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Problem Statement

(P) Argminθ∈Θ {−`(θ) + g(θ)} ,

where ` is a smooth log-likelihood function or some other smooth
statistical learning function, and g is a possibly non-smooth convex
penalty term.
This problem has attracted a lot of attention with the growing need to
address high-dimensional statistical problems
This work focuses on the case where the function ` and its gradient ∇`
are both intractable, and where ∇` is given by

∇`(θ) =

∫
Hθ(x)πθ(dx),

for some probability measure πθ.
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Network structure

Problem: Estimate sparse network structures from measurements
on the nodes.

For discrete measurement: amounts to estimate a Gibbs measure
with pair-wise interactions

fθ(x1, . . . , xp) =
1

Zθ
exp


p∑
i=1

θiiB0(xi) +
∑

1≤j<i≤p

θijB(xi, xj)

 ,

for a function B0 : X→ R, and a symmetric function
B : X× X→ R, where X is a finite set.

The absence of an edge encodes conditional independence.
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Network structure

Each graph represents a model class of graphical models; learning a
graph then is a model class selection problem.

Constraint-based approaches: test conditional independence from
the data and then determine a graph that most closely represents
those independencies.

Score-based approaches combine a metric for the complexity of the
graph with a measure of the goodness of fit of the graph to the
data... but the number of graph structures grows
super-exponentially, and the problem is in general NP-hard.
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Network structure

For x ∈ Xp, define B̄(x)
def
= (Bjk(xj , xk))1≤j,k≤p ∈ Rp×p.

The `1-penalized maximum likelihood estimate of θ is obtained by
solving an optimization problem of the form (P) where ` and g are
given by

`(θ) =
1

n

n∑
i=1

〈
θ, B̄(x(i))

〉
− logZθ, g(θ) = λ

∑
1≤k<j≤p

|θjk| .
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Fisher identity

Fact 1: Zθ is the normalization constant is given by

Zθ =
∑
x

exp(
〈
θ, B̄(x)

〉
where the sum is over all the possible configurations.

Fact 2: the gradient ∇ logZθ is the expectation of the sufficient
statistics:

∇ logZθ =
∑
x

B̄(x)fθ(x)

Problem: None of these quantities can be computed explicitly...
Nevertheless, they can be estimated using Monte Carlo integration.
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General framework

Argminθ∈Θ {−`(θ) + g(θ)} ,

where

` is a smooth log-likelihood function or some other smooth
statistical learning function,

g is a non-smooth convex sparsity-inducing penalty.

re

the function ` and its gradient ∇` are intractable,

The score function ∇` is given by

∇`(θ) =

∫
Hθ(x)πθ(dx),

for some probability measure πθ on some measurable space (X,B),
and some function Hθ : X→ Θ.
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Definition

Definition: Proximal mapping associated with closed convex function
g and stepsize γ

proxγ(θ) = Argminϑ∈Θ

(
g(ϑ) + (2γ)−1‖ϑ− θ‖22

)
If g = IK, where K is a closed convex set (IK(x) = 0, x ∈ K,
IK(x) =∞ otherwise), then proxγ is the Euclidean projection on K

proxγ(θ) = Argminϑ∈K ‖ϑ− θ‖22 = PK(θ)

if g(θ) =
∑p
i=1 λi|θi| then proxg is shrinkage (soft threshold)

operation

[Sλ,γ(θ)]i =


θi − γλi θi ≥ γλi
0 |θi| ≤ γλi
θi + γλi θi ≤ −γλi

Eric Moulines ENSL



Motivation
Proximal Gradient Algorithm

Stochastic proximal gradient algorithm
Network structure estimation

Conclusion

Proximal gradient method

Unconstrained problem with cost function split in two components

Minimize f(θ) = −`(θ) + g(θ)

−` convex, differentiable with dom(g) = Rn

g closed, convex, possibly non differentiable... but proxg is
inexpensive !

