j \sigma_j(A) = \|\sigma(A)\|_1$$

where $\sigma_1(A) \geq \cdots \geq \sigma_d(A)$ singular values of **A**

So, we use the following penalizations

- Use ℓ_1 penalization on $oldsymbol{\mu}$
- Use ℓ_1 penalization on \boldsymbol{A}
- Use trace-norm penalization on A
- Use ℓ_2^2 penalization on α , weighted by **A**

[but other choices might be interesting...]

NB1: to induce **sparsity AND low-rank** on **A**, we use the mixed penalization

$$oldsymbol{A}\mapsto w_*\|oldsymbol{A}\|_*+w_1\|oldsymbol{A}\|_1$$

NB2: recent works by Richard et al (2013, 2014): better way to induce sparsity and low-rank than the sum, but not-scalable / non-convex

Sparse and low-rank matrices

 $\{ \boldsymbol{A} : \|\boldsymbol{A}\|_* \leq 1 \} \qquad \qquad \{ \boldsymbol{A} : \|\boldsymbol{A}\|_1 \leq 1 \} \qquad \{ \boldsymbol{A} : \|\boldsymbol{A}\|_1 + \|\boldsymbol{A}\|_* \leq 1 \}$

The balls are computed on the set of 2×2 symmetric matrices, which is identified with \mathbb{R}^3 .

[show video]

Finally, consider

$$\hat{\theta} \in \underset{\theta=(\boldsymbol{\mu},\boldsymbol{A},\boldsymbol{\alpha})}{\operatorname{argmin}} \left\{ -\frac{1}{T} \ell_{T}(\theta) + \tau \|\boldsymbol{\mu}\|_{1} + \gamma_{1} \|\boldsymbol{A}\|_{1} \right\}$$

where we recall

$$-\frac{1}{T}\ell_{T}(\theta) = \frac{1}{T}\sum_{j=1}^{d} \left\{ \int_{0}^{T} \lambda_{j,\theta}(t)dt - \int_{0}^{T} \log \lambda_{j,\theta}(t)dN_{j}(t) \right\}$$

with

$$\lambda_{j,\theta}(t) = \mu_j + \sum_{k=1}^d a_{j,k} \int_{(0,t)} \exp\left(-\alpha_{j,k}(t-s)\right) dN_k(s)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem: $\theta \mapsto \lambda_{j,\theta}(t)$ not convex! Indeed

 $(a, \alpha) \mapsto ah_{\alpha}(t)$

never convex when $\alpha \mapsto h_{\alpha}(t)$ is convex

We want convexity for:

- Convergence to a global optimum
- Plethora of optimization algorithms

Generic in the chosen penalization [if proximal operator easy to compute]

A solution: the **perspective function** trick:

• If $\alpha \mapsto h_{\alpha}(t)$ is convex, then

 $(a, \alpha) \mapsto ah_{\alpha/a}(t)$

is convex

• Reparametrization $\boldsymbol{\beta} = \boldsymbol{A} \circ \boldsymbol{\alpha}$, leading to

$$\lambda_{j,\theta}(t) = \mu_j + \sum_{k=1}^d a_{j,k} \int_{(0,t)} \exp\left(-\frac{\beta_{j,k}}{a_{j,k}}(t-s)\right) dN_k(s)$$

with $\theta = (\mu, \boldsymbol{A}, \boldsymbol{\beta})$ for $\boldsymbol{\beta} = [\beta_{j,k}]_{1 \leq j,k \leq d}$

• With this reparametrization

$$heta\mapsto\lambda_{j, heta}(t)$$

is convex

Penalized maximum likelihood: reparametrization

The reparametrization $\boldsymbol{\beta} = \boldsymbol{A} \odot \boldsymbol{\alpha}$ leads to

$$\hat{\theta} \in \underset{\theta=(\mu,\boldsymbol{A},\boldsymbol{\beta})}{\operatorname{argmin}} \left\{ -\frac{1}{T} \ell_{T}(\theta) + \tau \|\boldsymbol{\mu}\|_{1} + \gamma_{1} \|\boldsymbol{A}\|_{1} + \gamma_{*} \|\boldsymbol{A}\|_{*} + \frac{\kappa}{2} \|\boldsymbol{\beta}\|_{F}^{2} \right\}$$
(1)

where

$$-\frac{1}{T}\ell_{T}(\theta) = \frac{1}{T}\sum_{j=1}^{d} \left\{ \int_{0}^{T} \lambda_{j,\theta}(t)dt - \int_{0}^{T} \log \lambda_{j,\theta}(t)dN_{j}(t) \right\}$$

with

$$\lambda_{j,\theta}(t) = \mu_j + \sum_{k=1}^d a_{j,k} \int_{(0,t)} \exp\left(-\frac{\beta_{j,k}}{a_{j,k}}(t-s)\right) dN_k(s)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Can be solved using first-order routines:

