Mathematics of Machine Learning—Exercices

M2R Mathématiques Fondamentales et Applications
Aurélien Garivier and Sébastien Gerchinovitz

January 12, 2017

1 Minimax lower bounds

Exercise 1. Let (E, \mathcal{B}) be a measurable space.

1. Let P and Q be two probability measures on (E, \mathcal{B}). Show that if $P \ll Q$, then $P^{\otimes n} \ll Q^{\otimes n}$ and $\frac{\mathrm{d} P^{\otimes n}}{\mathrm{~d} Q^{\otimes n}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\mathrm{d} P}{\mathrm{~d} Q}\left(x_{1}\right) \times \cdots \times \frac{\mathrm{d} P}{\mathrm{~d} Q}\left(x_{n}\right)$.
2. Let P and Q be two probability measures on (E, \mathcal{B}). Show that, for all $n \in \mathbb{N}^{*}$,

$$
\mathrm{KL}\left(P^{\otimes n}, Q^{\otimes n}\right)=n \operatorname{KL}(P, Q) .
$$

Exercise 2. The goal of this exercise is to prove Varshamov-Gilbert's lemma: for all $d \geqslant 6$, there exists a subset $\Gamma \subseteq\{0,1\}^{d}$ such that the two following conditions hold true:

$$
\begin{align*}
& \forall x \neq y \in \Gamma, \quad \sum_{j=1}^{d} \mathbb{1}_{\left\{x_{j} \neq y_{j}\right\}}>d / 4 \tag{1}\\
& |\Gamma| \geqslant e^{d / 8} \tag{2}
\end{align*}
$$

In all the sequel, we consider any subset $\Gamma \subseteq\{0,1\}^{d}$ such that (1) holds true and with maximal cardinality (i.e., all the other subsets Γ^{\prime} satisfying (1) are such that $\left|\Gamma^{\prime}\right| \leqslant|\Gamma|$).

1. Explain why such a subset Γ exists.
2. Denote by $\bar{B}(x, r)=\left\{y \in\{0,1\}^{d}: \sum_{j=1}^{d} \mathbb{1}_{\left\{y_{j} \neq x_{j}\right\}} \leqslant r\right\}$ the closed ball (in Hamming distance) centered at x and with radius $r \geqslant 0$. Prove that $\bigcup_{x \in \Gamma} \bar{B}(x, d / 4)=\{0,1\}^{d}$.
3. Use the above question to show that

$$
1 \leqslant|\Gamma| \cdot 2^{-d} \sum_{k=0}^{\lfloor d / 4\rfloor}\binom{n}{k} .
$$

4. Let $S \sim \mathcal{B}(d, 1 / 2)$. Prove that $\mathbb{P}(S \leqslant d / 4) \leqslant e^{-d / 8}$.
5. Conclude. What is the condition $d \geqslant 6$ for?

Exercise 3 (soon available). Minimax lower bound of order $n^{-4 / 5}$ in the nonparametric density estimation model $\left\{f:[0,1] \rightarrow \mathbb{R}_{+}: \int_{0}^{1} f(x) \mathrm{d} x=1\right.$ and $\left.\left\|f^{\prime \prime}\right\|_{\infty} \leqslant a\right\}$.

