M2R MAF - MATHEMATICS OF MACHINE LEARNING FINAL EXAM - FEBRUARY 22ND, 2017

Duration: 3h

No documents are authorized.

Exercise 1

Let $(\mathcal{X}, \mathcal{F})$ be any measurable space, and denote by \mathcal{M}_{1} the set of all probability distributions on $(\mathcal{X}, \mathcal{F})$. For all $P, Q \in \mathcal{M}_{1}$, we define the Hellinger distance between P and Q by

$$
\begin{equation*}
H(P, Q)=\left(\frac{1}{2} \int_{\mathcal{X}}(\sqrt{f(x)}-\sqrt{g(x)})^{2} \mathrm{~d} \mu(x)\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where $\mu \in \mathcal{M}_{1}$ is such that $P \ll \mu$ and $Q \ll \mu$ (we say that μ dominates P and Q), and where $f=\frac{\mathrm{d} P}{\mathrm{~d} \mu}$ and $g=\frac{\mathrm{d} Q}{\mathrm{~d} \mu}$.

1. Let $P, Q \in \mathcal{M}_{1}$. Explain why there always exists $\mu \in \mathcal{M}_{1}$ that dominates P and Q, and show that the integral in (1) does not depend on the choice of μ. (Therefore, $H(P, Q)$ is well defined.)
2. Prove that H is a distance (or metric) on the set \mathcal{M}_{1}.
3. Show that

$$
H(P, Q)^{2}=1-\int_{\mathcal{X}} \sqrt{f(x) g(x)} \mathrm{d} \mu(x)
$$

4. Let $\sigma>0$ and $a, b \in \mathbb{R}$. Compute $H\left(\mathcal{N}\left(a, \sigma^{2}\right), \mathcal{N}\left(b, \sigma^{2}\right)\right)^{2}$ as well as

$$
\lim _{b \rightarrow a} \frac{H\left(\mathcal{N}\left(a, \sigma^{2}\right), \mathcal{N}\left(b, \sigma^{2}\right)\right)^{2}}{(b-a)^{2}}
$$

5. Show that $H\left(P^{\otimes n}, Q^{\otimes n}\right)^{2} \leqslant n H(P, Q)^{2}$ for all $n \geqslant 1$.

Exercise 2

Let $\mathcal{D} \subseteq \mathbb{R}^{d}$ be any nonempty convex subset of \mathbb{R}^{d} (the prediction space) and \mathcal{Y} be any nonempty set (the observation space). Let $a<b$ and $\ell: \mathcal{D} \times \mathcal{Y} \rightarrow[a, b]$ be any loss function which is convex in its first argument. In the sequel, $K \geqslant 2$ denotes the number of experts. We consider the following online learning protocol.

At each round $t \in \mathbb{N}^{*}$,

- the expert advice $a_{t}=\left(a_{1, t}, \ldots, a_{K, t}\right) \in \mathcal{D}^{K}$ are revealed to the statistician;
- the statistician makes her own prediction $\widehat{a}_{t} \in \mathcal{D}$ using the $a_{i, t}$ but also the past data $\left(a_{s}, y_{s}\right), 1 \leqslant s \leqslant t-1$;
- The statistician observes $y_{t} \in \mathcal{Y}$ and incurs the loss $\ell\left(\widehat{a}_{t}, y_{t}\right)$.

Let $\eta_{1} \geqslant \eta_{2} \geqslant \eta_{3} \geqslant \ldots>0$ be any nonincreasing sequence of positive parameters. We consider the EWA algorithm, which predicts $\widehat{a}_{t}=\sum_{i=1}^{K} p_{i, t} a_{i, t}$ with weights

$$
p_{i, t}=\frac{\exp \left(-\eta_{t} \sum_{s=1}^{t-1} \ell\left(a_{i, s}, y_{s}\right)\right)}{\sum_{j=1}^{K} \exp \left(-\eta_{t} \sum_{s=1}^{t-1} \ell\left(a_{j, s}, y_{s}\right)\right)}, \quad 1 \leqslant i \leqslant K
$$

At time t, the parameter η_{t} may be chosen as a function of the past data $\left(a_{s}, y_{s}\right)$, $1 \leqslant s \leqslant t-1$. Moreoever, at time $t=1, p_{1}=(1 / K, \ldots, 1 / K)$ by convention.