Fista [Beck Teboulle (2009)], Prisma [Orabona et al (2012)], GFB [Peyre et al. (2011)], Primal-Dual [Chambolle et al. (2009), Condat et al. (2013)], ADMM [Boyd (2012)], etc...

• Gradient of $-\ell_T(\theta)$ using a recursion formula

 \rightarrow Naively $O(n^2d)$ with n = number of events (very large) but O(nd) when careful (using recursion formulas)

 \rightarrow Parallelized code for this: gradient of each node $j \in \{1, \dots, d\}$ computed **in parallel**

- Computation bootleneck: exp and log, accelerated using ugly hacking
- Trace norm penalization, truncated SVD: default's Lanczos's implementation of Python is fast enough for $d \approx 1K$, use a non-convex factorized formulation $\mathbf{A} = \mathbf{U}\mathbf{V}^{\top}$ for $d \gg 1K$

Toy example: take matrix **A** as

Numerical experiment: dimension 100, 20100 parameters

We consider a simplified framework

• Fix a set $\{h_{j,k} : 1 \leq j, k \leq d\}$ and intensities

$$\lambda_{j,\theta}(t) = \mu_j + \int_{(0,t)} \sum_{k=1}^d a_{j,k} h_{j,k}(t-s) dN_k(s),$$

where $\theta = [\mu, \mathbf{A}]$ with $\mu = [\mu_1, \dots, \mu_d]^\top$ and $\mathbf{A} = [a_{j,k}]_{1 \leq j,k \leq d}$

• Instead of - log likelihood, consider least squares

$$R_{T}(\theta) = \frac{1}{T} \sum_{j=1}^{d} \left\{ \int_{0}^{T} \lambda_{j,\theta}(t)^{2} dt - 2 \int_{0}^{T} \lambda_{j,\theta}(t) dN_{j}(t) \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Introduce

$$\hat{\theta} \in \underset{\theta \in \mathbb{R}^{d}_{+} \times \mathbb{R}^{d \times d}_{+}}{\operatorname{argmin}} \{ R_{T}(\theta) + \operatorname{pen}(\theta) \},$$

with

$$\mathsf{pen}(\theta) = \|\mu\|_{1,\hat{w}} + \|\boldsymbol{A}\|_{1,\hat{\boldsymbol{W}}} + \hat{w}_*\|\boldsymbol{A}\|_*$$

- Penalization tuned by data-driven weights \hat{w} , \hat{W} and \hat{w}_*
- Comes from sharp controls of the noise terms
- Solves the scaling problem for this model (e.g. feature scaling)

$\ell_1\text{-penalization}$ of μ

$$\|\mu\|_{1,\hat{w}} = \sum_{j=1}^d \hat{w}_j |\mu_j|$$

with

$$\hat{w}_j pprox \sqrt{rac{(x+\log d)N_j([0, T])/T}{T}}$$

where $N_i([0, T]) = \#$ events for node j

• Each μ_j penalized by its average events intensity

 $\ell_1\text{-penalization}$ of \boldsymbol{A}

$$\| \boldsymbol{A} \|_{1, \hat{\boldsymbol{W}}} = \sum_{1 \leq j,k \leq d} \hat{\boldsymbol{W}}_{j,k} | \boldsymbol{A}_{j,k} |$$

with

$$\hat{\boldsymbol{W}}_{j,k} \approx \sqrt{rac{(x+\log d)\hat{\boldsymbol{V}}_{j,k}(T)}{T}}$$

where

$$\hat{V}_{j,k}(t) = \frac{1}{t} \int_0^t \left(\int_{(0,s)} h_{j,k}(s-u) dN_k(u) \right)^2 dN_j(s)$$

