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Artificial Intelligence (Al): Definition

Intelligence exhibited by machines

» emulate cognitive capabilities of humans
(big data: humans learn from abundant and diverse
sources of data).

» a machine mimics "cognitive" functions that humans
associate with other human minds, such as "learning"
and "problem solving".

Ideal "intelligent" machine =

flexible rational agent that perceives its environment and
takes actions that maximize its chance of success at some
goal.

Founded on the claim that human intelligence
""can be so precisely described that a machine can be made
to simulate it."
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Artificial Intelligence: Tension Machine

Learning

ML Team

Operational goals

Artificial
Intelligence

» Autonomous robots for not-too-specialized tasks

> In particular, vision + understand and produce language

Tension between operational and philosophical goals

» As machines become increasingly capable, facilities once
thought to require intelligence are removed from the
definition. For example, optical character recognition is
no longer perceived as an exemplar of "artificial
intelligence"; having become a routine technology.

» Capabilities still classified as Al include advanced Chess
and Go systems and self-driving cars.



Al: composition
Central goals of Al:

>

v

v

v

v

>

>

reasoning

knowledge

planning

learning

natural language processing
perception

general intelligence

Central approaches of Al:

>

>

» computational intelligence /

traditional symbolic Al

statistical methods

soft computing

Draws upon:

>

>

>

>

>

>

» artificial psychology

computer science
mathematics
psychology
linguistics
philosophy

neuroscience

Tools:

| 2

mathematical
optimization

logic

methods based on
probability

economics
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Machine Learning (ML): Definition Machine

Learning

ML Team

Arthur Samuel (1959)

Field of study that gives computers the ability to learn
without being explicitly programmed

Machine Learning

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P
if its performance at tasks in T, as measured by P, improves
with experience E.



ML: Learn from and make predictions on data Learning
» Algorithms operate by building a model from example RILRIE
inputs in order to make data-driven predictions or
decisions...
» ...rather than following strictly static program Machine Learning

instructions: useful when designing and programming
explicit algorithms is unfeasible or poorly efficient.

Within Data Analytics

» Machine Learning used to devise complex models and
algorithms that lend themselves to prediction - in
commercial use, this is known as predictive analytics.

» www.sas.com: "Produce reliable, repeatable decisions
and results" and uncover "hidden insights" through
learning from historical relationships and trends in the
data.

» evolved from the study of pattern recognition and
computational learning theory in artificial intelligence.



Machine

Machine Learning: Typical Problems Learning

ML Team

» spam filtering, text classification

» optical character recognition (OCR) Mochioe Laarning
» search engines

» recommendation platforms

» speach recognition software

» computer vision

> bio-informatics, DNA analysis, medicine

For each of this task, it is possible but very inefficient to
write an explicit program reaching the prescribed goal.

It proves much more succesful to have a machine infer what
the good decision rules are.



Related Fields

>

Computational Statistics: focuses in
prediction-making through the use of computers
together with statistical models (ex: Bayesian methods).

Statistical Learning: ML by statistical methods, with
statistical point of view (probabilistic guarantees:
consistency, oracle inequalities, minimax)

— more focused on correlation, less on causality

Data Mining (unsupervised learning) focuses more on
exploratory data analysis: discovery of (previously)
unknown properties in the data. This is the analysis step
of Knowledge Discovery in Databases.

Importance of probability- and statistics-based
methods — Data Science (Michael Jordan)

Strong ties to Mathematical Optimization, which
delivers methods, theory and application domains to the
field
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ML and its neighbors

Infere

Time
Ser

nal
Processing

Machine

Learning

Operations
Research

ptimization

Information
Theory

Machine
Learning

ML Team

Machine Learning
Big Data

Deep Learning
Sequential
Decision Making
Reinforcement
Larniby
Optimization
Sparsity
[magelandfVision
Computational

limits of learning
methods
Distributed
statistics

Statistics and
Privacy

[ ey
ML in Toulouse



Machine

Machine Learning: an overview ety

ML Team

Bandits

Learning A

rtificial
Intelligence
Machine Learning
Big Data

Representat
learning

Machine Unsupervised o N
Learning Learning pacsas Deep Learning
Sequential
Decision Making

