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EXERCISE 1

Let (X, F) be any measurable space, and denote by M, the set of all probability
distributions on (X, F). For all P,@Q € M, we define the Hellinger distance between
P and @ by

1 1/2

0 1) = (3 [ (VI - Vi) @)

where p € M is such that P < p and Q < p (we say that x4 dominates P and @),
dP d@

and where f = — and g =
du du

1. Let P,Q € M;. Explain why there always exists u € M; that dominates P
and @, and show that the integral in (1) does not depend on the choice of p.
(Therefore, H(P, Q) is well defined.)

2. Prove that H is a distance (or metric) on the set M.

3. Show that
H(P.QP =1 /X VT@e@) du(z).

4. Let 0 > 0 and a,b € R. Compute H(N(a, o), N (b, 02))2 as well as
_ H(N(a,0?),N(b,0?))*
lim .
b—a (b — a)2

5. Show that H (P®", Q®”)2 <nH(P,Q)? for all n > 1.




EXERCISE 2

Let D C R? be any nonempty convex subset of R? (the prediction space) and Y
be any nonempty set (the observation space). Let a < band ¢ : D x Y — [a,b] be
any loss function which is convex in its first argument. In the sequel, K > 2 denotes
the number of experts. We consider the following online learning protocol.

At each round ¢ € N*,

e the expert advice a; = (au, e ,aK,t) € DX are revealed to the statistician;

e the statistician makes her own prediction @; € D using the a;; but also the
past data (as,ys), 1 <s<t—1;

e The statistician observes y; € ) and incurs the loss 6(@, yt).

Let 7y > mo > n3 > ... > 0 be any nonincreasing sequence of positive parameters.
We consider the EWA algorithm, which predicts a; = Zfil Di i With weights

eXp( Y, 1ﬁ(azs,ys))
S exp(—m D ) )

At time ¢, the parameter 1, may be chosen as a function of the past data (as,ys),
1 < s<t—1. Moreoever, at time t = 1, p; = (1/K, ..., 1/K) by convention.
The goal of this exercise is to derive an upper bound on the regret
T T

Regr = Zg(atv ?/t) - 1213{ g(az’,ta yt) .
t=1 t=1

6. We set Li,onandL”—Zi 1€(azs,ys) forallt} landi € {1,...,K}. We

also define Wy = L 571 e ki1 and W/, = LS8 et for all ¢ > 1.
Prove that

1<i<K.

Dit =

InW. In W In K
Al 2 12—m_inLi7T—n .
Nr+1 h ISisK Nr+1

7. Show that Wiy < ( t/+1)nz+1/m and then that

In W, In W (b—a)? <
Tl <3S it sy,
t=1

Nr+1 P

8. Prove that the EWA algorithm satisfies the following regret bound: for all
T > 1 and all sequences of a; € DX and vy, € Y,
T

Z“g(at,yt < 1;111< Z alt,yt IHK‘I—(b;(I) Zm.

=1 t=1 Nr+1 t=1

9. Explain why the last inequality can be 1mproved in order to imply that

In K b —a)
(2) Regr < T Z Mt -
10. Show that the choice of n; = 2(b — a)~'y/In(K)/t leads to the regret bound

Regr < (b— a)vTIn K. What is the advantage of taking a time-varying
parameter 7; instead of a constant parameter 7?



EXERCISE 3

Let (X;)i1<icn be 1.i.d. random variables with a density f* belonging to the set
L*([0, 1]) of square integrable functions on [0, 1]. The goal of this exercise is to study
an estimator of the density f*. More precisely, we will analyze the performance of
the estimator f(x) =310 fquﬁk(x) defined on the next page.

11. Cite another possible estimator of f*, and give sufficient conditions for its
consistency.

The scalar product of two functions f,g € L?([0,1]) is denoted by (f,g). Let

{¢r : k € N} be the sequence of functions ¢y : [0,1] — R defined by ¢o(z) = 1, and
for all £ € N* by

Gop—1(x) = \/58111(27?/%) and  ¢o(x) = \/§COS(27T/€I) )

We denote by ?(N) the set of all square summable sequences (uy)ren. The usual
scalar product of two sequences u, v € ¢*(N) is denoted by (u,v) = ",  UrVs-

Let 6y = (f*,¢x), k € N, denote the Fourier coefficients of the unknown density
function f*. Furthermore, let

~ 1<
O =~ Zl x(Xs)
be the Fourier coefficients of the sample { X7, ..., X, }.
Deviations. For every threshold A > 0, defined A} = {|§k — 07| < A} and A* =

{maxogkgnA ‘é\k — 0] < >‘}'

12. Show that for all k € N, E[6;] = 6.
13. Prove that for all £ € N,

2
P(A}) > 1—2exp (—%) :

14. Deduce that

16
15. For a given tolerance level § > 0, determine A > 0 such that P(A*) > 1 — 4.

2
P(AY) >1—2nexp (—TL)\ ) :

Estimator. Let 7 = <fk> be the thresholded empirical Fourier coefficients:
keN

fk:{gk if|§kl>2)\andk<n,

0 otherwise .

16. Prove that on the event A, for all k € {0,...,n — 1},
(Th — 6;)° < 9min ((6])%,2?) .

17. Deduce that, on A",

2._00 f 6)*2< . K)\2 0*2
=2 (Ti-6;) <o min SKX Y0

k=0 k>K

Hf—e*




Efficiency on Sobolev spaces. We now assume that f* is continuously differentiable,
and that it belongs to the Sobolev ball (1, L) defined for some L > 0 as:

X(1,L) := {g (10,1 = R /0 d(z)*dr < L, g(0) = g(l)} .
We define the estimator f of f* as f(z) = Y reo Tidi().

18. [optional: you may simply assume this result.] Prove that the Fourier coeffi-
cients of f* satisfy the inequality:

19. Prove that

<9 min {K)\2+

2 1SK<n—1

20. Find a constant C' > 0 such that

2/3
P(Hf—f*llkc(w) >>1—5.

L
Am2 K2 |

21. Conclude.



