Gersende FORT

LTCI, CNRS & Telecom ParisTech Paris, France

Journées MAS Toulouse, Août 2014 Sample from a target distribution $\pi d\lambda$ on $\mathbb{X} \subseteq \mathbb{R}^{\ell}$, when π is (possibly) known up to a normalizing constant,

 \hookrightarrow Hereafter, to make the notations simpler, π is assumed to be normalized

and in the context

- π is multimodal
- large dimension

Research guided by Computational Bayesian Statistics

 π : the a posteriori distribution, known up to a normalizing constant Needed: algorithms to explore π , to compute expectations w.r.t. π , \cdots .

Talk based on joint works with

Eric Moulines, Amandine Schreck (Telecom ParisTech)

Pierre Priouret (Paris VI)

Benjamin Jourdain, Tony Lelièvre, Gabriel Stoltz (ENPC)

Estelle Kuhn (INRA)

Outline

Introduction

Usual Monte Carlo samplers The proposal mecanism Adaptive Monte Carlo samplers Conclusion

Tempering-based Monte Carlo samplers

Biasing Potential-based Monte Carlo sampler

Convergence Analysis

Introduction

Lusual Monte Carlo samplers

Usual Monte Carlo samplers

Markov chain Monte Carlo (MCMC)

- Sample a Markov chain $(X_k)_k$ having π as unique invariant distribution
- Approximation:

$$\pi \approx \frac{1}{n} \sum_{k=1}^{n} \delta_{X_k}$$

Example: Hastings-Metropolis algorithm with proposal kernel q(x,y)

- given X_k , sample $Y \sim q(X_k, \cdot)$
- accept-reject mecanism

$$X_{k+1} = \begin{cases} Y & \text{with probability } 1 \land \frac{\pi(Y)}{\pi(X_k)} \frac{q(Y,X_k)}{q(X_k,Y)} \\ X_k & \text{otherwise} \end{cases}$$

Introduction

Usual Monte Carlo samplers

Usual Monte Carlo samplers

Markov chain Monte Carlo (MCMC)

- Sample a Markov chain $(X_k)_k$ having π as unique invariant distribution
- Approximation:

$$\pi \approx \frac{1}{n} \sum_{k=1}^{n} \delta_{X_k}$$

Example: Hastings-Metropolis algorithm with proposal kernel q(x,y)

- given X_k , sample $Y \sim q(X_k, \cdot)$
- accept-reject mecanism

$$X_{k+1} = \begin{cases} Y & \text{with probability } 1 \land \frac{\pi(Y)}{\pi(X_k)} \frac{q(Y,X_k)}{q(X_k,Y)} \\ X_k & \text{otherwise} \end{cases}$$

Importance Sampling (IS)

- $\bullet\,$ Sample i.i.d. points $(X_k)_k$ with density q proposal distribution chosen by the user
- Approximation:

$$\pi \approx \frac{1}{n} \sum_{k=1}^{n} \frac{\pi(X_k)}{q(X_k)} \,\delta_{X_k}$$

Sampling multimodal densities in high dimensional sampling space Introduction The proposal mecanism

The proposal mecanism: MCMC

• Toy example in the case: Hastings-Metropolis algorithm with Gaussian proposal kernel

$$q(x,y) \propto \exp\left(-\frac{1}{2}(y-x)^T \Sigma^{-1}(y-x)\right)$$

Acceptance-rejection ratio:

FIG.: For three different values of Σ : [top] Plot of the chain (in \mathbb{R});[bottom] autocorrelation function

L The proposal mecanism

The proposal mecanism: Importance Sampling (1/2)

• Toy example:

compute
$$\int_{\mathbb{R}} |x| \pi(x) dx$$
 when $\pi(x) \sim t(3) \propto rac{1}{(1+rac{x^2}{3})^2}$

Consider in turn the proposal q equal to a Student t(1) and then to a Normal $\mathcal{N}(0,\!1)$

Boxplot computed from 100 runs of the algorithm

Plot of the densities q (green, blue) and π (in red)

The proposal mecanism

The proposal mecanism: Importance Sampling (2/2)

- The efficiency of the algorithm depends upon the proposal distribution *q*: if few large weights and the others negligible, the approximation is likely not accurate
- Monitoring the convergence: there exist criteria measuring the proportion of "ineffective draws":

Coefficient of Variation Effective Sample Size Normalized perplexity

- Introduction

Adaptive Monte Carlo samplers

Adaptive Monte Carlo samplers

- To fix some design parameters and make the samplers more efficient: adaptive Monte Carlo samplers were proposed
- Adaptive Algorithms:
 - The *optimal* design parameters are defined as the solutions of an optimality criterion. In practice, it can not be solved explicitly.