Rule Learning

Reinforcement
Dimension Latent :
. Learning
Optimization
Sparsity

[magelandfVision
Computational
imits of learning
methods
Distributed
statistics
Statistics and
ot

I CE iy
ML in Toulouse



Supervised Classification: Statistical Framework

Definition

ex: OCR numbers

Input space X
Output space Y
Joint distribution P(x,y)

64 x 64 images
{0,1,...,9}
2

Prediction function h € H
Risk R(h) = P(h(X) #Y)

Sample {(x;, yi)}74
Empirical risk

Ra(h) = 2 30, 1{h(xi) # yi}

MNIST dataset

Learning algorithm
Gn (X x V)" = H
Expected risk Ry(¢) = En[R(én)]

NN,boosting...

Empirical risk minimizer
hn = arg ming,cy, Ro(h)
Regularlzed emp|r|ca| risk minimizer
hn = arg minj,cq; Ro(h) + AC(h)
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Empirical Risk Minimization Learning
ML Team
Hoeffding's inequality: with probability at least 1 — 7, Machine Learning

IR(B) — Ro()| < [ - log (727) .

Problem: true for every fixed h but not for h!
Ex: Prediction of 10 digits

Ex: polynomial regression — overfitting
Curse of dimensionality



Structural Risk Minimization

— uniform law of large numbers: Vapnik-Chervonenkis
inequality: if H has VC dimension dy;, then

Machine
Learning

ML Team

spor-ron <0 () - (3] S

Structure:
H=|JHnm

Ex: polynomials/splines of degree m, trees of depth m,...
Bias-variance decomposition of the risk.
Structural risk minimization:

hn = argmin R,(h) + AK(h)
heH

or

h, = arg min R’n(h)
K(h)<C



Structural Risk Minimization Tradeoff

Misclassification rate

This value of C here gives
the best guarantee for the
expected risk R(w).

Guaranteed expected risk R(w)

.-
-

i

-

Observed empirical risk R, (w)

Source: Bottou et al. tutorial on optimization
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Machine

Learning methodology: Choosing C Learning

ML Team

Machine Learning

» Division of the sample set:
» Training set
» Validation set
» Testing set

» Cross-validation
» Early stopping



Machine

Machine Learning and Statistics Learning

ML Team

» Data analysis (inference, description) is the goal of
statistics for long.

Machine Learning

» Machine Learning has more operational goals (ex:
consistency is important the statistics literature, but
often makes little sense in ML).

Models (if any) are instrumental
Ex: linear model (nice mathematical theory) vs Random
Forests.

» Machine Learning/big data: no seperation between
statistical modelling and optimization (in contrast to the
statistics tradition).

» In ML, data is often here before (unfortunately)

» No clear separation (statistics evolves as well).



Theory of Learnability: PAC-Learnability (Valiant Learning

'84)

v

ML Team

X = instance space (ex: set of B/W images)

Concept c=subset of X (ex: all images of a '3") i
Concept class C = set of concepts (ex: all images with

connected 1-components)

tolerance parameter € > Q, risk parameter § > 0

given a probability P on X, algorithm A PAC-learns

concept c if, given an sample of polynomial size

p(1/€,1/68), A outputs an hypothesis h € C such that

P(err(h(x),c(x)) <€) >1-94

if A PAC-learns every ¢ € C for every distribution P and
every €, > 0, then C is PAC-learnable.



Vapnik Learing

ML Team

Machine Learning

Under some regularity conditions these three conditions are
equivalent:

1. The concept class C is PAC learnable.
2. The VC dimension of C is finite.

3. C is a uniform Glivenko-Cantelli class.
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[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Simple Analysis

e Statistical Learning Literature:
“It is good to optimize an objective function than ensures a fast
estimation rate when the number of examples increases.”

e Optimization Literature:

“To efficiently solve large problems, it is preferable to choose
an optimization algorithm with strong asymptotic properties, e.g.
superlinear.”

e Therefore:

“To address large-scale learning problems, use a superlinear algorithm to
optimize an objective function with fast estimation rate.

Problem solved.”

