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Support Vector Machines



Margin for linear separation

• Training sample S =
{

(x1, y1), . . . , (xm, ym)
}

, where xi ∈ Rd and

yi ∈ {±1}.
• Linearly separable if there exists a halfspace h = (w , b) such that

∀i , yi = sign
(
〈w , xi 〉+ b

)
.

• What is the best separating hyperplane for generalization?

Distance to hyperplane

If ‖w‖ = 1, then the distance from x to the hyperplane h = (w , b) is

d(x ,H) =
∣∣〈w , x〉+ b

∣∣.
Proof: Check that min

{
‖x − v‖2 : v ∈ h

}
is reached at

v = x −
(
〈w , x〉+ b

)
w .
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Hard-SVM

Formulation 1:

arg max
(w ,b):‖w‖=1

min
1≤i≤m

∣∣〈w , xi 〉+ b
∣∣ such that ∀i , yi

(
〈w , xi 〉+ b

)
> 0 .

Formulation 2:

min
w ,b
‖w‖2 such that ∀i , yi

(
〈w , xi 〉+ b

)
≥ 1 .

Remark: b is not penalized.

Proposition

The two formulations are equivalent.

Proof of the useful implication: if (w0, b0) is the solution of Formulation 2,

then ŵ = w0
‖w0‖

, b̂ = b0
‖w0‖

is a solution of Formulation 1: if (w∗, b∗) is another

solution, then letting γ∗ = min1≤i≤m yi
(
〈w , xi 〉+ b

)
we see that

(
w∗

γ∗ ,
b∗

γ∗

)
satisfies the constraint of Formulation 2, hence ‖w0‖ ≤ ‖w

∗‖
γ∗ = 1

γ∗ and thus

min1≤i≤m

∣∣〈ŵ , xi 〉+ b̂
∣∣ ≥ 1

‖w0‖
≥ γ∗.
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Sample Complexity

Definition

A distribution D over Rd × {±1} is separable with a (γ, ρ)-margin if

there exists (w∗, b∗) such that ‖w∗‖ = 1 and with probability 1 on a

pair (X ,Y ) ∼ D, it holds that ‖X‖ ≤ ρ and Y
(
〈w∗,X 〉+ b

)
≥ γ.

Remark: by multiplying the xi by α, the margin is mutliplied by α.

Theorem

For any distribution D over Rd × {±1} that satisfies the

(γ, ρ)-separability with margin assumption using a homogenous

halfspace, with probability at least 1− δ over the training set of size m

the 0− 1 loss of the output of Hard-SVM is at most√
4(ρ/γ)2

m
+

√
2 log(2/δ)]

m
.

Remark: depends on dimension d only thru ρ and γ.
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Soft-SVM

When the data is not linearly separable, allow slack variables ξi :

min
w ,b,ξ

λ‖w‖2 +
1

m

m∑
i=1

ξi such that ∀i , yi
(
〈w , xi 〉+ b

)
≥ 1− ξi and ξi ≥ 0

= min
w ,b

λ‖w‖2 + LhingeS (w , b) where `hinge(u) = max(0, 1− u) .

Theorem

Let D be a distribution over B(0, ρ)× {±1}. If A(S) is the output of

the soft-SVM algorithm on the sample S of D of size m,

E
[
L0−1
D

(
A(S)

)]
≤ E

[
LhingeD

(
A(S)

)]
≤ inf

u
LhingeD (u) + λ‖u‖2 +

2ρ2

λm
.

For every B > 0, setting λ =
√

2ρ2

B2m yields:

E
[
L0−1
D

(
A(S)

)]
≤ E

[
LhingeD

(
A(S)

)]
≤ inf

w :‖w‖≤B
LhingeD (w) +

√
8ρ2B2

m
.
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Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

g(w) = max
α∈[0,+∞)m

m∑
i=1

αi

(
1− yi 〈w , xi 〉

)
=

{
0 if ∀i , yi 〈w , xi 〉 ≥ 1,

+∞ otherwise .

Then the hard-SVM problem is equivalent to

min
w :∀i,yi 〈w ,xi 〉≥1

1

2
‖w‖2 = min

w

1

2
‖w‖2 + g(w)

= min
w

max
α∈[0,+∞)m

1

2
‖w‖2 +

m∑
i=1

αi

(
1− yi 〈w , xi 〉

)
min−max thm

= max
α∈[0,+∞)m

min
w

1

2
‖w‖2 +

m∑
i=1

αi

(
1− yi 〈w , xi 〉

)
.

The inner min is reached at w =
m∑
i=1

αiyixi and can thus be written as

max
α∈Rm,α≥0

m∑
i=1

αi −
1

2

∑
1≤i,j≤m

αiαjyiyj〈xi , xj〉 .
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Support vectors

Still for the homogeneous case of hard-SVM:

Property

Let w0 be a solution of and let I = {i :
∣∣〈w0, xi 〉

∣∣ = 1}. There exist

α1, . . . , αm such that

w0 =
∑
i∈I

αixi .