- Based on the past history of *the sampler*, solve an approximation of this criterion and compute the design parameters for the *current* run of the samplers.

- Repeat the scheme: adaption/sampling.

Adaptive Monte Carlo samplers

Adaptive MC sampler: example of adaptive MCMC (1/2)

Adaptive Hastings-Metropolis algorithm with Gaussian proposal distribution

$$q_{\Sigma}(x,y) \propto \exp\left(-\frac{1}{2}(y-x)^T \Sigma^{-1}(y-x)\right)$$

- Design parameters: the covariance matrix $\boldsymbol{\Sigma}$
- Optimal criterion: by using the scaling approach for Markov Chains, it is advocated pioneering work: Roberts, Gelman, Gilks (1997)

$$\Sigma = \frac{(2.38)^2}{\ell} \times \text{covariance of } \pi$$

• Iterative algorithm Haario, Saksman, Tamminen (2001)

Adaption Update the covariance matrix

$$\Sigma_t = \frac{(2.38)^2}{\ell} \times \widehat{\Sigma}_t^{(\pi)}$$

Sampling one step of a Hastings-Metropolis algorithm with proposal q_{Σ_t} to sample X_{t+1} .

Sampling multimodal densities in high dimensional sampling space Introduction Adaptive Monte Carlo samplers

Adaptive MC sampler: example of adaptive MCMC (2/2)

- Nevertheless, this receipe is not designed for any context.
- Example: multimodality

Target distribution: mixture of 20 Gaussian in \mathbb{R}^2 . The means of the Gaussians are indicated with a red cross. $5 \, 10^6$ i.i.d. draws

Adaptive Hastings Metropolis: $5\,10^6~{\rm draws}$

Adaptive Monte Carlo samplers

Adaptive MC sampler: example of Adaptive Importance Sampling (1/2)

- Design parameter: the proposal distribution
- Optimal criterion: choose the proposal density q among a (parametric) family ${\cal Q}$ as the solution of

$$\operatorname{argmin}_{q \in \mathcal{Q}} \int \log \left(\frac{\pi(x)}{q(x)} \right) \ \pi(x) \, \lambda(dx) \Longleftrightarrow \operatorname{argmax}_{q \in \mathcal{Q}} \int \log q(x) \ \pi(x) \, \lambda(dx)$$

• Iterative algorithm: O. Cappé, A. Guillin, J.M. Marin, C.Robert (2004)

Adaption Update the sampling distribution

$$q_t = \operatorname{argmax}_{q \in \mathcal{Q}} \frac{1}{n} \sum_{k=1}^n \log q(X_k^{(t-1)}) \ \frac{\pi(X_k^{(t-1)})}{q_{t-1}(X_k^{(t-1)})}$$

Sampling Draw points $(X_k^{(t)})_k$ + importance reweighting

$$\pi \approx \frac{1}{n} \sum_{k=1}^{n} \frac{\pi(X_{k}^{(t)})}{q_{t}(X_{k}^{(t)})} \ \delta_{X_{k}^{(t)}}$$

Adaptive Monte Carlo samplers

Adaptive MC sampler: example of Adaptive Importance Sampling (2/2)

• Nevertheless, it is known that such Importance Sampling techniques are not robust to the dimension: when sampling on \mathbb{R}^{ℓ} with $\ell > 15$, the degeneracy of the importance ratios

$$\frac{\pi(X_k)}{q(X_k)}$$

can not be avoided.

Conclusion

- Usual adaptive Monte Carlo samplers are not robust (enough) to the context of
 - \bullet multimodality of the target distribution $\pi:$ how to jump from modes to modes.
 - large dimension of the sampling space

Importance Sampling: $\frac{\pi(x)}{q(x)}$ MCMC: $1 \wedge \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)} = 1 \wedge \frac{\pi(y)}{\pi(x)}$ when q is a symetric kernel

• New Monte Carlo samplers combine

tempering techniques and/or biasing potential techniques and $% \left({{{\left({{{{\bf{n}}_{{\rm{c}}}}} \right)}_{{\rm{c}}}}} \right)$

sampling steps.