= variance estimation of the self-excitement for $k \rightarrow j$

Trace-norm penalization of **A** [difficult]

$$\hat{w}_* \| \boldsymbol{A} \|_* = \hat{w}_* \sum_{j=1}^d \sigma_j(\boldsymbol{A})$$

with

$$\hat{w}_* \approx \sqrt{\frac{(x + \log d)(\|\hat{\boldsymbol{V}}_1(T)\|_{\mathrm{op}} \vee \|\hat{\boldsymbol{V}}_2(T)\|_{\mathrm{op}})}{T}}$$

where $\|\cdot\|_{\mathrm{op}} = \mathsf{operator} \mathsf{ norm}$

and where $\hat{\boldsymbol{V}}_1(t)$ diagonal matrix with entries

$$(\hat{\boldsymbol{V}}_{1}(t))_{j,j} = \frac{1}{t} \int_{0}^{t} \|\boldsymbol{H}(s)\|_{2,\infty}^{2} dN_{j}(s),$$

 $\hat{\boldsymbol{V}}_2(t)$ matrix with entries

$$(\hat{\boldsymbol{V}}_{2}(t))_{j,k} = rac{1}{t} \int_{0}^{t} \|\boldsymbol{H}(s)\|_{2,\infty}^{2} \sum_{l=1}^{d} rac{H_{j,l}(s)H_{k,l}(s)}{\|\boldsymbol{H}_{l,\bullet}(s)\|_{2}^{2}} dN_{l}(s),$$

with $\|\cdot\|_{2,\infty} = \max \lim_{t \to \infty} \ell_2$ row norm and H(t) matrix with entries

$$\boldsymbol{H}_{j,k}(t) = \int_{(0,t)} h_{j,k}(t-s) dN_k(s)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\hat{V}_{j,k}(t)$, $\|\hat{V}_1(t)\|_{op}$ and $\|\hat{V}_2(t)\|_{op}$ are estimations (based on optional variation) of non-observable variance terms
- It comes from new Bernstein's concentration inequalities, used on the noise term
- We develop a new probabilistic tool: non-commutative concentration inequality for random matrix martingales in continuous time (theory given by Tropp (2011) applies to discrete time only, and depend on unobserved variance terms)

These tools give a **sharp data-driven tuning** of the penalizations, solving the scaling problem

Define

$$\langle \lambda_1, \lambda_2 \rangle_T = \frac{1}{T} \sum_{j=1}^d \int_0^T \lambda_{1,j}(t) \lambda_{2,j}(t) dt$$

and $\|\lambda\|_T^2 = \langle \lambda, \lambda \rangle_T$

 We use a standard assumption to obtain fast rates for the Lasso: the RE (Restricted Eigenvalue) Assumption [Bickel et al. (2009), Koltchinkii (2011), ...]

Theorem 1

We have

$$\begin{split} \|\lambda_{\hat{\theta}} - \lambda_0\|_{\mathcal{T}}^2 &\leq \inf_{\theta} \left\{ \|\lambda_{\theta} - \lambda_0\|_{\mathcal{T}}^2 + \kappa(\theta)^2 \Big(\frac{5}{4} \|(\hat{w})_{\mathsf{supp}(\mu)}\|_2^2 \\ &+ \frac{9}{8} \|(\hat{\boldsymbol{W}})_{\mathsf{supp}(\boldsymbol{A})}\|_F^2 + \frac{9}{8} \hat{w}_*^2 \operatorname{rank}(\boldsymbol{A})\Big) \right\} \end{split}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへで

with a probability larger than $1 - 146e^{-x}$

- $\kappa(\theta)$: RE constant
- Sharp: leading constant 1

Take-home message: $\hat{\theta}$ achieves an optimal tradeoff between approximation and complexity given by

$$\frac{\|\mu\|_0(x+\log d)}{T} \max_j N_j([0,T])/T$$

$$+ \frac{\|\boldsymbol{A}\|_0(x+\log d)}{T} \max_{j,k} \hat{\boldsymbol{V}}_{j,k}(T)$$

$$+ \frac{\operatorname{rank}(A)(x+\log d)}{T} \|\hat{\boldsymbol{V}}_1(T)\|_{\operatorname{op}} \vee \|\hat{\boldsymbol{V}}_2(T)\|_{\operatorname{op}}.$$

- Complexity measured by sparsity and rank
- Convergence has shape $(\log d)/T$, where T = length of the observation interval
- Terms balanced by empirical variance terms