Proximal gradient algorithm

θ(k) = proxγkg(θ
(k−1) + γk∇`(θ(k−1)))

where {γk, k ∈ N} is a sequence stepsizes, which either be constant,
decreasing or determined by line search

Eric Moulines ENSL
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Interpretation

Denote
θ+ = proxγ(θ + γ∇`(θ))

from definition of proximal operator:

θ+ = Argminϑ(g(ϑ) + (2γ)−1‖ϑ− θ − γ∇`(θ)‖22)

= Argminϑ(g(ϑ)− `(θ)−∇`(θ)T (ϑ− θ) + (2γ)−1‖ϑ− θ‖22) .

θ+ minimizes g(ϑ) plus a simple quadratic local model of −`(ϑ)
around θ

If γ ≤ 1/L, the surrogate function on the RHS majorizes the target
function, and the algorithm might be seen as a specific instance of
the Majorization-Minimization algorithm.
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Some specific examples

if g(θ) = 0 then proximal gradient = gradient method.

θ(k) = θ(k−1) + γk∇`(θ(k−1))

if g(θ) = IK(θ), then proximal gradient = projected gradient

θ(k) = PK(θ(k−1) + γk∇`(θ(k−1))) .

if g(θ) =
∑
i λi|θi| then proximal gradient = soft-thresholded

gradient
θ(k) = Sλ,γk(θ(k−1) + γk∇`(θ(k−1)))
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Gradient map

The proximal gradient may be equivalently rewritten as

θ(k) = θ(k−1) − γkGγk(θ(k−1))

where the function Gγ is given by

Gγ(θ) =
1

γ
(θ − proxγ(θ + γ∇`(θ)))

The subgradient characterization of the proximal map implies

Gγ(θ) ∈ −∇`(θ) + ∂g(θ − γGγ(θ))

Therefore, Gγ(θ) = 0 if and only if θ minimizes f(θ) = −`(θ) + g(θ)
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Convergence of the proximal gradient

Assumptions: f(θ) = −`(θ) + g(θ)

∇` is Lipschitz continuous with constant L > 0

‖∇`(θ)−∇`(ϑ)‖2 ≤ L‖θ − ϑ‖2 ∀θ, ϑ ∈ Θ

optimal value f? is finite and attained at θ? (not necessarily unique)

Theorem

f(θ(k))− f? decreases at least as fast as 1/k

if fixed step size γk ≤ 1/L is used

if backtracking line search is used
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Back to the original problem !

The score function ∇` is given by

∇`(θ) =

∫
Hθ(x)πθ(dx) .

Therefore, at each iteration, the score function should be
approximated.

The case where πθ = π and and random variables {Xn, n ∈ N}
each marginally distributed according to π = online learning
(Juditsky, Nemirovski, 2010, Duchi et al, 2011).
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Back to the original problems !

∇`(θ) =

∫
Hθ(x)πθ(dx) .

πθ depends on the unknown parameter θ...

Sampling directly from πθ is often not directly feasible. But one may
construct a Markov chain, with Markov kernel Pθ, such that
πθPθ = πθ

The Metropolis-Hastings algorithm or Gibbs sampling provides a
natural framework to handle such problems.
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Stochastic Approximation / Mini-batches g ≡ 0

θn+1 = θn + γn+1Hn+1

where Hn+1 approximates ∇`(θn).

Stochastic Approximation: γn ↓ 0 and Hn+1 = Hθn(Xn+1) and
Xn+1 ∼ Pθn(Xn, ·).

Mini-batches setting: γn ≡ γ and

Hn+1 = m−1
n+1

mn+1−1∑
j=0

H(θn, Xn+1,j) ,

where mn ↑ ∞ and {Xn+1,j}mn+1

j=1 is a run of the length mn+1 of a
Markov chain with transition kernel Pθn .

Beware ! For SA, n iterations = n simulations. For minibatches, n
iterations =

∑n
j=1mj simulations.
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Averaging

θ̄n
def
=

∑n
k=1 akθk∑n
k=1 ak

=

(
1− an∑n

k=1 ak

)
θ̄n−1 +

an∑n
k=1 ak

θn .