The purpose of this presentation is...
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Too Simple an Analysis

e Statistical Learning Literature:
“It is good to optimize an objective function than ensures a fast
estimation rate when the number of examples increases.”

e Optimization Literature:

“To efficiently solve large problems, it is preferable to choose
an optimization algorithm with strong asymptotic properties, e.g.
superlinear.”

e Therefore: (error)
“To address large-scale learning problems, use a superlinear algorithm to
optimize an objective function with fast estimation rate.

Problem solved.”

... to show that this is completely wrong!
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/] Machine

Learning

Objectives and Essential Remarks ML Team

e Baseline large-scale learning algorithm

Intelligence
Machine Learning
Big Data

Randomly discarding data is the simplest
way to handle large datasets.

Deep Learning
Sequential

— What are the statistical benefits of processing more data? DEcisicelaking
— What is the computational cost of processing more data? Ei’,‘f,‘-,’,’,;e’“e“‘
sarity
e We need a theory that joins Statistics and Computation! 'c";‘g:u‘:::ovn';lm"
— 1967: Vapnik's theory does not discuss computation. [L'Zi‘ﬁoﬁilw"i"g
— 1981: Valiant’s learnability excludes exponential time algorithms, s[:Ls:ir;tl:‘z;ed
but (i) polynomial time can be too slow, (ii) few actual results. Statistics and

Privacy

— We propose a simple analysis of approximate optimization. ..

I CE iy
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Learning Algorithms: Standard Framework

e Assumption: examples are drawn independently from an unknown
probability distribution P(z,y) that represents the rules of Nature.

e Expected Risk: E(f) = [{(f(z),y)dP(z,y).

e Empirical Risk: E(; ) Zé( i), Yi)-

e We would like f* that minimizes E(f) among all functions.

e In general f* ¢ F.

e The best we can have is fr € F that minimizes E(f) inside F.
e But P(x,y) is unknown by definition.

e Instead we compute f, € F that minimizes E,(f).
Vapnik-Chervonenkis theory tells us when this can work.
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Learning with Approximate Optimization

Computing f, = argmin E,(f) is often costly.
feF

Since we already make lots of approximations,

why should we compute f, exactly?

Let’'s assume our optimizer returns fn
such that En(fn) < Ep(fn) + p-

For instance, one could stop an iterative
optimization algorithm long before its convergence.
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Decomposition of the Error (i)

E(fa) — E(f*) = E(f%) — E(f*) Approximation error
+ E(fn) = E(fF) Estimation error
+ E(fn) — E(fn) Optimization error
Problem:

Choose F, n, and p to make this as small as possible,

maximal number of examples n

subject to budget constraints { maximal computing time T
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Decomposition of the Error (ii)

Approximation error bound:

— decreases when F gets larger.

Estimation error bound:
— decreases when n gets larger.
— increases when F gets larger.

Optimization error bound:
— increases with p.

Computing time T*:
— decreases with p
— increases with n
— increases with F

(Approximation theory)

(VVapnik-Chervonenkis theory)

(Vapnik-Chervonenkis theory plus tricks)

(Algorithm dependent)
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/] Machine

Learning
Small-scale vs. Large-scale Learning WL Teers
We can give rigorous definitions.
Big Data

o Definition 1:
We have a small-scale learning problem when the active
budget constraint is the number of examples n.

o Definition 2:
We have a large-scale learning problem when the active
budget constraint is the computing time T


http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Small-scale Learning

The active budget constraint is the number of examples.

e To reduce the estimation error, take n as large as the budget allows.

e To reduce the optimization error to zero, take p = 0.

e We need to adjust the size of F.

Approximation error

Size of F

See Structural Risk Minimization (Vapnik 74) and later works.
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Large-scale Learning

The active budget constraint is the computing time.

e More complicated tradeoffs.
The computing time depends on the three variables: F, n, and p.

e Example.
If we choose p small, we decrease the optimization error. But we

must also decrease F and/or n with adverse effects on the estimation
and approximation errors.

e The exact tradeoff depends on the optimization algorithm.

e \We can compare optimization algorithms rigorously.
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[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Executive Summary

log (P)

Good optimization algorithm (superlinear).
p decreases faster than exp(-T)

i

Mediocre optimization algorithm (linear).
P decreases like exp(-T)

Extraordinary poor
optimization algorithm

p decreases like 1/T

log(T)
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http://leon.bottou.org/slides/

