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Exercise 1

Let (X ,F) be any measurable space, and denote byM1 the set of all probability
distributions on (X ,F). For all P,Q ∈M1, we define the Hellinger distance between
P and Q by

(1) H(P,Q) =

(
1

2

∫
X

(√
f(x)−

√
g(x)

)2
dµ(x)

)1/2

,

where µ ∈M1 is such that P � µ and Q� µ (we say that µ dominates P and Q),

and where f =
dP

dµ
and g =

dQ

dµ
.

1. Let P,Q ∈ M1. Explain why there always exists µ ∈ M1 that dominates P
and Q, and show that the integral in (1) does not depend on the choice of µ.
(Therefore, H(P,Q) is well defined.)

2. Prove that H is a distance (or metric) on the set M1.
3. Show that

H(P,Q)2 = 1−
∫
X

√
f(x)g(x) dµ(x) .

4. Let σ > 0 and a, b ∈ R. Compute H
(
N (a, σ2),N (b, σ2)

)2
as well as

lim
b→a

H
(
N (a, σ2),N (b, σ2)

)2
(b− a)2

.

5. Show that H
(
P⊗n, Q⊗n

)2
6 nH(P,Q)2 for all n > 1.
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Exercise 2

Let D ⊆ Rd be any nonempty convex subset of Rd (the prediction space) and Y
be any nonempty set (the observation space). Let a < b and ` : D × Y → [a, b] be
any loss function which is convex in its first argument. In the sequel, K > 2 denotes
the number of experts. We consider the following online learning protocol.

At each round t ∈ N∗,
• the expert advice at =

(
a1,t, . . . , aK,t

)
∈ DK are revealed to the statistician;

• the statistician makes her own prediction ât ∈ D using the ai,t but also the
past data (as, ys), 1 6 s 6 t− 1;
• The statistician observes yt ∈ Y and incurs the loss `

(
ât, yt

)
.

Let η1 > η2 > η3 > . . . > 0 be any nonincreasing sequence of positive parameters.
We consider the EWA algorithm, which predicts ât =

∑K
i=1 pi,tai,t with weights

pi,t =
exp
(
−ηt

∑t−1
s=1 `

(
ai,s, ys

))
∑K

j=1 exp
(
−ηt

∑t−1
s=1 `

(
aj,s, ys

)) , 1 6 i 6 K .

At time t, the parameter ηt may be chosen as a function of the past data (as, ys),
1 6 s 6 t− 1. Moreoever, at time t = 1, p1 =

(
1/K, . . . , 1/K) by convention.

The goal of this exercise is to derive an upper bound on the regret

RegT =
T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
.

6. We set Li,0 = 0 and Li,t =
∑t

s=1 `
(
ai,s, ys

)
for all t > 1 and i ∈ {1, . . . , K}. We

also define Wt = 1
K

∑K
i=1 e

−ηtLi,t−1 and W ′
t+1 = 1

K

∑K
i=1 e

−ηtLi,t for all t > 1.
Prove that

lnWT+1

ηT+1

− lnW1

η1
> − min

16i6K
Li,T −

lnK

ηT+1

.

7. Show that Wt+1 6
(
W ′
t+1

)ηt+1/ηt and then that

lnWT+1

ηT+1

− lnW1

η1
6 −

T∑
t=1

K∑
i=1

pi,t`
(
ai,t, yt

)
+

(b− a)2

8

T∑
t=1

ηt .

8. Prove that the EWA algorithm satisfies the following regret bound: for all
T > 1 and all sequences of at ∈ DK and yt ∈ Y ,

T∑
t=1

`
(
ât, yt

)
6 min

16i6K

T∑
t=1

`
(
ai,t, yt

)
+

lnK

ηT+1

+
(b− a)2

8

T∑
t=1

ηt .

9. Explain why the last inequality can be improved in order to imply that

(2) RegT 6
lnK

ηT
+

(b− a)2

8

T∑
t=1

ηt .

