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Introduction

@ Finite network with nodes {1,...,d}: users of a social network,
of an e-commerce platform, etc.
@ For each node j € {1,...,d} we observe the timestamps

{ti1,tj2,...} of nodes’ actions
@ Goal: recover levels of interactions between users based on the
timestamps patterns
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Quantify interactions between users




Introduction

@ Do inference directly from actions of users

@ Understand the community structure of users underlying the
actions

@ Exploit the hidden lower-dimensional structure of the network
for inference/prediction



Model: Multivariate Hawkes Process (MHP)

o Counting process Nj(t) =3 i~q 1t <

Data: a d-dimensional counting process N = [Ny, ..., Nd]T

o
@ dis large
@ Observed on [0, T]. “Asymptotics” in T — 400
o

N; has intensity A;, namely

IP(j does something at time t knowning the past)
= P(N; has a jump in [t, t + dt] | F) = A\j(t)dt

for j =1,...,d where F; some filtration



Model: Multivariate Hawkes Process (MHP)

@ MHP assumes an autoregressive structure on the intensities:

A(E) = () + / t)z% (£ — 5)dN, ().

® 1(t) > 0 baseline intensity of the j-th coordinate
® ¢, RT — RT self-exciting component: influence of k — j

@ Write this in matrix form

A(t) = pu + /(O L= s)N(s)

with o = [u1, ..., pa] " and o(t) = [ 1 (t)]1<j r<a-
@ Notation:

/(O REGRLVOED IS

It i<t



A brief history of MHP

Introduced by Hawkes in 1971

Earthquakes and geophysics : Kagan and Knopoff (1981),
Zhuang, Harte, Werner, Hainzl and Zhou (2012)

Genomics : Reynaud-Bouret and Schbath (2010)

High-frequency Finance : Bacry Delattre Hoffmann and Muzy
(2013)

Terrorist activity : Porter and White (2012)
Neurobiology : Hansen, Reynaud-Bouret and Rivoirard (2012)

Social networks : Carne and Sornette (2008), Simma and
Jordan (2010), Zhou Song and Zha (2013)

And even FPGA-based implementation : Guo and Luk (2013)



A brief history of MHP

THE GENESIS [ETE0

Digital currency research and data

HOME NEWS MINING TRADING ECONOMICS REGULATION BUSINESSES BI

Home / Bitcoin 201 / Analyzing Trade Clustering To Predict Price Movement In Bitcoin Trading

. _

Analyzing Trade Clustering To Predict Price
Movement In Bitcoin Trading

Jonathan Heusser o Bitcoin 201, Economics. Featured, News, Trading Analysis. Bitcoin Trading

Howkes Process, fonathan Heusser, London, Price, Trading



Estimation for MHP: some references

Parametric estimation (Maximum likelihood)
@ First work : Ogata 78

@ Simma and Jordan (2010), Zhou Song and Zha (2013)
— Expected Maximization (EM) algorithms, with priors

Non parametric estimation

@ Marsan Lengliné (2008), generalized by Lewis, Mohler (2010)
— EM for penalized likelihood function
— Monovariate Hawkes processes, Small amount of data, No
theoretical results

@ Reynaud-Bouret and Schbath (2010)
— Developed for small amount of data (Sparse penalization)

e Bacry and Muzy (2014)
— Larger amount of data



MHP in large dimension

Dimension d is large:
@ Need a simple parametric model on i and ¢
@ We want a convex optimization problem with smooth loss

@ We want to encode some prior assumptions by penalizing this
loss



A simple parametrization of the MHP

Simple parametrization:

e Constant baselines () = p;
e Take

jk(t) = aje” Ht
® a; x = level of interaction between nodes j and k
® «; , = lifetime of instantaneous excitation of node j by node k
The matrix

A = aj k]1<jk<d
is understood has a weighted adjacency matrix of mutual
excitement of th nodes {1,...,d}