[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Machine

Learning

Asymptotics: Estimation ML Team
Uniform convergence bounds (with capacity d + 1) Artificial

Intelligence
Machine Learning

d n @ 1 Big Data
Estimation error < O |—log— with - <a<1.
n d 2
There are in fact three types of bounds to consider: Deep Learning
Sequential
Decision Making
— Classical V-C bounds (pessimistic): o \/¥> Reinforcement
Learning
d n Optimization
— Relative V-C bounds in the realizable case: O 7103,7) Sparsity
"d aj_. Image and| Vision
B . n .
— Localized bounds (variance, Tsybakov): 0([; logﬂ ) f&'.'?i"é‘fafe'il‘,i‘.',.g
methods
Fast estimation rates are a big theoretical topic these days. g;f:i;'ggged
Statistics and
Privacy
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[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

Asymptotics: Estimation4+Optimization

Uniform convergence arguments give
o N d. n]“
Estimation error + Optimization error < O flogg + p
n

This is true for all three cases of uniform convergence bounds.

Q Scaling laws for p when F is fixed
The approximation error is constant.

1)

— No need to choose p smaller than (’)([% %
— Not advisable to choose p larger than (’)([g 7} )
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[Src: Bottou, The Tradeoffs of Large-scale Learning, http://leon.bottou.org/slides/]

.. . Approximation+Estimation4+Optimization

When F is chosen via a A-regularized cost
— Uniform convergence theory provides bounds for simple cases
(Massart-2000; Zhang 2005; Steinwart et al., 2004-2007; ...)
— Computing time depends on both A and p.
— Scaling laws for A and p depend on the optimization algorithm.

When F is realistically complicated

Large datasets matter
— because one can use more features,
— because one can use richer models.

Bounds for such cases are rarely realistic enough.

Luckily there are interesting things to say for F fixed.
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Machine

Optimization: Stochastic Gradient Learning

ML Team

Big Data

» Second-order methods are too costly (even 1 iteration)

» Even first-order methods are too costly with massive
data

» SG employs information more efficiently than batch
method



[Src: Bottou,Curtis,Nocedal,Stochastic Gradient Methods for Large-Scale Machine Learning] Machine

. . ML Team
Practical Experience

Intelligence
Machine Learning
Big Data

+ Fast initial progress
L of SG followed by Pty Lot

Sequential

drastic slowdown Erectitn My
E Reinforcement
Learning

Optimization
Sparsity
Image and Vision

Computational
limits of learning

Empirical Risk

Can we explain this?

methods
! 3‘5 2 Distributed
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Statistics and
Privacy
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[Src: Bottou,Curtis,Nocedal,Stochastic Gradient Methods for Large-Scale Machine Learning]

Machine
1 & ML Team
Example by Bertsekas R,(w)=—3 fi(w)
Artificial

Intelligence
Machine Learning

ALY B

Deep Learning

Sequential
Region of confusion CLCTI LT
Reinforcement
Learning
Optimization
Sparsity
Note that this is a geographical argument 3o o) Wiz
Computational
limits of learning
. . . . methods
Analysis: given w, what is the expected decrease in the Distributed
statistics
Statistics and

objective function R, as we choose one of the quadratics Privacy

1*

randomly?

I CE iy
ML in Toulouse



Machine Learning and Conferences

» Very active / frenetic domain of research
> Mass meetings

» Fashion trends, passing fads
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Machine Learning Journals
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Sessions at ICML'16 Leareine
ML Team
Optimization

RL + Sequential
Deep Learning
Main Topics of
. . Present Interest
Applications
Learning Theory
. L Misc.
Matrix Factorisation 15¢

BNP %nd ?P
approximate inference



Sessions at COLT'16 i

ML Team
Optimization
Supervised Learning
RL + Sequential
D L . Main Topics of
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7

Stochastic Block Model

PAC Learning Theory
TCS statistical inference
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Réseau mono-couche Machine

Learning

ML Team

Deep Learning

Source: http://insanedev.co.uk/open-cranium/
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ML Community

Source: [Tufféry, Data Mining et Informatique Décisionnelle] I i e o



Réseau avec couche intermédiaire
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Réseau mono-couche
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Src: http://www.makhfi.com
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From neural networks to deep learning Learning

ML Team

v

Deep learning=neural networks + 3 improvements

v

Extented scope

» new activation functions
» convolution
> recursivity

Deep Learning

v

Regularization

» Dropout
» Pooling
» Make possible the learning of complex networks

v

Computation

» GPU
» massive data
» Make efficient the learning of complex networks
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Sequential decision making

Sequential protocol: at each time t = 1,2,..., a learner outputs
an action A; € A and receives a reward r;(A;) € R.