The goal of this exercise is to derive an upper bound on the regret

$$
\operatorname{Reg}_{T}=\sum_{t=1}^{T} \ell\left(\widehat{a}_{t}, y_{t}\right)-\min _{1 \leqslant i \leqslant K} \sum_{t=1}^{T} \ell\left(a_{i, t}, y_{t}\right) .
$$

6. We set $L_{i, 0}=0$ and $L_{i, t}=\sum_{s=1}^{t} \ell\left(a_{i, s}, y_{s}\right)$ for all $t \geqslant 1$ and $i \in\{1, \ldots, K\}$. We also define $W_{t}=\frac{1}{K} \sum_{i=1}^{K} e^{-\eta_{t} L_{i, t-1}}$ and $W_{t+1}^{\prime}=\frac{1}{K} \sum_{i=1}^{K} e^{-\eta_{t} L_{i, t}}$ for all $t \geqslant 1$. Prove that

$$
\frac{\ln W_{T+1}}{\eta_{T+1}}-\frac{\ln W_{1}}{\eta_{1}} \geqslant-\min _{1 \leqslant i \leqslant K} L_{i, T}-\frac{\ln K}{\eta_{T+1}} .
$$

7. Show that $W_{t+1} \leqslant\left(W_{t+1}^{\prime}\right)^{\eta_{t+1} / \eta_{t}}$ and then that

$$
\frac{\ln W_{T+1}}{\eta_{T+1}}-\frac{\ln W_{1}}{\eta_{1}} \leqslant-\sum_{t=1}^{T} \sum_{i=1}^{K} p_{i, t} \ell\left(a_{i, t}, y_{t}\right)+\frac{(b-a)^{2}}{8} \sum_{t=1}^{T} \eta_{t} .
$$

8. Prove that the EWA algorithm satisfies the following regret bound: for all $T \geqslant 1$ and all sequences of $a_{t} \in \mathcal{D}^{K}$ and $y_{t} \in \mathcal{Y}$,

$$
\sum_{t=1}^{T} \ell\left(\widehat{a}_{t}, y_{t}\right) \leqslant \min _{1 \leqslant i \leqslant K} \sum_{t=1}^{T} \ell\left(a_{i, t}, y_{t}\right)+\frac{\ln K}{\eta_{T+1}}+\frac{(b-a)^{2}}{8} \sum_{t=1}^{T} \eta_{t} .
$$

9. Explain why the last inequality can be improved in order to imply that

$$
\begin{equation*}
\operatorname{Reg}_{T} \leqslant \frac{\ln K}{\eta_{T}}+\frac{(b-a)^{2}}{8} \sum_{t=1}^{T} \eta_{t} \tag{2}
\end{equation*}
$$

10. Show that the choice of $\eta_{t}=2(b-a)^{-1} \sqrt{\ln (K) / t}$ leads to the regret bound $\operatorname{Reg}_{T} \leqslant(b-a) \sqrt{T \ln K}$. What is the advantage of taking a time-varying parameter η_{t} instead of a constant parameter η ?

Exercise 3

Let $\left(X_{i}\right)_{1 \leqslant i \leqslant n}$ be i.i.d. random variables with a density f^{*} belonging to the set $L^{2}([0,1])$ of square integrable functions on $[0,1]$. The goal of this exercise is to study an estimator of the density f^{*}. More precisely, we will analyze the performance of the estimator $\widehat{f}(x)=\sum_{k=0}^{\infty} \widehat{T}_{k} \phi_{k}(x)$ defined on the next page.
11. Cite another possible estimator of f^{*}, and give sufficient conditions for its consistency.
The scalar product of two functions $f, g \in L^{2}([0,1])$ is denoted by $\langle f, g\rangle$. Let $\left\{\phi_{k}: k \in \mathbb{N}\right\}$ be the sequence of functions $\phi_{k}:[0,1] \rightarrow \mathbb{R}$ defined by $\phi_{0}(x)=1$, and for all $k \in \mathbb{N}^{*}$ by

$$
\phi_{2 k-1}(x)=\sqrt{2} \sin (2 \pi k x) \quad \text { and } \quad \phi_{2 k}(x)=\sqrt{2} \cos (2 \pi k x) .
$$

