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Definition (Hawkes 1971)

A Hawkes process N is a point process on R(+) of intensity:

λt = µ+

∫ t

−∞
φ(t − s)dNs (1)

= µ+
∑
Ji<t

φ(t − Ji ) (2)

where µ ∈ R∗+ is the exogenous intensity and φ is a positive kernel
supported in R+ which satisfies

∫
φ < 1 and the Ji are the points

of N.
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Basic properties

Proposition (Hawkes 1971)

The process is well defined and admits a version with stationary
increments under the stability condition:

|φ| :=

∫
φ < 1.

Proposition
The average intensity of a stationary Hawkes process is

E [λt ] =
µ

1− |φ|
.

Thibault Jaisson Nearly unstable Hawkes processes



Introduction
Hawkes processes

Applications of Hawkes processes
Nearly unstable Hawkes processes

Definition and basic properties
Correlation structure

Endogeneity of a Hawkes process.

µ can be seen as the exogenous part of the intensity.
λt − µ =

∫ t
0 φ(t − s)dNs as the endogenous part of the

intensity.
E[λ]−µ
E[λ] = |φ| is thus a measure of the endogeneity of the

process.
|φ| close to one means that the process is very endogenous.
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Proposition (Dayri et al. 2012)

The correlation of the h-increments of stationary Hawkes processes

Ch
τ = Cov(Nt+τ+h − Nt+τ ,Nt+h − Nt)

can be computed:

Ch
τ = hΛ(gh

τ + (gh ∗ ψ)−τ + (gh ∗ ψ)τ + (gh ∗ ψ̃ ∗ ψ)τ )

where Λ = µ/(1− |φ|), ψ =
∑+∞

k=1 φ
∗k , ψ̃(x) = ψ(−x) and

gh
τ = (1− |τ |/h)+.

Proposition (Dayri et al. 2012)

Reversely, given an empirical correlation function, it is possible to
numerically find a φ which fits it.
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Various applications

Ecology (Hawkes, Oakes 1974).
Seismology (Ogata 1998).
Genomic analysis (Reynaud-Bouret, Schbath 2010).
Sociology (Mohler et al. 2011).
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Applications to finance

Midquotes and transaction prices: Bowsher (07), Bauwens and
Hautsch (04), Hewlett (06), Bacry, Delattre, Hoffmann, Muzy
(13).
Order books: Large (07).
Financial contagion: Aït-Sahalia, Cacho-Diaz, Laeven (10).
Credit Risk: Errais, Giesecke, Goldberg (10).
Market activity.
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Financial modelling of market activity

Definition
The order flow process is the cumulated number of market orders
which arrived during the day.

Hawkes processes are a natural way to reproduce the
clusterization of this process.
Nice branching interpretation (endogenous vs. exogenous
orders).
Tractability.

Thibault Jaisson Nearly unstable Hawkes processes



Introduction
Hawkes processes

Applications of Hawkes processes
Nearly unstable Hawkes processes

Examples
Market data

Clustering at low time scales

Figure : Cumulated number of trades as a function of time over 20
seconds (DAX 01/07/2013).
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Intermediate scale

Figure : Cumulated number of trades as a function of time over 3
minutes (DAX 01/07/2013).
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Persistence at high time scales

Figure : Cumulated number of trades as a function of time (green) over
a trading day (DAX 01/07/2013).
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A first result

As Poisson processes, at large time scales, Hawkes processes
behave as deterministic processes. They thus cannot fit the data.

Theorem (Bacry et al. 2013)

The sequence of renormalized Hawkes processes

XT
v =

NvT

T

is asymptotically deterministic, in the sense that the following
convergence in L2 holds:

sup
v∈[0,1]

|XT
v −

µ

1− |φ|
v | → 0.
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Formal framework

Most estimation procedures applied to the financial order flow
yield a parameter |φ| close to one. This is due to the
persistence in the order flow.
We want to study the long term behaviour of Hawkes processes
close to criticality (whose kernel’s norm is close to one).
Formally, we consider a sequence of Hawkes processes
(ATNT

Tt)t≥0 indexed by the observation scale T of intensity µ
and of kernel

φT = aTφ

with
∫
φ = 1 and aT → 1 but aT < 1.
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Our asymptotic

Assumption

T (1− aT ) →
T→+∞

λ. (3)

∫ +∞

0
sφ(s)ds = m <∞. (4)

φ is differentiable with derivative φ′ such that

‖φ′‖∞ < +∞ and ‖φ′‖1 < +∞.

Finally, ‖ψT‖∞ is bounded.
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The theorem

Let us denote CT
t = (1− aT )λT

Tt .

Theorem (Jaisson, Rosenbaum 2013)

The sequence of renormalized Hawkes intensities (CT
t ) converges in

law, for the Skorohod topology, towards the law of the unique
strong solution of the following Cox Ingersoll Ross stochastic
differential equation on [0, 1]:

Ct =

∫ t

0
(µ− Cs)

λ

m
ds +

√
λ

m

∫ t

0

√
CsdBs .
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The theorem

Theorem

Furthermore, the sequence of renormalized Hawkes processes

V T
t =

1− aT

T
NT

tT

converges in law, for the Skorohod topology, towards the process∫ t

0
Csds, t ∈ [0, 1].
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Conclusion

We have essentially shown that if one looks at a Hawkes process of
kernel’s norm close to one at a time scale of the order 1/(1− |φ|)
then one sees an integrated CIR process.

At macroscopic time scales, the cumulated order flow is
empirically proportional to the integrated variance:

Vt = κ

∫ t

0
σ2

s ds.

In many usual frameworks, the macroscopic squared volatility
is modelled as a CIR process.
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The model

Bidimensional Hawkes process

We consider the model for the mid price of Bacry et al (11):

PT
t = NT+

t − NT−
t ,

with (NT+,NT−) a bidimensional Hawkes process with
intensity(

λT+
t
λT−

t

)
=

(
µ
µ

)
+

∫ t

0

(
φT

1 (t − s) φT
2 (t − s)

φT
2 (t − s) φT

1 (t − s)

)(
dNT+

s
dNT−

s

)
.
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The model

Assumption
We assume

φT
i (t) = aTφi (t),

where (aT )T≥0 is a sequence of positive numbers converging
to one such that for all T , aT < 1 and φ1 and φ2 such that∫ +∞

0
φ1(s)+φ2(s)ds = 1 and

∫ +∞

0
s
(
φ1(s)+φ2(s)

)
ds = m.
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The model

Properties of the model
The preceding model takes into account the discreteness and the
negative autocorrelation of the prices at the microstructure level.

Figure : Traded price as a function of time(Bund 01/07/2013).
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Convergence to a Heston model

Theorem
Let φ = φ1 − φ2. The renormalized process

PT
t =

1
T

(NT+
Tt − NT−

Tt )

converges in law, for the Skorohod topology, towards a Heston type
process P on [0, 1] defined by:{

dCt = (2µ
λ − Ct) λmdt + 1

m
√
CtdB1

t C0 = 0
dPt = 1

1−‖φ‖1
√
CtdB2

t P0 = 0,

with (B1,B2) a bidimensional Brownian motion.
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Thank you for your
attention!
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