Regret minimization: the goal of the learner is to output
sequential actions ajp, as, . .. that are almost as good as the best
fixed action in hindsight, i.e., to minimize the regret

T

-
Rt := sup Z re(a) — Z re(Ae) .

€A t=1

Various feedback models:
> full information: the whole function r:(-) is observed;

> bandit feedback: we only observe the reward r;(A;) of the
played action (exploration is thus needed);

» partial monitoring: we observe a function of r; and A;.

Rich literature since the 50's (seminal works by Robbins [12], Blackwell [9],
and Hannan [11]). Excellent introduction: book by Cesa-Bianchi and Lugosi
[10].
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Machine

Sequentlal deCISlon maklng (2) Learning
Various models for the environment: ML Team

» Stochastic environment: the reward functions r; are drawn
i.i.d. according to an unknown probability distribution.

» Adversarial environment: the reward functions r; are chosen
by an adversary that may react to the learner's past actions.

> There are of course intermediate settings between these two
extreme (but easy-to-analyze) sets of assumptions.

Sequential
Decision Making

Flavor of theoretical contributions: sequential algorithms with
regret guarantees R = o( T) under mild conditions on the reward
functions r;. The growth of the regret R+ depends on:

» the feedback model

> whether the environment is stochastic or adversarial (or in
between);

> the curvature of the reward functions (e.g., strong convexity
implies small regret);

> how large is the set of possible reward functions.
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Reinforcement Learning

action /
actuation

Environment

reward

Y

Learning
Agent

state /
perception
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Markov decision process

A Markov Decision Process is defined as a tuple

M =

>

v

(X, A, p,r):
X is the state space,

A is the action space,

p(y|x, a) is the transition probability with
p(ylx,a) = P(xt41 = y|xt = x,ar = a),

r(x, a,y) is the reward of transition (x, a, y).
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ML Team

Reinforcement
oy



At each month t, a store contains x; items of a specific goods and
the demand for that goods is D;. At the end of each month the
manager of the store can order a; more items from his supplier.
Furthermore we know that:

>

>

The cost of maintaining an inventory of x is h(x).
The cost to order a items is C(a).
The income for selling g items is f(q).

If the demand D is bigger than the available inventory x,
customers that cannot be served leave.

The value of the remaining inventory at the end of the year is
g(x).

Constraint: the store has a maximum capacity M.
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Reinforcement Learning Learning

ML Team

Statisti Intelligence
Clustering tatistics Machine Learning
Big Data

Statistical Learning

Cognitives Sciences Neural Networks

Applied Math

Approximation Theory Deep Learning
Sequential
Decision Making
Dynamic Programming Reinforcement
Learning
Optimization
Sparsity
Automatic Control Image and Vision
Computational
limits of learning
methods
Distributed
statistics

Psychology Statistics and

Privacy

. Reinforcement Learning
Neuroscience

Optimal Control

ategorization

Active Learning
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Machine

Learning
ML Team

State space: x € X ={0,1,..., M}.

Action space: it is not possible to order more items that the

capacity of the store, then the action space should depend on

the current state. Formally, at state x,

acA(x)={0,1,...,M —x}.

Dynamics: xzy1 = [x: + ar — Di] ™. e

Problem: the dynamics should be Markov and stationary!
The demand D; is stochastic and time-independent.
Formally, D; " p.

Reward: r, = —C(a:) — h(xt + ar) + f([x¢ + ar — xe41]™).
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Computational limits of learning methods

Recently mathematical papers started studying the
fundamental limits of statistical learning methods when
constrained to be computationally efficient.

A computational lower bound is a minimax lower bound
where whe only look to estimators h € ‘H with a reasonable
computational complexity (e.g., polynomial-time algorithms):

Big?f{sn;pIE [R@(fl)} > ...