@ A is non-symmetric



A simple parametrization of the MHP

We end up with intensities

d
Vo) =+ [ Y g (s)

(0:t) j=1
for j € {1,...,d} where

0 = [u, A, a
with
o baselines 1 = [u1,...,1q]" € RY

@ adjacencies A = [aj k]1<j k<d € Rixd

dxd
@ decays a = [} k]i<jk<d € RL



A simple parametrization of the MHP

For d = 1, intensity Ay looks like this:
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Maximum Likelihood Estimation

Goodness-of-fit = — log-likelihood is given by:

07 (0) = sz; { /()T(Aj,@(t) ~1)dt — /OT log Aj,g(t)d/vj(t)}

with

)\j,g(t) = [j + Z aj,k/ exp ( — Oéj,k(t — S))de(S)



Prior encoding by penalization

Prior assumptions

@ Some users are basically inactive and react only if stimulated:
L 1S sparse

@ Everybody does not interact with everybody:
A is sparse

@ Interactions have community structure, possibly overlapping, a
small number of factors explain interactions:

A is low-rank
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@ Decays « not sparse, but «; x should be regularized
proportionaly to a; «



Prior encoding by penalization

Standard convex relaxations [Tibshirani 01, ..., Srebro et al. 05,
Bach 08, Candes & Recht 08, ...]

@ Tightest convex relaxation of ||Allo = >_:

ik la; >0 is £1-norm:
AL =) |Ajx
J;k

@ Tightest convex relaxation of rank is trace-norm:

JAll =D a(A) = llo(A)]x

J

where g1(A) > --- > g4(A) singular values of A



Prior encoding by penalization

So, we use the following penalizations

Use /1 penalization on
Use /1 penalization on A

Use trace-norm penalization on A

Use /5 penalization on «, weighted by A

[but other choices might be interesting...]

NB1: to induce sparsity AND low-rank on A, we use the mixed

penalization
A = w, || Al + wi||Al|1

NB2: recent works by Richard et al (2013, 2014): better way to
induce sparsity and low-rank than the sum, but not-scalable /
non-convex



Sparse and low-rank matrices

Ve e

A Al < 1} A AL <1} (A Al +[|All. < 1}

The balls are computed on the set of 2 x 2 symmetric matrices,
which is identified with R3.

[show video]



Penalized maximum likelihood

Finally, consider

A _ 1
6 € argmin { — ?fT(Q) + 7|l + 71| Al
9:(”’7'470‘)

K
+ Al + S 1A© al? ]

where we recall

_%gT(g) - %zd: { /()T)\j,g(t)dt — /OT log )\j,e(t)de(t)}

)\j)@(i’) = Wj Z aj,k/ exp ( — Oéj’k(t — S))de(S)



Penalized maximum likelihood: a problem

Problem: 6 — \; g(t) not convex! Indeed
(a, ) — ahy(t)
never convex when o — h,(t) is convex

We want convexity for:
@ Convergence to a global optimum

@ Plethora of optimization algorithms
Generic in the chosen penalization [if proximal operator easy to

compute]



Penalized maximum likelihood: reparametrization

A solution: the perspective function trick:

o If a— h,(t) is convex, then
(3,04) — aha/a(t)

IS convex

@ Reparametrization 3 = A o «, leading to

dj,k

c B k
alt) =+ 3 3 /( L op (S 9) o

with 0 = (p, A, B) for 8 = [B; k]1<j k<d
@ With this reparametrization

0 — )\j’g(t)

IS convex



Penalized maximum likelihood: reparametrization

The reparametrization 3 = A® « leads to

N _ 1
6 € argmin { — ?87(9) + 7|1 + 1| A1
0=(w,A,B) (1)

Y
+ Al + S 1813 }

where
d T T
1 1
_?gT(Q):?;{/O Aj,@(t)dt—/o Iog)\j,e(t)d/Vj(t)}
with
d

Aio(t) = /Lj‘|‘zaj’k/ exp (— @(t—s))de(s)

k=1 (Oat) a-/7k



Convex optimization — numerical aspects

@ Can be solved using first-order routines:

Fista [Beck Teboulle (2009)], Prisma [Orabona et al (2012)], GFB
[Peyre et al. (2011)], Primal-Dual [Chambolle et al. (2009), Condat et
al. (2013)], ADMM [Boyd (2012)], etc...