Stochastic approximation: take an ≡ 1, γn = Cn−α with
α ∈ (1/2, 1), then

√
n
(
θ̄n − θ∗

) D−→ N(0, σ2)

Mini-batch SA: take an ≡ mn, γn ≡ γ ≤ 1/(2L) and mn →∞
sufficiently fast, then

√
n
(
θ̄Nn − θ∗

) D−→ N(0, σ2)

where Nn is the number of iterations for n simulations:∑Nn

k=1mk ≤ n <
∑Nn+1
k=1 mk.
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Stochastic Approximation

θn+1 = θn + γn+1∇`(θn) + γn+1ηn+1

ηn+1 = Hθn(Xn+1)−∇`(θn) = Hθn(Xn+1)− πθn(Hθn) .

Idea Split the error into a martingale increment + remainder term

Key tool Poisson equation

Ĥθ − PθĤθ = Hθ − πθ(Hθ) .

Eric Moulines ENSL



Motivation
Proximal Gradient Algorithm

Stochastic proximal gradient algorithm
Network structure estimation

Conclusion

Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Decomposition of the error

ηn+1 = Hθn(Xn+1)− πθn(Hθn)

= Ĥθn(Xn+1)− PθnĤθn(Xn+1)

= Ĥθn(Xn+1)− PθnĤθn(Xn) + PθnĤθn(Xn+1)− PθnĤθn(Xn)

We further split the error

PθnĤθn(Xn+1)− PθnĤθn(Xn)

= Pθn+1
Ĥθn+1

(Xn+1)−PθnĤθn(Xn)+PθnĤθn(Xn+1)−Pθn+1
Ĥθn+1

(Xn+1) .

To prove that the remainder term goes to zero, it is required to prove the
regularity of the Poisson solution with respect to θ, to prove that θ 7→ Ĥθ

and θ 7→ PθĤθ is smooth in some sense.... this is not always a trivial
issue !
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Minibatch case

Assume that the Markov kernel is nice ...
Bias

E [ηn+1|Fn] = m−1
n+1

mn+1−1∑
j=0

(
νθnP

j
θn
Hθn − πθnHθn

)
= O(m−1

n+1)

Fluctuation

m−1
n+1

mn+1−1∑
j=0

Hθn(Xj)− πθn(Hθn)

= m−1
n+1

mn+1−1∑
j=1

Ĥθn(Xj)− PθnĤθn(Xj−1) + remainders
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Minibatches case

Contrary to SA, the noise ηn+1 in the recursion

θn+1 = θn + γ∇`(θn) + γηn+1

converges to zero a.s. and the stepsize is kept constant γn = γ.

Idea: perturbation of a discrete time dynamic system

θ̃k+1 = θ̃k + γ∇`(θ̃k)

having a unique fixed point and a Lyapunov function `:
`(θk+1) ≥ `(θk) in presence of vanishingly small perturbation ηn+1.

a.s convergence of perturbed dynamical system with a Lyapunov
function can be established under very weak assumptions...
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Stochastic proximal gradient

The stochastic proximal gradient sequence {θn, n ∈ N} can be rewritten
as

θn+1 = proxγn+1
(θn + γn+1∇`(θn) + γn+1ηn+1) ,

where ηn+1
def
= Hn+1 −∇`(θn) is the approximation error.

Questions:

Convergence and rate of convergence in the SA and mini-batch
settings ?

Stochastic Approximation / Minibatch: which one should I prefer ?

Tuning of the parameters (stepsize for SA, size of minibatches,
averaging weights, etc...)

Acceleration (à la Nesterov) ?
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Main result

Lemma

Suppose that {γn, n ∈ N} is decreasing and 0 < Lγn ≤ 1 for all n ≥ 1.
For any θ∗ ∈ Θ, and any nonnegative sequence {an, n ∈ N}, n∑

j=1

aj

{f(θ̄n)− f(θ∗)}

≤1

2

n∑
j=1

(
aj
γj
− aj−1

γj−1

)
‖θj−1 − θ?‖2 +

a0

2γ0
‖θ0 − θ∗‖2

+

n∑
j=1

aj
〈
Tγj (θj−1)− θ?, ηj

〉
+

n∑
j=1

ajγj‖ηj‖2 ,

where Tγ(θ) =
def
= proxγ (θ + γ∇`(θ)) is the gradient proximal map,
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Stochastic Approximation setting