Example in high-dimensional linear regression: Yuchen,
Wainwright and Jordan (COLT’14) proved in [13] that the
restricted eigenvalue that appears in Lasso oracle bounds is

necessary for all polynomial-time algorithms (assuming NP
not in P/poly).

Machine
Learning

ML Team

Computational
limits of learning
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Distributed statistics

Suppose we want to perform a statistical task on a very large
dataset X;, 1 < i < N. Due to space or time limitations this
dataset is split accross m different machines.

» Each machine j processes its own dataset (of size N/m)
and communicates its answer h; to a central node.

> Suppose we have a constraint B on the overall
communication budget (compare to previous slide:
computational constraint).

» Question: what is the best statistical performance we
can guarantee with a finite communication budget B?

Recent theoretical contributions: upper and lower bounds for
various statistical tasks by Zhang et al. [14, 15].

Machine
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Python Machine

Learning

ML Team
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+ general-purpose language, growing fast
- smaller library, not (yet?) so good for statistical analysis
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Knime, Weka and co

CECECS Weka Explorer
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Data Repositories

UCI 5

Machine Learning Repository

ex: MNIST, iris, adult, abalone,...
Kaggle Challenges, ...
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Main ML labs in the world i

ML Team

> Berkeley / Stanford / UCLA

» MIT, Carnegie Mellon, UPenn, Caltech, Harvard,
Georgia Tech, Duke,...

» China (with HK)

» France: INRIA, Paris, Lille, Toulouse, Marseille, ...

> Israel: Weizmann / Technion / Tel Aviv

» Oxford, Cambridge, UCL

» Zurich, EPFL

» Amsterdam

» google / deepmind

» Microsoft research (Theory+ML Seattle, Bangalore)
» University of Alberta



Main ML labs in France Leorning
ML Team
» INRIA-Sierra ENS, Paris
Learning and optimization, LASSO, SGD

Francis Bach

» INRIA-Sequel 4+ Modal Cristal, Lille
sequential learning, decision making under uncertainty,
bandit problems, reinforcement learning
Alessandro Lazaric, Rémi Munos, Michal Valko, Philippe Preux, Emilie
Kaufmann

» INRIA-Sequel 4+ Modal Cristal, Lille
generative models
Christophe Biernacki, Alain Célisse, Benjamin Guedj,...

» INRIA-TAQ Saclay
Optimization, Evolutionary Algorithms, Geometry
Isabelle Guyon, Michelle Sebag, Olivier Teytaud, Odalric Maillard, Yann
Ollivier, Balazs Kegl (ass)

ML Community



Main ML labs in France Learning
ML Team
» ENSAE ParisTech Arnak Dalalyan, Vianney Perchet, Pierre
Alquier
» Saclay Univ Orsay, X
Sélection de modéles
Chritophe Giraud, Syvlain Arlot, Pascal Massart, Stéphane Gaiffas
» Telecom ParisTech Ranking
Stéphane Clémencon
» groupe "ML" Mines de Saint-Etienne Marc Sebban
Metric learning, transfer learning, anomaly detection,
data mining
» Grenoble Optimization, Statistical models
Anatoli Judistski, Florence Forbes,
» Huawei France
ML and communication

in construction
ML Community
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i+labics Contexte

Masses de données scientifiques provenant
d'instruments, de simulations numériques,
de multiple dispositifs de collecte de données

- volume, vélocité, variété, véracité

- changement de paradigme de traitement

- approche traditionnelle : les besoins =
métiers guident la conception de la
solution

- approche par les données : les sources
de données guident la découverte

ML Community
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Défis accompagnant les chgts

Machine Learning
Big Data
DEFIS TRAN
- Passage aléc elle
- Rapidité traitements Erop Locafing

- Protection sécuri% ' Accés/
N Requétage, elocité
- Interaction A

Raisonnement
4 . -
- % \V
Extraction, nettoyage

7
R Volume
Acquisition - )

repenser les outils algorithmiques et mathématiques
inspired by “Big Data and Its Technical Challenges, Communications of the ACM, July 2014, vol 57, n°7”, © H.V. Jagadish et all.

4

ML Community
ML in Toul




e

e, Obiect
PREE jectifs du GdR

e uréer un écosysteme pour impulser une dynamique de
rapprochement / travail entre

coordonne diverses activités interdisciplinaires.