@ Gradient of —¢1(6) using a recursion formula

— Naively O(n?*d) with n = number of events (very large) but O(nd)
when careful (using recursion formulas)

— Parallelized code for this: gradient of each node j € {1,...,d}
computed in parallel

@ Computation bootleneck: exp and log, accelerated using ugly hacking

@ Trace norm penalization, truncated SVD: default’s Lanczos's
implementation of Python is fast enough for d =~ 1K, use a
non-convex factorized formulation A= UV for d > 1K



Numerical experiment

Toy example: take matrix A as
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Numerical experiment: dimension 100, 20100 parameters
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Some theory: sharp oracle inequalities

We consider a simplified framework
o Fixaset {hj,:1<j,k<d} and intensities

Vo) =i+ [ S syt — )dNA(s),

t) k=1
where 0 = [u, A] with g = [p1, ..., p11g] " and A = [aj k]1<j k<d
@ Instead of — log likelihood, consider least squares

d

R7(0) = ! Z{/ j,e(t)2dt—2/OTAJ-,9(t)d/vj(t)}

j=1



Some theory: sharp oracle inequalities

Introduce
§ € argmin {R7(#)+ pen(6)},
ORI xR
with
pen(0) = ||p|l1,w + HAHlW + Wy || Al 4

@ Penalization tuned by data-driven weights w, W and W,
@ Comes from sharp controls of the noise terms

@ Solves the scaling problem for this model (e.g. feature scaling)



Solving the “feature scaling” problem

¢1-penalization of u

1w = Z Wi 111

with

. \/(X + log d)N;([0, T])/ T
! T

where N;([0, T]) = # events for node j

@ Each p; penalized by its average events intensity



Solving the “feature scaling” problem

¢1-penalization of A

Al = > WklAx
1<j,k<d
with
. x+logd\V; (T
WJ,k%\/< 5 ) V(T
T
where

Vi) = [ ([ rads = o)d(w) e

variance estimation of the self-excitement for k — j



Solving the “feature scaling” problem

Trace-norm penalization of A [difficult]

d
| All = i > oj(A
j=1

with

(x +log ) ([ V1(T)llop V | V2(T)llop)
T

W>|< N

where || - ||op = operator norm



Solving the “feature scaling” problem

and where V1(t) diagonal matrix with entries

(Vi) = ¢ [ IHG)B-can(s)
V() matrix with entries
Hji(s)Hi,i(s)
(Va7 [ HESL 2 g s),
i 2~ [ Hi(s)3
with || - ||2.00 = maximum ¢ row norm and H(t) matrix with

entries

H. k(t) = /(0 ikl )M (s)



Solving the “feature scaling” problem

@ V, (1), |[V1i(t)|lop and || V2(t)|lop are estimations (based on optional
variation) of non-observable variance terms

@ It comes from new Bernstein’s concentration inequalities, used on
the noise term

@ We develop a new probabilistic tool: non-commutative
concentration inequality for random matrix martingales in
continuous time (theory given by Tropp (2011) applies to discrete
time only, and depend on unobserved variance terms)

These tools give a sharp data-driven tuning of the penalizations,
solving the scaling problem



Some theory: sharp oracle inequalities

Define
(A1, M) T Z/ A1i(t) A2 (t)dt

and A5 = (A, A) 7

@ We use a standard assumption to obtain fast rates for the Lasso:
the RE (Restricted Eigenvalue) Assumption [Bickel et al.
(2009), Koltchinkii (2011), ...]