We denote by $\ell^{2}(\mathbb{N})$ the set of all square summable sequences $\left(u_{k}\right)_{k \in \mathbb{N}}$. The usual scalar product of two sequences $u, v \in \ell^{2}(\mathbb{N})$ is denoted by $\langle u, v\rangle=\sum_{k \in \mathbb{N}} u_{k} v_{k}$.
Let $\theta_{k}^{*}=\left\langle f^{*}, \phi_{k}\right\rangle, k \in \mathbb{N}$, denote the Fourier coefficients of the unknown density function f^{*}. Furthermore, let

$$
\widehat{\theta}_{k}=\frac{1}{n} \sum_{i=1}^{n} \phi_{k}\left(X_{i}\right)
$$

be the Fourier coefficients of the sample $\left\{X_{1}, \ldots, X_{n}\right\}$.
Deviations. For every threshold $\lambda>0$, defined $\mathcal{A}_{k}^{\lambda}=\left\{\left|\widehat{\theta}_{k}-\theta_{k}^{*}\right| \leqslant \lambda\right\}$ and $\mathcal{A}^{\lambda}=$ $\left\{\max _{0 \leqslant k \leqslant n-1}\left|\widehat{\theta}_{k}-\theta_{k}^{*}\right| \leqslant \lambda\right\}$.
12. Show that for all $k \in \mathbb{N}, \mathbb{E}\left[\widehat{\theta}_{k}\right]=\theta_{k}^{*}$.
13. Prove that for all $k \in \mathbb{N}$,

$$
\mathbb{P}\left(\mathcal{A}_{k}^{\lambda}\right) \geqslant 1-2 \exp \left(-\frac{n \lambda^{2}}{16}\right) .
$$

14. Deduce that

$$
\mathbb{P}\left(\mathcal{A}^{\lambda}\right) \geqslant 1-2 n \exp \left(-\frac{n \lambda^{2}}{16}\right) .
$$

15. For a given tolerance level $\delta>0$, determine $\lambda>0$ such that $\mathbb{P}\left(\mathcal{A}^{\lambda}\right) \geqslant 1-\delta$.

Estimator. Let $\widehat{T}=\left(\widehat{T}_{k}\right)_{k \in \mathbb{N}}$ be the thresholded empirical Fourier coefficients:

$$
\widehat{T}_{k}= \begin{cases}\widehat{\theta}_{k} & \text { if }\left|\widehat{\theta}_{k}\right| \geqslant 2 \lambda \text { and } k<n, \\ 0 & \text { otherwise } .\end{cases}
$$

16. Prove that on the event \mathcal{A}^{λ}, for all $k \in\{0, \ldots, n-1\}$,

$$
\left(\widehat{T}_{k}-\theta_{k}^{*}\right)^{2} \leqslant 9 \min \left(\left(\theta_{k}^{*}\right)^{2}, \lambda^{2}\right) .
$$

17. Deduce that, on \mathcal{A}^{λ},

$$
\left\|\widehat{T}-\theta^{*}\right\|_{2}^{2}:=\sum_{k=0}^{\infty}\left(\widehat{T}_{k}-\theta_{k}^{*}\right)^{2} \leqslant 9 \min _{1 \leqslant K \leqslant n-1}\left\{K \lambda^{2}+\sum_{k \geqslant K}\left(\theta_{k}^{*}\right)^{2}\right\} .
$$

Efficiency on Sobolev spaces. We now assume that f^{*} is continuously differentiable, and that it belongs to the Sobolev ball $\Sigma(1, L)$ defined for some $L>0$ as:

$$
\Sigma(1, L):=\left\{g:[0,1] \rightarrow \mathbb{R}: \int_{0}^{1} g^{\prime}(x)^{2} d x \leqslant L, g(0)=g(1)\right\}
$$

We define the estimator \widehat{f} of f^{*} as $\widehat{f}(x)=\sum_{k=0}^{\infty} \widehat{T}_{k} \phi_{k}(x)$.
18. [optional: you may simply assume this result.] Prove that the Fourier coefficients of f^{*} satisfy the inequality:

$$
\sum_{k=0}^{\infty} k^{2}\left(\theta_{k}^{*}\right)^{2} \leqslant \frac{L}{4 \pi^{2}}
$$

19. Prove that

$$
\left\|\widehat{T}-\theta^{*}\right\|_{2}^{2} \leqslant 9 \min _{1 \leqslant K \leqslant n-1}\left\{K \lambda^{2}+\frac{L}{4 \pi^{2} K^{2}}\right\} .
$$

20. Find a constant $C>0$ such that

$$
\mathbb{P}\left(\left\|\widehat{f}-f^{*}\right\|_{2}^{2} \leqslant C\left(\frac{\log (2 n / \delta)}{n}\right)^{2 / 3}\right) \geqslant 1-\delta .
$$

21. Conclude.