- New Bernstein's empirical concentration inequality for continuous-time matrix martingale
- Consider the random matrix Z(t) with entries

$$Z_{j,k}(t) = \int_0^t \int_{(0,s)} h_{j,k}(s-u) dN_k(u) dM_j(s)$$

where $M_j(t) = N_j(t) - \int_0^t \lambda_j(s) ds$ are martingales obtained by compensation

• This is the noise term in our problem

A classical concentration inequality for $Z_{j,k}$ [Lipster Shiryayev 1986] is

$$rac{1}{t}(oldsymbol{Z}(t))_{j,k} \leq \sqrt{rac{2vx}{t}} + rac{bx}{3t}$$

for any x > 0, with a probability $\geq 1 - e^{-x}$ whenever

$$\frac{1}{t}\langle \boldsymbol{Z}_{j,k}\rangle_t = \frac{1}{t}\int_0^t \Big(\int_{(0,s)} h_{j,k}(s-u)dN_k(u)\Big)^2\lambda_j(s)ds \leq v$$

and

$$\sup_{s\in[0,t]}\int_{(0,s)}h_{j,k}(s-u)dN_k(u)\leq b$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A new concentration inequality

- Predictable variation $\langle \mathbf{Z}_{j,k} \rangle_t$ depends on non-observed λ_j : this concentration is **useless** for statistics
- Need an **empirical Bernstein's inequality**, with a variance term using the **optional variation**

$$\frac{1}{t}[\boldsymbol{Z}_{j,k}]_t = \frac{1}{t} \int_0^t \Big(\int_{(0,s)} h_{j,k}(s-u) dN_k(u) \Big)^2 dN_j(s)$$

• We need also to remove the event $\{\langle \mathbf{Z}_{j,k} \rangle_t \leq tv\}$ from this inequality

We provide:

- A control of all the entries $Z_{j,k}$ of Z
- A control of $\|\boldsymbol{Z}_t\|_{\mathrm{op}}$

Theorem 2

We have

$$\begin{aligned} \frac{1}{t} |\boldsymbol{Z}_{j,k}(t)| &\leq 2\sqrt{2} \sqrt{\frac{(x+2\log d + \hat{\boldsymbol{L}}_{j,k}(t))\hat{\boldsymbol{V}}_{j,k}(t)}{t}} \\ &+ 9.31 \frac{(x+2\log d + \hat{\boldsymbol{L}}_{j,k}(t))\boldsymbol{B}_{j,k}(t)}{t} \end{aligned}$$

for any $1 \le j, k \le d$, with a probability larger than $1 - 30.55e^{-x}$.

- Based on a previous result by G. and Guilloux (2011), see also Hansen et al (2012)
- Reminiscent of previous works by Audibert (2008)

Theorem 3

For any x > 0, we have

$$\frac{\|\boldsymbol{Z}(t)\|_{\text{op}}}{t} \leq 4\sqrt{\frac{(x+\log d+\hat{\ell}_{x}(t))\|\hat{\boldsymbol{V}}_{1}(t)\|_{\text{op}} \vee \|\hat{\boldsymbol{V}}_{2}(t)\|_{\text{op}}}{t}} + \frac{(x+\log d+\hat{\ell}_{x}(t))(10.34+2.65\sup_{t\in[0,T]}\|\boldsymbol{H}(t)\|_{2,\infty})}{t}$$

with a probability larger than $1 - 84.9e^{-x}$

- First non-commutative Bernstein's inequality for countinuous time martingales
- Can be extended to a wider class of martingales
- Extension of [Tropp (2012)] results

Consequence: a sharp scaling of penalizations

L1 vs wL1

wL1

Nuclear vs wNuclear

wL1Nuclear

Consequence: a sharp scaling of penalizations

wL1

Error for L1 and Error for L1Nuclear AUC for L1 and and wL1Nuclear

wL1

Consequence: a sharp scaling of penalizations

wL1

Error for L1 and Error for L1Nuclear AUC for L1 and and wL1Nuclear

wL1

- Reparametrization of the problem
- Theoretical analysis gives insight to choose the correct scaling of the penalizations
- First oracle inequality for this problem
- This required new probabilistic tools for matrix martingales in continuous time

- Larger scale: factorized form $\mathbf{A} = \mathbf{U}\mathbf{V}^{\top}$
- Incorporation of features (text, time-varying graph-features, etc.)
- Time varying baseline $\mu(t)$ for non-stationarity

Thank you!

・ロト・< 目・< 目・< 目・< の<(?)