A sharp oracle inequality with fast rates

We have

. PN
1A = AolF < inf {10 = Aoll3 + K(0)2 (S 11(W)supp(u 1
9, 9 .
+ 2 (W) o7 + 212 rank(A)) §
with a probability larger than 1 — 146e™~

e x(0): RE constant

@ Sharp: leading constant 1



Some theory: sharp oracle inequalities

Take-home message: f achieves an optimal tradeoff between
approximation and complexity given by

|2llo(x +log d)
~— max Ny([0, T])/ T

A log d "
LAl +logd) oo
T ik ’

rank(A)(x + log d) , ~ ~
+ PO 8D 0 (T o v 10T o

@ Complexity measured by sparsity and rank

@ Convergence has shape (logd)/ T, where T = length of the
observation interval

@ Terms balanced by empirical variance terms



concentration inequality

@ New Bernstein's empirical concentration inequality for
continuous-time matrix martingale

@ Consider the random matrix Z(t) with entries
t
Zj,k(t) = / / hj)k(S — u)de(u)de(s)
0 J(0,s)
where M;(t) = N;(t) — fot Aj(s)ds are martingales obtained by

compensation

@ This is the noise term in our problem



A new concentration inequality

A classical concentration inequality for Z;
[Lipster Shiryayev 1986] is

1 2vx  bx
—(Z(t)): , <
H(Z()ju <[+ 2

for any x > 0, with a probability > 1 — e™* whenever

1<Zj,/<>t = l/Ot (/(o i hi k(s — u)de(u))z)\j(s)ds <v

t t

and
sup / hi k(s — u)dNi(u) < b
(0,5)

s€0,t]



A new concentration inequality

@ Predictable variation (Z; x): depends on non-observed A;: this
concentration i1s useless for statistics

@ Need an empirical Bernstein’s inequality, with a variance
term using the optional variation

%[Zj,k]t = 1/Ot (/(0 i hj k(s — U)de(U))szj(S)

t

® We need also to remove the event {(Z; )+ < tv} from this
inequality

We provide:
@ A control of all the entries Z; y of Z

@ A control of ||Z¢|op



A new concentration inequality

We have

11Z;u(0)] < m\/ per2lopd = Lkl Vid)

(x +2logd + L; x(t)) B k(1)
t

+ 9.31
for any 1 <, k < d, with a probability larger than 1 — 30.55e™*.

@ Based on a previous result by G. and Guilloux (2011), see also
Hansen et al (2012)

@ Reminiscent of previous works by Audibert (2008)



A new concentration inequality

For any x > 0, we have

1Z(2)]|op
L
< 4\/(X +log d + L ()| V1(t)llop V | V2(2) o
B t
(x + log d + £, (t))(10.34 + 2.65 sup,cpo. 17 | H(t)[2,00)

t

with a probability larger than 1 — 84.9e™*

@ First non-commutative Bernstein's inequality for countinuous
time martingales

@ Can be extended to a wider class of martingales
@ Extension of [Tropp (2012)] results



Consequence: a sharp scaling of penalizations

Ground Truth NoPen L1



Consequence: a sharp scaling of penalizations

L1 vs wlL1
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Consequence: a sharp scaling of penalizations

Nuclear vs wNuclear
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Consequence: a sharp scaling of penalizations
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Consequence: a sharp scaling of penalizations

[— 1] | [— Limucear |
|== wil | == wlLlNuclear == wLl
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Error for L1 and Error for L1Nuclear AUC for L1 and
wlL1 and wL1Nuclear wlL1



Take-home message

@ Reparametrization of the problem

@ Theoretical analysis gives insight to choose the correct scaling of
the penalizations

@ First oracle inequality for this problem

@ This required new probabilistic tools for matrix martingales in
continuous time



o Larger scale: factorized foom A= UV"'

@ Incorporation of features (text, time-varying graph-features,
etc.)

@ Time varying baseline p(t) for non-stationarity



Thank you!