Outline

Introduction

Tempering-based Monte Carlo samplers The Equi-Energy sampler

Biasing Potential-based Monte Carlo sampler

Convergence Analysis

Tempering: the idea

- Learn a well fitted proposal mecanism by considering tempered versions $\pi^{1/T}$ (T > 1) of the target distribution π .
- Hereafter, an example where tempering is plugged in a MCMC sampler.

- Tempering-based Monte Carlo samplers

L The Equi-Energy sampler

Example: Equi-Energy sampler (1/6)

Kou, Zhou and Wong (2006)

• In the MCMC proposal mecanism, allow to pick a point from an auxiliary process designed to have better mixing properties.

Tempering-based Monte Carlo samplers

The Equi-Energy sampler

Example: Equi-Energy sampler (2/6)

Algorithm: at iteration t, given

the current state X_t

the samples Y_1, \cdots, Y_t from the auxiliary process

- with probability 1ϵ , draw $X_{t+1} \sim \text{MCMC}$ kernel with invariant distribution π
- **9** with probability ϵ , choose a point Y_{ℓ} among the auxiliary samples in the same energy level as X_t and accept/reject the move $X_{t+1} = Y_{\ell}$.

- Tempering-based Monte Carlo samplers

The Equi-Energy sampler

Example: Equi-Energy sampler (3/6), numerical illustration

$\begin{array}{ll} \pi \mbox{ is a mixture of } 20 \mbox{ Gaussian distributions.} \\ \mbox{With } 4 \mbox{ auxiliary processes } \pi^{\beta_4}, \cdots, \pi^{\beta_1}, \qquad 0 < \beta_4 < \cdots < \beta_1 < 1. \end{array}$

- Tempering-based Monte Carlo samplers

The Equi-Energy sampler

Example: Equi-Energy sampler (4/6), numerical illustration

Schreck, F. and Moulines (2013)

• Problem: Motif sampling in biological sequences

- objective: find where motifs (a subsequence of length w = 12) are, in a ADN sequence of length L = 2000. Observation: (s_1, \dots, s_L) with $s_l \in \{A, C, G, T\}$. Quantity of interest: motifs position collected in (a_1, \dots, a_L) with $a_j \in \{0, \dots, w\}$

L The Equi-Energy sampler

Example: Equi-Energy sampler (4/6), numerical illustration

Schreck, F. and Moulines (2013)

• Result: EE with 4 auxiliary chains and 3 energy rings

- Tempering-based Monte Carlo samplers

The Equi-Energy sampler

Example: Equi-Energy sampler (5/6), design parameters

Design parameters

the probability of interaction ϵ the number of auxiliary processes and the scale of the β_i the energy rings the MCMC kernels for the local moves

Convergence Analysis: Andrieu, Jasra, Doucet and Del Moral (2007,2008); F., Moulines, Priouret (2012); F., Moulines, Priouret and Vandekerkhove (2013)

Adaptive version of Equi Energy Sampler: Schreck, F. and Moulines (2013); Baragatti, Grimaud and Pommeret (2013)

L The Equi-Energy sampler

Example: Equi-Energy sampler (6/6), transition kernel

• Let us describe the conditional distribution of X_{t+1} given the past:

$$P_{\theta_t}(X_t, A) = (1 - \epsilon) P(X_t, A) + \epsilon \int \cdots \underbrace{g(X_t, y) \theta_t(dy)}_{\text{proposition with selection}}$$

where

$$\theta_t = \frac{1}{t} \sum_{k=1}^t \delta_{Y_k}$$

L The Equi-Energy sampler

Example: Equi-Energy sampler (6/6), transition kernel

• Let us describe the conditional distribution of X_{t+1} given the past:

$$P_{\theta_t}(X_t, A) = (1 - \epsilon) P(X_t, A)$$

+ $\epsilon \int \underbrace{1 \wedge \frac{\pi(y) g(y, X_t) \pi^{\beta}(X_t)}{\pi(X_t) g(X_t, y) \pi^{\beta}(y)}}_{\text{proposition with selection}} \underbrace{g(X_t, y) \theta_t(dy)}_{\text{proposition with selection}}$

acceptance-rejection

where

$$\theta_t = \frac{1}{t} \sum_{k=1}^t \delta_{Y_k}$$

L The Equi-Energy sampler

Example: Equi-Energy sampler (6/6), transition kernel

• Let us describe the conditional distribution of X_{t+1} given the past:

$$P_{\theta_t}(X_t, A) = (1 - \epsilon) P(X_t, A)$$

+ $\epsilon \int \underbrace{1 \wedge \frac{\pi(y) g(y, X_t) \pi^{\beta}(X_t)}{\pi(X_t) g(X_t, y) \pi^{\beta}(y)}}_{\text{proposition with selection}} \underbrace{g(X_t, y) \theta_t(dy)}_{\text{proposition with selection}}$

acceptance-rejection

where

$$\theta_t = \frac{1}{t} \sum_{k=1}^t \delta_{Y_k}$$

Outline

Introduction

Tempering-based Monte Carlo samplers

Biasing Potential-based Monte Carlo sampler Wang-Landau samplers

Convergence Analysis

The idea

• Among the Importance Sampling Monte Carlo sampler

$$\pi \approx \frac{1}{n} \sum_{t=1}^{n} \frac{\pi(X_t)}{q_{\star}(X_t)} \delta_{X_t} \qquad \text{where } (X_t)_t \text{ approximates } q_{\star}$$

• Idea from the molecular dynamics field; see e.g. Chopin, Lelièvre and Stoltz (2012) for the extension to Computational Statistics Choose a proposal distribution of the form

$$q_{\star}(x) = \pi(x) \exp\left(-A(\xi(x))\right)$$

where $A(\xi(x))$ is a biasing potential depending on few "directions of metastability" $\xi(x)$ and such that q is "less multimodal" than π .

• Example:

Consider a partition of X in d strata: X_1, \dots, X_d and set $\xi(x) = i$ for any $x \in X_i$.

Biasing Potential-based Monte Carlo sampler

Wang-Landau samplers

Example: Wang-Landau algorithms (1/4)

Wang and Landau (2001) - very popular algorithm in the molecular dynamics field

• Wang-Landau type algorithms: learn adaptively the proposal distribution

At iteration t:

- approximation q_t of q_{\star}
- draw X_t approximating q_t , and compute its associated importance weight $\pi(X_t)/q_t(X_t)$.

$$\pi \approx \frac{1}{n} \sum_{t=1}^{n} \frac{\pi(X_t)}{q_t(X_t)} \delta_{X_t}$$

Wang-Landau samplers

Wang-Landau algorithms (2/4)

• Key idea: q_{\star} is obtained by *locally biasing* the target distribution

$$q_{\star}(x) \propto \sum_{i=1}^{d} \frac{\pi(x)}{\theta_{\star}(i)} \mathbb{1}_{\mathbb{X}_{i}}(x)$$

where

- X_1, \cdots, X_d is a partition of the sampling space X.
- the weights $heta_{\star}(i)$ are given by

$$\theta_{\star}(i) = \int_{\mathbb{X}_i} \pi(x) \, dx.$$

With this biasing strategy, the proposal distribution visits each stratum X_i with the same frequency

$$\int_{\mathbb{X}_i} q_\star(x) \, dx = \frac{1}{d}.$$

Wang-Landau samplers

Wang-Landau algorithms (2/4)

• Key idea: q_{\star} is obtained by *locally biasing* the target distribution

$$q_{\star}(x) \propto \sum_{i=1}^{d} \frac{\pi(x)}{\theta_{\star}(i)} \mathbb{1}_{\mathbb{X}_{i}}(x)$$

where

- X_1, \cdots, X_d is a partition of the sampling space X.
- the weights $heta_{\star}(i)$ are given by

$$\theta_{\star}(i) = \int_{\mathbb{X}_i} \pi(x) \, dx.$$

With this biasing strategy, the proposal distribution visits each stratum X_i with the same frequency

$$\int_{\mathbb{X}_i} q_\star(x) \ dx = \frac{1}{d}.$$

Unfortunately,

- $\theta_{\star}(i)$ are unknown and have to be learnt on the fly.

- exact sampling under q_{\star} is not possible, but it can be replaced by a MCMC step.