Manifestation : journée animation, groupe de travail, études, écoles,
ateliers ... (problématiques, applications, données)
Participation d’'industriels possible et souhaitée.

- formation : contribuer a la formation de chercheurs/spécialistes
en Sciences des Données (espace doctorants)
- innovation : liens avec le monde socio-économique

« Participer a la formation des «data scientist » (informatique,
statistique, mathématiques, intelligence métier)
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IMT Learing
ML Team
» Statistics Modelling: Fabrice Gamboa, Jean-Michel
Loubes

» Sequential Methods: Aurélien Garivier, Sébastien
Gerchinovitz

» Model Selection: Xavier Gendre, Béatrice
Laurent-Bonnneau, Cathy Maugis

» ML&bio: Philippe Besse, Pierre Neuvial
» Gaussian Processes: Jean-Marc Azais, Francois Bachoc
» Optim: Nicolas Couellan, Sophie Jan, Aude Rondepierre

> Image: Jéréme Fehrenbach, Francois Malgouyres,
Laurent Risser,

» ML&probability: Gersende Fort, Jonas Kahn

» + specialists of statistics, stochastic processes,
concentration, ...

ML in Toulouse



IRIT Leorning

ML Team

» ML et |A: Mathieu Serrurier, Gilles Richard, Jérome
Mengin, Henri Prade...

» NPL: Stergos Afantenos, Philippe Muller, Tim van de
Cruys...

» Optimization: Edouard Pauwels

» ML&SP: Jean-Yves Tourneret, Cédric Févotte...

» planning: Maarike Verloop

» Spectral Clustering: Sandrine Mouysset, Daniel Ruiz

» Recommender Systems & Data Mining: Yoann Pitarch
(IRIS), Josiane Mothe SIG...

» Speech analysis: SAMOVA

» Image processing: TCl

ML in Toulouse



LAAS & al. Leorning

ML Team

v

Optim: Jean-Bernard Lasserre, Didier Henrion...

v

Robotics (planning)

ENAC
> .7

v

ML in Toulouse



For Further Reading |

@ Wikipedia.

B

The free encyclopedia.

Léon Bottou.
The Tradeoffs of Large-scale Learning.
NIPS'07 Tutorial.

Léon Bottou, Franck E. Curtis, Jorge Nocedal.
Optimization Methods for Large-Scale Machine Learning
Arxiv:1606.04838, NIPS'16 tutorial, 2016.

Massih-Reza Amini

Apprentissage machine, De la théorie 3 la pratique -
Concepts fondamentaux en Machine Learning
Editions Eyrolles, 2015.

R. Duda, P. Hart, D. Stork
Pattern Classification
Wiley Interscience, 2001
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For Further Reading Il

[W T. Hastie, R. Tibshirani, J. Friedman
The Elements of Statistical Learning
Springer, 2001

online: http://www-stat.stanford.edu/ tibs/ElemStatLearn/
[ S. Tuffery

Data Mining
Technip

[§ P. Besse et al.
http://wikistat.fr/

[ D. Blackwell.
An analog of the minimax theorem for vector payoffs.
Pacific J. Math., 6(1):1-8, 1956.

[§ N. Cesa-Bianchi and G. Lugosi.
Prediction, Learning, and Games.

Cambridge University Press, 2006.
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For Further Reading Il

B

J. Hannan.
Approximation to Bayes risk in repeated play.
Contributions to the theory of games, 3:97-139, 1957.

H. Robbins.

Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 55:
527-535, 1952.

Yuchen Zhang, Martin J. Wainwright, and Michael I.
Jordan

Lower bounds on the performance of polynomial-time
algorithms for sparse linear regression.

Proceedings of COLT 14.
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For Further Reading IV

[§ Y. Zhang, J. C. Duchi, M. I. Jordan, and M. J.
Wainwright.
Information-theoretic lower bounds for distributed
statistical estimation with communication constraints.
Proceedings of NIPS'13.

&Y. Zhang, J. C. Duchi, and M. J. Wainwright.
Communication-efficient algorithms for statistical
optimization.

Journal of Machine Learning Research 14, pp.
3321-3363, 2013.
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