Take aj = γj and decompose, using the Poisson equation, ηj = ξj + rj ,
where ξj is a martingale term and rj is a remainder term. n∑

j=1

γj

{f(θ̄n)− f(θ∗)} ≤
a0

2γ0
‖θ0 − θ∗‖2

+

n∑
j=1

γj
〈
Tγj (θj−1)− θ?, ξj

〉
+

n∑
j=1

γ2
j ‖ηj‖2 + remainders ,

The red term is a martingale with a bracket bounded by

n∑
j=1

γ2
j ‖θj−1 − θ?‖2E

[
‖ξj‖2

∣∣Fj−1

]
If
∑∞
j=1 γj =∞ and

∑∞
j=1 γ

2
j <∞, {θ̄n, n ∈ N} converges. rate of

convergence ln(n)/
√
n by taking γj = j−1/2.
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Minibatch setting

Theorem

Let {θ̄n, n ≥ 0} be the average estimator. Then for all n ≥ 1, n∑
j=1

aj

E
[
f(θ̄n)− f(θ∗)

]
≤ 1

2

n∑
j=1

(
aj
γj
− aj−1

γj−1

)
E
[
‖θj−1 − θ?‖2

]
+

a0

2γ0
E[‖θ0 − θ∗‖2]

+

n∑
j=1

ajE
[
‖θj−1 − θ?‖ ε(1)

j−1

]
+

n∑
j=1

ajγjE
[
ε
(2)
j−1

]
.

where

ε(1)
n

def
= ‖E [ηn+1 | Fn]‖ , ε(2)

n
def
= E

[
‖ηn+1‖2

∣∣∣Fn] .
Eric Moulines ENSL
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Stochastic Approximation vs minibatch
proximal Stochastic Approximation

Convergence analysis

Corollary

Suppose that γn ∈ (0, 1/L], and there exist constants C1, C2, B <∞
such that, for n ≥ 1,

E[ε(1)
n ] ≤ C1m

−1
n+1, E[ε(2)

n ] ≤ C2m
−1
n+1, and sup

n∈N
‖θn−θ?‖ ≤ B ,P−a.s.

Then, setting γn = γ, mn = n and an ≡ 1,

E [f(θn)− f(θ?)] ≤ C/n and E [f(θNn
)− f(θ?)] ≤ C/

√
n

where Nn is the number of iterations for n simulations. This is the same
rate than for the SA (without the logarithmic term).
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Potts model

We focus on the particular case where X = {1, . . . ,M}, and
B(x, y) = 1{x=y}, which corresponds to the well known Potts model

fθ(x1, . . . , xp) =
1

Zθ
exp


p∑
i=1

θiiB0(xi) +
∑

1≤j<i≤p

θij1{xi=xj}

 .

The term
∑p
i=1 θiiB0(xi) is sometimes referred to as the external

field and defines the distribution in the absence of interaction.

We focus on the case where the interactions terms θij for i 6= j are
nonnegative. This corresponds to networks with there is either no
interaction, or collaborative interactions between the nodes.
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Algorithm

At the k-th iteration, and given Fk = σ(θ1, . . . , θk):

1 generate the Xp-valued Markov sequence {Xk+1,j}
mk+1

j=0 with
transition Pθk and initial distribution νθk , and compute the
approximate gradient

Hk+1 =
1

n

n∑
i=1

B̄(x(i))− 1

mk+1

mk+1∑
j=1

B̄(Xk+1,j) ,

2 Compute

θk+1 = ΠKa

(
sγk+1,λ (θk + γk+1Hk+1)

)
,

the operation sγ,λ(M) soft-thresholds each entry of the matrix M ,
and the operation ΠKa(M) projects each entry of M on [0, a].
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MCMC scheme

For j 6= i, we set bij = eθij . Notice that bij ≥ 1. For x = (x1, . . . , xp),

fθ(x) =
1

Zθ
exp

(
p∑
i=1

θiiB0(xi)

) ∏
1≤j<i≤p

(
bij1{xi=xj} + 1{xi 6=xj}

)
.