10. Show that the choice of ηt = 2(b − a)−1
√

ln(K)/t leads to the regret bound

RegT 6 (b − a)
√
T lnK. What is the advantage of taking a time-varying

parameter ηt instead of a constant parameter η?
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Exercise 3

Let (Xi)16i6n be i.i.d. random variables with a density f ∗ belonging to the set
L2([0, 1]) of square integrable functions on [0, 1]. The goal of this exercise is to study
an estimator of the density f ∗. More precisely, we will analyze the performance of

the estimator f̂(x) =
∑∞

k=0 T̂kφk(x) defined on the next page.

11. Cite another possible estimator of f ∗, and give sufficient conditions for its
consistency.

The scalar product of two functions f, g ∈ L2
(
[0, 1]

)
is denoted by 〈f, g〉. Let{

φk : k ∈ N
}

be the sequence of functions φk : [0, 1]→ R defined by φ0(x) = 1, and
for all k ∈ N∗ by

φ2k−1(x) =
√

2 sin(2πkx) and φ2k(x) =
√

2 cos(2πkx) .

We denote by `2(N) the set of all square summable sequences (uk)k∈N. The usual
scalar product of two sequences u, v ∈ `2(N) is denoted by 〈u, v〉 =

∑
k∈N ukvk.

Let θ∗k = 〈f ∗, φk〉, k ∈ N, denote the Fourier coefficients of the unknown density
function f ∗. Furthermore, let

θ̂k =
1

n

n∑
i=1

φk(Xi)

be the Fourier coefficients of the sample {X1, . . . , Xn}.

Deviations. For every threshold λ > 0, defined Aλk =
{
|θ̂k − θ∗k| 6 λ

}
and Aλ ={

max06k6n−1
∣∣θ̂k − θ∗k| 6 λ

}
.

12. Show that for all k ∈ N, E
[
θ̂k
]

= θ∗k.
13. Prove that for all k ∈ N,

P
(
Aλk
)
> 1− 2 exp

(
−nλ

2

16

)
.

14. Deduce that

P
(
Aλ
)
> 1− 2n exp

(
−nλ

2

16

)
.

15. For a given tolerance level δ > 0, determine λ > 0 such that P(Aλ) > 1− δ.

Estimator. Let T̂ =
(
T̂k

)
k∈N

be the thresholded empirical Fourier coefficients:

T̂k =

{
θ̂k if |θ̂k| > 2λ and k < n ,

0 otherwise .

16. Prove that on the event Aλ, for all k ∈ {0, . . . , n− 1},(
T̂k − θ∗k

)2
6 9 min

(
(θ∗k)

2, λ2
)
.

17. Deduce that, on Aλ,∥∥∥T̂ − θ∗∥∥∥2
2

:=
∞∑
k=0

(
T̂k − θ∗k

)2
6 9 min

16K6n−1

{
Kλ2 +

∑
k>K

(θ∗k)
2

}
.
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Efficiency on Sobolev spaces. We now assume that f ∗ is continuously differentiable,
and that it belongs to the Sobolev ball Σ(1, L) defined for some L > 0 as:

Σ(1, L) :=

{
g : [0, 1]→ R :

∫ 1

0

g′(x)2 dx 6 L, g(0) = g(1)

}
.

We define the estimator f̂ of f ∗ as f̂(x) =
∑∞

k=0 T̂kφk(x).

18. [optional: you may simply assume this result.] Prove that the Fourier coeffi-
cients of f ∗ satisfy the inequality:

∞∑
k=0

k2(θ∗k)
2 6

L

4π2
.

19. Prove that ∥∥∥T̂ − θ∗∥∥∥2
2
6 9 min

16K6n−1

{
Kλ2 +

L

4π2K2

}
.

20. Find a constant C > 0 such that

P

(
‖f̂ − f ∗‖22 6 C

(
log(2n/δ)

n

)2/3
)

> 1− δ .

21. Conclude.
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