Wang-Landau samplers

Wang-Landau algorithms (3/4)

Wang-Landau algorithm: at iteration t, given the current point X_t the current bias $\theta_t = (\theta_t(1), \cdots, \theta_t(d))$

Draw a new point

 $X_{t+1} \sim \mathsf{MCMC}$ with invariant distribution $q_t(x) \propto \sum_{i=1}^d \frac{\pi(x)}{\theta_t(i)} \mathbb{I}_{\mathbb{X}_i}(x)$

2 Update the bias θ_{t+1} .

(9) In parallel, update the approximation of π

$$\pi \propto \frac{1}{n} \sum_{t=1}^{n} \left(d \sum_{i=1}^{d} \theta_t(i) \mathbb{I}_{\mathbb{X}_i}(X_t) \right) \, \delta_{X_t}$$

Wang-Landau samplers

Wang-Landau algorithms (4/4)

To learn θ_{\star} on the fly:

• Different strategies in the literature, based on Stochastic Approximation algorithms with controlled Markov chain dynamics $(X_t)_t$

$$\theta_{t+1}(i) = \theta_t(i) + \gamma_{t+1} \mathcal{H}_i(\theta_t, X_{t+1})$$

where \mathcal{H}_i is chosen so that

- penalize the stratum currently visited: $\mathcal{H}_i(\theta_t, X_{t+1}) > 0$ iff $X_{t+1} \in \mathbb{X}_i$

- the mean field function $\theta\mapsto\int \mathcal{H}(\theta,x)\,q_\star(x)dx$ admits θ_\star as the unique root.

Wang-Landau samplers

Wang-Landau algorithms (4/4)

To learn θ_{\star} on the fly:

• Different strategies in the literature, based on Stochastic Approximation algorithms with controlled Markov chain dynamics $(X_t)_t$

$$\theta_{t+1}(i) = \theta_t(i) + \gamma_{t+1} \mathcal{H}_i(\theta_t, X_{t+1})$$

where \mathcal{H}_i is chosen so that

- penalize the stratum currently visited: $\mathcal{H}_i(\theta_t, X_{t+1}) > 0$ iff $X_{t+1} \in \mathbb{X}_i$

- the mean field function $\theta \mapsto \int \mathcal{H}(\theta, x) q_{\star}(x) dx$ admits θ_{\star} as the unique root.

• Two examples of updating rules:

• if $X_{t+1} \in \mathbb{X}_i$

$$\begin{aligned} \theta_{t+1}(i) &= \theta_t(i) + \gamma_{t+1} \, \theta_t(i) (1 - \theta_t(i)) \\ \theta_{t+1}(k) &= \theta_t(k) - \gamma_{t+1} \, \theta_t(i) \theta_t(k) \qquad k \neq i \end{aligned}$$

2

$$S_{t+1}(j) = S_t(j) + \gamma \,\theta_t(j) \,\mathbb{I}_{\mathbb{X}_j}(X_{t+1})$$
$$\theta_{t+1}(j) = \frac{S_{t+1}(j)}{\sum_{r=1}^d S_{t+1}(r)}$$

Transition kernel

- The conditional distribution of X_{t+1} given the past is a MCMC kernel with invariant distribution q_t , denoted by P_{θ_t}
- Example: HM with Gaussian proposal distribution

$$P_{\theta}(x,A) = \int_{A} \left(1 \wedge \frac{\pi(y)}{\pi(x)} \frac{\theta(\mathsf{str}(x))}{\theta(\mathsf{str}(y))} \right) \mathcal{N}(x,\Sigma)[dy] \\ + \delta_{x}(A) \int 1 - \left(1 \wedge \frac{\pi(y)}{\pi(x)} \frac{\theta(\mathsf{str}(x))}{\theta(\mathsf{str}(y))} \right) \mathcal{N}(x,\Sigma)[dy]$$

Wang-Landau samplers

Numerical illustration, a toy example

Target distribution: mixture of 20 Gaussian in $\mathbb{R}^2.$ The means of the Gaussians are indicated with a red cross

Wang Landau algorithm: 50 strata, obtained by partitioning the energy levels.

 $5\,10^6$ draws approximating q_{\star} : the sampler was able to jump the deep valleys and draw points around all the modes.

Numerical illustration: Structure of a protein

In biophysics, structure of a protein from its sequence.

AB model: two types of monomers A (hydrophobic) and B (hydophilic), linked by rigidbonds of unit length to form (2D) chains. Given a sequence, what is the optimal shape of the N monomers?