Augment the likelihood with auxiliary variables {δij , 1 ≤ j < i ≤ p},
δij ∈ {0, 1} such that the joint distribution of (x, δ) is given by

f̄θ (x, δ) ∝ exp

(
p∑
i=1

θiiB0(xi)

)
×
∏
j<i

(
1{xi=xj}bij

(
1− b−1

ij

)δij
b
δij−1
ij + 1{xi 6=xj}0

δij11−δij
)
.

The marginal distribution of x in this joint distribution is the same fθ
given above.
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MCMC scheme

The auxiliary variables {δij , 1 ≤ j < i ≤ p} are conditionally
independent given x = (x1, . . . , xp); if xi 6= xj , then δij = 0 with
probability 1. If xi = xj , then δij = 1 with probability 1− b−1

ij , and

δij = 0 with probability b−1
ij .

The auxiliary variables {δij , 1 ≤ j < i ≤ p} defines an undirected
graph with nodes {1, . . . , p} where there is an edge between i 6= j if
δij = 1, and there is no edge otherwise.
This graph partitions the nodes {1, . . . , p} into maximal clusters
C1, . . . , CK (a set of nodes where there is a path joining any two of
them).
Notice that δij = 1 implies xi = xj . Hence all the nodes in a given
cluster holds the same value of x.

f̄θ(x|δ) ∝
K∏
k=1

exp

(∑
i∈Ck

θiiB0(xi)

) ∏
j<i,(i,j)∈Ck

1{xi=xj}

 .
Eric Moulines ENSL
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Wolff algorithm

Given X = (X1, . . . , Xp)

1 Randomly select a node i ∈ {1, . . . , p}, and set C0 = {i}.
2 Do until C0 can no longer grow. For each new addition j to C0, and

for each j′ /∈ C0 such that θjj′ > 0, starting with δjj′ = 0, do the
following. If Xj = Xj′ , set δjj′ = 1 with probability 1− e−θjj′ . If
δjj′ = 1, add j′ to C0.

3 If Xi = v, randomly select v′ ∈ {1, . . . ,M} \ {v}, and propose a
new vector X̃ ∈ Xp, where X̃j = v′ for j ∈ C0 and X̃j = Xj for

j /∈ C0. Accept X̃ with probability

1 ∧ exp

(B0(v′)−B0(v))
∑
j∈C0

θjj

 .

Eric Moulines ENSL



Motivation
Proximal Gradient Algorithm

Stochastic proximal gradient algorithm
Network structure estimation

Conclusion

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Iterations

R
el

at
iv

e 
er

ro
r r

at
e

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1 Stoch. Grad.

Stoch. Grad. Averaged
Acc. scheme

0 200 400 600 800 1000

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Iterations

Tr
ue

 p
os

iti
ve

 ra
te

0 200 400 600 800 1000

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80 Stoch. Grad.

Acc. scheme

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

Iterations

Fa
ls

e 
di

sc
ov

er
y 

ra
te

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4 Stoch. Grad.

Acc. scheme

Figure : Simulation results for p = 50, n = 500 observations, 1% of
off-diagonal terms, minibatch, mn = 100 + n
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Figure : Simulation results for p = 100, n = 500 observations, 1% of
off-diagonal terms, n = 500 observations, 1% of off-diagonal terms, minibatch,
mn = 100 + n
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Figure : Simulation results for p = 200, n = 500 observations, 1% of
off-diagonal terms, 1% of off-diagonal terms, minibatch, mn = 100 + n
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Take-home message

Efficient and globally converging procedure for penalized likelihood
inference in incomplete data models are available if the complete
data likelihood is globally concave with convex sparsity-inducing
penalty (provided that computing the proximal operator is easy)

Stochastic Approximation and Minibatch algorithms achieve the
same rate, which is 1/

√
n where n is the number of simulations.

Minibatch algorithms are in general preferable if the computation of
the proximal operator is complex.

Thanks for your attention... and patience !

Eric Moulines ENSL
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