The dual problem involves the xi only thru scalar products 〈xi , xj〉.

It is of size m (independent of the dimension d).

These computations can be extended to the non-homogeneous soft-SVM

→ Kernel trick.
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Numerically solving Soft-SVM

f (w) = λ
2 ‖w‖

2 + LhingeS (w) is λ-strongly convex.

→ Stochastic Gradient Descent with learning rate 1/(λt). Stochastic

subgradient of LhingeS (w) : vt = −yItxIt1
{
yIt 〈w , xIt 〉 < 1

}
.

wt+1 = wt −
1

λt
(λwt + vt) =

t − 1

t
wt −

1

λt
vt = − 1

λt

t∑
s=1

vs .

Algorithm: SGD for Soft-SVM

1 Set θ0 = 0

2 for t = 0 . . .T − 1 do

3 Let wt = 1
λt θt

4 Pick It ∼ U
(
{1, . . . ,m}

)
5 if yIt 〈wt , xIt 〉 < 1 then

6 θt+1 ← θt + yItxIt
7 else

8 θt+1 ← θt

9 return w̄T = 1
T

∑T−1
t=0 wt 8



Super-learning: Ensemble

Methods



Aggregating Predictions from Weak Learners

Weak learners:

• Stumps

• Decision trees

High bias, high individual variance

But quick and light =⇒ can be combined efficiently
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Decision Trees: CART and co

Idea: recursive splitting of the feature space X . Inhomogeneity of a cell:
• classification: 0 when all labels are equal, maximal when the labels are evenly distributed.

Ex: if p = frequency of label 1, h(p) = max(p, 1− p), p(1− p), binary entropy

• regression: empirical variance of the labels

1. Expansion phase: top-down

• Start with tree root = X
• Repeat for each in-homogeneous leaf:

• find variable v and threshold s such that splitting according to
• [quantitative variable] v < s versus v ≥ s

• [qualitative variable] v ∈ s versus v /∈ s

improves most homogeneity

• replace that leaf by a node with the two corresponding children

• Stop when all leaves are homogeneous or contain fewer that K data

points

2. Pruning phase: bottom-up

• In each leaves’ parent, test if the split is significant

• If not, remove the leaves: the parent is now a leave (and start again) 10



Outline

Support Vector Machines

Super-learning: Ensemble Methods

Bagging

Boosting
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Bootstrap: a Resampling scheme

• Setting:

• observation space X , model M⊂M1(X ),

• target: ψ(P) for P ∈M,

• data: Sm = (X1, . . . ,Xm)
iid∼ P,

• empirical measure Pm = 1
m

∑m
i=1 δXi is ”close to” P

• statistic: ψ(Pm)

• Problem: how close is ψ(Pm) from ψ(P)?

If we had several samples, we could experiment...

• Idea: since Pn is close to P, we can use it as a substitute to P:

X̃i
iid∼ Pm

• Sampling from Pn amounts to resampling with replacement from Sm
• The distribution of the estimator ψ(Pm) might be close to that of

ψ(P̃m), where P̃m = 1
m

∑m
i=1 δX̃i

• We can ”see” the distribution of ψ(P̃m) by forming a large number

M of such ”bootstrap samples”.

• From this distribution we can build confidence intervals, etc. (needs

to be justified theoretically!)
12



Bagging: Bootstrap Aggregating

Input:

Sample: Sm =
(
(X1,Y1), . . . , (Xm,Ym)

)
Weak learner: Φm : Sm 7→ hm, where hm : X → Y is a decision rule

1. Build M bootstrap samples S̃1
m, . . . , S̃

M
m .

2. For each 1 ≤ j ≤ M, call weak classifier on S̃ j
m so as to obtain rule

ĥjm = Φm(S̃ j
m).

3. Aggregate all decision rules into a strong classifier ĥm:

• for classification: by majority vote

ĥm(x) = arg max
y∈Y

m∑
j=1

1
{
ĥj
m(x) = y

}
;

• for regression: by (uniform) averaging

ĥm(x) =
1

m

m∑
j=1

ĥj
m(x) .

Out-of-bag error estimate
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Random Forest

• Bagging with decision trees

• No need to optimize too much on the tree (for speed, but not only):

• no pruning

• simplified splitting rule (see below)

• limited depth (sometimes to 2)

• extra variance:

• consider a subset of variables only as candidates for splitting

• split at average (or median) value

Measure the importance of each variable:

• (rough) number of occurrences of the variable in the forest

• mean decreasse Gini: sum of the heterogeneity measure decrease

caused by the variable
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Outline

Support Vector Machines

Super-learning: Ensemble Methods

Bagging

Boosting
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Boosting

See Rob Schapire’s excellent slides:

https://www.csie.ntu.edu.tw/~mhyang/course/u0030/papers/

schapire.pdf
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