Minimize the energy function $\mathcal{H}(x)$ on

$$x = (x_{1,2}, x_{2,3}, \cdots, x_{N-2,N-1}) \in [-\pi, \pi]^{N-2}$$

where

$$\mathcal{H}(x) = \frac{1}{4} \sum_{i=1}^{N-2} \left(1 - \cos(x_{i,i+1})\right) + 4 \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} \left(\frac{1}{r_{ij}^{12}} - \frac{C(\sigma_i, \sigma_j)}{r_{ij}^6}\right)$$

 $x_{i,j}$ is the angle between *i*-th and *j*-th bond vector

 r_{ij} is the distance between monomers i,j $C(\sigma_i,\sigma_j)=1$ (resp. 1/2 and -1/2) between monomers AA (resp. BB and AB).

Numerical illustration: Structure of a protein

In biophysics, structure of a protein from its sequence.

AB model: two types of monomers A (hydrophobic) and B (hydophilic), linked by rigidbonds of unit length to form (2D) chains. Given a sequence, what is the optimal shape of the N monomers?

Minimize the energy function $\mathcal{H}(x)$ on

 $\min \mathcal{H}(x) \Longleftrightarrow \max \pi_n(x) \propto \exp(-\beta_n \mathcal{H}(x)) \qquad \beta_n > 0$

Numerical illustration: Structure of a protein

In biophysics, structure of a protein from its sequence.

AB model: two types of monomers A (hydrophobic) and B (hydophilic), linked by rigidbonds of unit length to form (2D) chains. Given a sequence, what is the optimal shape of the N monomers?

(left) WL: initial config with energy 0.1945; (center) WL: optimal config with energy -3.2925; (right) optimal config in the literature with energy -3.2941

Wang-Landau samplers

Design parameters (1/4)

- Choice of the biasing potential $A(\xi(x))$ i.e. in the Wang-Landau algorithms
 - Number of strata and the strata
 - The update strategy for the bias vector θ_t
- The MCMC kernels with target distribution q_t

Convergence analysis: Liang (2005); Liang, Liu and Carroll (2007); Atchadé and Liu (2010); Jacob and Ryder (2012); F., Jourdain, Kuhn, Lelièvre and Stoltz (2014a); F., Jourdain, Lelièvre and Stoltz (submitted)

Efficiency analysis: F., Jourdain, Kuhn, Lelièvre and Stoltz (2014b); F., Jourdain, Lelièvre and Stoltz (submitted)

Adaptive Wang Landau: Bornn, Jacob, Del Moral and Doucet (2012)

Design parameters (2/4)

- Role on the limiting behavior of the sampler: convergence occurs whatever the number of strata and the strata, for many MCMC samplers and many update strategies of the bias vector.
- Role on the transient phase of the sampler: for example, how long is the exit time from a mode?

Let us illustrate the role of some design parameters on the exit time from a mode when:

$$\pi(x_1, x_2) \propto \exp(-\beta \mathcal{U}(x_1, x_2)) \mathbb{I}_{[-R,R]}(x_1)$$

d strata (see the right plot); the chains are initialised at $\left(-1,0\right)$

Biasing Potential-based Monte Carlo sampler

└─ Wang-Landau samplers

Design parameters (3/4)

FIG.: [left] Wang Landau, $T = 110\,000$ and d = 48. [right] Hastings Metropolis, $T = 2\,10^6$; the red line is at $x = 110\,000$

 $t_{\beta} = C(\beta, \sigma, d) \exp(\beta \mu)$

Wang-Landau samplers

Design parameters (4/4)

F., Jourdain, Lelièvre, Stoltz (2014)

We compute the (mean) exit times t_{β} from the left mode (time to reach the right mode x > 1) for different values of d and [left] a fixed proposal scale σ in the MCMC samplers; [right] a proposal scale $\sigma \propto 1/d$ in the MCMC samplers. We observe

with a slope μ independent of β

Sampling multimodal densities in high dimensional sampling space — Convergence Analysis

Outline

Introduction

Tempering-based Monte Carlo samplers

Biasing Potential-based Monte Carlo sampler

Convergence Analysis

Controlled Markov chains Sufficient conditions for the cvg in distribution Convergence results

Convergence Analysis

Controlled Markov chains

Controlled Markov chains (2/2)

• These new samplers combine adaption/interaction and sampling: the draws $(X_t)_t$ are from a *controlled Markov chain*

$$\mathbb{E}\left[h(X_{t+1})|\mathcal{F}_t\right] = \int h(y)P_{\theta_t}(X_t, dy)$$

where $(P_{\theta}, \theta \in \Theta)$ is a family of Markov kernels having an invariant distribution π_{θ} .

- Examples
 - Wang Landau: the conditional distribution $X_{t+1}|\mathcal{F}_t$ is a MCMC kernel with invariant distribution distribution $q_t \propto \sum_{i=1}^d \frac{\pi(x)}{\theta_t(i)} \mathbb{I}_{\mathbb{X}_i}(x)$. Here, π_{θ} depends on θ and its expression is known.
 - **2** Equi-Energy: the conditional distribution $X_{t+1}|\mathcal{F}_t$ is a MCMC kernel indexed by the empirical distribution θ_t of the auxiliary process. Here, π_{θ} exists but its expression is **un**known.
 - **3** Adaptive Hastings-Metropolis: the conditional distribution $X_{t+1}|\mathcal{F}_t$ is a MCMC kernel with invariant distribution π and proposal distribution $\mathcal{N}(X_t, \theta_t)$ Here, all the kernels have the same invariant distribution.

Convergence Analysis

Controlled Markov chains

Controlled Markov chains (2/2)

• Question: let $(P_{\theta}, \theta \in \Theta)$ be a family of Markov kernels having the same invariant distribution π . Let $(\theta_t)_t$ be some \mathcal{F}_t -adapted random processes and draw

$$X_{t+1}|\mathcal{F}_t \sim P_{\theta_t}(X_t, \cdot)$$

Does $(X_t)_t$ converges (say in distribution) to π ?

Convergence Analysis

Controlled Markov chains

Controlled Markov chains (2/2)

 Question: let (P_θ, θ ∈ Θ) be a family of Markov kernels having the same invariant distribution π. Let (θ_t)_t be some F_t-adapted random processes and draw

$$X_{t+1}|\mathcal{F}_t \sim P_{\theta_t}(X_t, \cdot)$$

Does $(X_t)_t$ converges (say in distribution) to π ?

No.

• Example:

where

$$P_{\ell} = \begin{pmatrix} 1 - t_{\ell} & t_{\ell} \\ t_{\ell} & 1 - t_{\ell} \end{pmatrix}.$$

We have $\pi P_{\ell} = \pi$ with $\pi \propto (1,1)$ but the transition matrix of $(X_t)_t$ is

 $\tilde{P} = \begin{pmatrix} 1 - t_0 & t_0 \\ t_1 & 1 - t_1 \end{pmatrix}$ with invariant distribution $\tilde{\pi} \propto (t_1, t_0)$

Convergence Analysis

Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution (1/3)

Convergence Analysis

Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution (2/3)

$$\begin{split} \mathbb{E}\left[h(X_t)|\text{past}_{t-N}\right] &- \int h(y) \ \pi_{\theta_{\star}}(dy) = \mathbb{E}\left[h(X_t)|\text{past}_{t-N}\right] - \int h(y) \ P_{\theta_{t-N}}^N(X_{t-N}, dy) \\ &+ \int h(y) \ P_{\theta_{t-N}}^N(X_{t-N}, dy) - \int h(y) \ \pi_{\theta_{n-N}}(dy) \\ &+ \int h(y) \ \pi_{\theta_{n-N}}(dy) - \int h(y) \ \pi_{\theta_{\star}}(dy) \end{split}$$

• Diminishing adaption condition Roughly speaking:

$$\operatorname{dist}(P_{\theta}, P_{\theta'}) \leq \operatorname{dist}(\theta, \theta')$$

If $\theta_t-\theta_{t-1}$ are close, then the transition kernels P_{θ_t} and $P_{\theta_{t-1}}$ are close also.

• Containment condition Roughly speaking:

$$\lim_{N \to \infty} \operatorname{dist}(P^N_\theta, \pi_\theta) = 0$$

at some rate depending smoothly on θ .

• Regularity in θ of π_{θ} so that

$$\lim_{t} \theta_t = \theta_\star \implies \operatorname{dist} \left(\pi_{\theta_t} - \pi_{\theta_\star} \right) \to 0$$

Convergence Analysis

Sufficient conditions for the cvg in distribution

Sufficient conditions for the cvg in distribution (3/3)

F., Moulines, Priouret (2012)

Assume

- A. (Containment condition)
 - $\exists \pi_{\theta} \text{ s.t. } \pi_{\theta} P_{\theta} = \pi_{\theta}$
 - for any $\epsilon>0$, there exists a non-decreasing positive sequence $\{r_\epsilon(n),n\geq 0\}$ such that $\limsup_{n\to\infty}r_\epsilon(n)/n=0$ and

$$\limsup_{n \to \infty} \mathbb{E} \left[\| P_{\theta_{n-r_{\epsilon}(n)}}^{r_{\epsilon}(n)}(X_{n-r_{\epsilon}(n)}, \cdot) - \pi_{\theta_{n-r_{\epsilon}(n)}} \|_{\mathrm{tv}} \right] \leq \epsilon$$

B. (Diminishing adaptation) For any $\epsilon > 0$,

$$\lim_{n \to \infty} \sum_{j=0}^{r_{\epsilon}(n)-1} \mathbb{E}\left[\sup_{x} \|P_{\theta_{n-r_{\epsilon}(n)+j}}(x,\cdot) - P_{\theta_{n-r_{\epsilon}(n)}}(x,\cdot)\|_{\mathrm{tv}}\right] = 0$$

C. (Convergence of the invariant distributions) $(\pi_{\theta_n})_n$ converges weakly to π almost-surely.

Then for any bounded and continuous function \boldsymbol{f}

$$\lim_{n} \mathbb{E}\left[f(X_n)\right] = \pi(f)$$

Convergence results

Convergence results

The literature provides sufficient conditions for

- Convergence in distribution of $(X_t)_t$
- Strong law of large numbers for $(X_t)_t$
- Central Limit Theorem for $(X_t)_t$

G.O. Roberts, J.S. Rosenthal. Coupling and Ergodicity of Adaptive Markov chain Monte Carlo algorithms. J. Appl. Prob. (2007)

G. Fort, E. Moulines, P. Priouret. Convergence of adaptive MCMC algorithms: ergodicity and law of large numbers. Ann. Stat. 2012

G. Fort, E. Moulines, P. Priouret and P. Vandekerkhove. A Central Limit Theorem for Adaptive and Interacting Markov Chain. Bernoulli, 2013.

Conditions successfully applied to establish the convergence of Adaptive Hastings-Metropolis, (adaptive) Equi-Energy, Wang-Landau, ···

Example: Application to Wang Landau (1/2)

Theorem (F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume \cdots Then for any bounded measurable function f

$$\lim_{t} \mathbb{E} \left[f(X_t) \right] = \int f(x) \ q_\star(x) \ d\lambda(x)$$
$$\lim_{T} \frac{1}{T} \sum_{t=1}^{T} f(X_t) = \int f(x) \ q_\star(x) \ d\lambda(x) \text{ almost-surely}$$

Convergence Analysis

Convergence results

Example: Application to Wang Landau (1/2)

Theorem (F., Jourdain, Kuhn, Lelièvre, Stoltz (2014-a))

Assume

- The target distribution $\pi d\lambda$ satisfies $0 < \inf_{\mathbb{X}} \pi \le \sup_{\mathbb{X}} \pi < \infty$ and $\inf_i \pi(\mathbb{X}_i) > 0$.
- **②** For any θ , P_{θ} is a Hastings-Metropolis kernel with invariant distribution

$$\propto \sum_{i=1}^d \frac{\pi(x)}{\theta(i)} \ \mathbb{I}_{\mathbb{X}_i}(x)$$

and proposal distribution $q(x,y)d\lambda(y)$ such that $\inf_{\mathbb{X}^2} q > 0$.

In the step-size sequence is non-increasing, positive,

$$\sum_{t} \gamma_t = \infty \qquad \sum_{t} \gamma_t^2 < \infty$$

Convergence Analysis

Convergence results

Example: Application to Wang Landau (2/2)

Sketch of proof (1.) The containment condition: There exist $\rho \in (0,1)$ and C such that

$$\sup_{x} \sup_{\theta} \|P_{\theta}^{t}(x,\cdot) - \pi_{\theta}\|_{\mathrm{TV}} \leq C \, \rho^{t}$$

(2.) The diminishing adaption condition: There exists C such that for any θ, θ'

$$\sup_{x} \|P_{\theta}(x,\cdot) - P_{\theta'}(x,\cdot)\|_{\mathrm{TV}} \le C \sum_{i=1}^{d} \left|1 - \frac{\theta(i)}{\theta'(i)}\right|$$

The update of the parameter satisfies: there exists C' such that $\forall t$

$$\|\theta_{t+1} - \theta_t\| \le C' \,\gamma_{t+1}$$

(3.) Convergence of π_{θ_n} Requires to prove the convergence of Stochastic Approximation algorithm with controlled Markov chain dynamics.