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Before we start



Outline (1/2)

• 1. 09.09 Introduction, nearest-neighbor classification

• 2. 09.16 ML methodology, k-nearest neighbors, decision trees

• 3. 09.23 PAC Learning Theory, no-free-lunch theorem

• 4. 09.30 Dimensionality Reduction: PCA, random projections

• 5. 10.07 VC dimension, empirical risk minimization

• 6. 10.14 Linear separators, Support Vector Machines

• 7. 10.21 Kernels, regularization

• 10.28 holidays

• 8. 11.4 Boosting, Bagging, Random Forests

• 11.11 bank holiday
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Outline (2/2)

• 9. 11.18 Neural networks and stochastic gradient descent

• 10. 11.25 Regression, model selection

• 11. 12.02 Clustering

• 12. 12.09 Online Learning

• 13. 12.16 Reinforcement Learning

• 12.23 holidays

• 12.30 holidays

• 14. 01.06 Questions / Exercises

• 15. 01.13 Final Exam
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Reference textbook

General introduction to

Machine Learning theory,

by two leading researchers

of the field.

Covers a good part of

the content of this course

(other references will be

provided for specific top-

ics).
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Additional References
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Evaluation

Homework and in-class exercises

and

• analysis and review of a research article

• report + oral presentation

• articles will be proposed along the lectures

• or participation in a ML student challenge:

• topic: anomaly detection

• data: Airbus sensors

• teams: 4 participants

• start: October 10th

• see https://defi-ia.insa-toulouse.fr/

(you choose)
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What is Machine Learning?



Why Machine Learning?
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What is Machine Learning?

• Algorithms operate by building a model from example inputs in

order to make data-driven predictions or decisions...

• ...rather than following strictly static program instructions: useful

when designing and programming explicit algorithms is unfeasible or

poorly efficient.

Within Artificial Intelligence

• evolved from the study of pattern recognition and computational

learning theory in artificial intelligence.

• AI: emulate cognitive capabilities of humans

(big data: humans learn from abundant and diverse sources of data).

• a machine mimics ”cognitive” functions that humans associate with

other human minds, such as ”learning” and ”problem solving”.
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Example: MNIST dataset
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Machine Learning (ML): Definition

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being

explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.
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Machine Learning: Typical Problems

• spam filtering, text classification

• optical character recognition (OCR)

• search engines

• recommendation platforms

• speach recognition software

• computer vision

• bio-informatics, DNA analysis, medicine

• etc.

For each of this task, it is possible but very inefficient to write an explicit

program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good

decision rules are.
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What is Statistical Learning?

= Machine Learning using statistics-inspired tools and guarantees

• Importance of probability- and statistics-based methods

→ Data Science (Michael Jordan)

• Computational Statistics: focuses in prediction-making through

the use of computers together with statistical models (ex: Bayesian

methods).

• Data Mining (unsupervised learning) focuses more on exploratory

data analysis: discovery of (previously) unknown properties in the

data. This is the analysis step of Knowledge Discovery in Databases.

• Machine Learning has more operational goals

Ex: consistency → oracle inequalities

Models (if any) are instrumental.

ML more focused on correlation, less on causality (now changing).

• Strong ties to Mathematical Optimization, which furnishes

methods, theory and application domains to the field
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ML and its neighbors
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The Learning Models



What ML is composed of

Machine Learning Unsupervised
Learning

Representation
learning
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learning
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systems
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logic pro-
gramming

Association
rule
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• semi-supervised learning
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Unsupervised Learning

• (many) observations on (many) individuals

• need to have a simplified, structured overview of the data

• taxonomy: untargeted search for homogeneous clusters emerging

from the data

• Examples:

• customer segmentation

• image analysis (recognizing different zones)

• exploration of data
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Example: representing the climate of cities
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Supervised Learning

• Observations = pairs (Xi ,Yi )

• Goal = learn to predict Yi given Xi

• Regression (when Y is continuous)

• Classification (when Y is discrete)

Examples:

• Spam filtering / text categorization

• Image recoginition

• Credit risk ranking
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Reinforcement Learning

Agent

Environment

Learning

reward perception

Critic

actuation
action / state /

[Src: https://en.wikipedia.org/wiki/Reinforcement_learning]

• area of machine learning inspired by behaviourist psychology

• how software agents ought to take actions in an environment so as

to maximize some notion of cumulative reward.

• Model: random system (typically : Markov Decision Process)

• agent

• state

• actions

• rewards

• sometimes called approximate dynamic programming, or

neuro-dynamic programming
20
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Example: A/B testing
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Machine Learning Methodology



ML Data

m-by-p matrix X

• m examples = points of observations

• p features = characteristics measured for each example

Questions to consider:

• Are the features centered?

• Are the features normalized? bounded?

In scikitlearn, all methods expect a 2D array of shape (m, p) often

called

X (n_samples, n_features)
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Data repositories

• Inside R: package datasets

• Inside scikitlearn: package sklearn.datasets

• UCI Machine Learning Repository

• Challenges: Kaggle, etc.
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The big steps of data analysis

1. Extracting the data to expected format

2. Exploring the data

• detection of outliers, of inconsistencies

• descriptive exploration of the distributions, of correlations

• data transformations

• learning sample

• validation sample

• test sample

3. For each algorithm: parameter estimation using training and

validation samples

4. Choice of final algorithm using testing sample, risk estimation
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Machine Learning tools: R
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Machine Learning tools: python
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scikitlearn: http://scikit-learn.org/stable/index.html
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Knime, Weka and co: integrated environments
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Supervised Classification



What is a classifier?
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6

Classifier Am

X ∈Mm,p(R)
Data: m-by-p matrix X

• m examples = points

of observations

• p features =

characteristics

measured for each

example
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Statistical Learning Hypothesis

Assumption

• The examples (Xi ,Yi )1≤i≤m are iid samples of an unknown joint

distribution D;

• The points to classify later are also independent draws of the same

distribution D.

Hence, for every decision rule h : X → Y we can define the risk

LD(h) = P(X ,Y )∼D
(
h(X ) 6= Y ) = D

({
(x , y) : h(x) 6= y

})
.

The goal of the learning algorithm is to minimize the expected risk:

Rm(Am) = ED⊗m

[
LD
(
Am

(
(X1,Y1), . . . , (Xm,Ym)

)︸ ︷︷ ︸
ĥm

)]

for every distribution D, using only the examples.
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Realizable case vs agnostic learning

One usually distinguishes

• the realizable case: there exists h : X → Y such that

P(X ,Y )∼D
(
h(X ) = Y ) = 1,

• and the agnostic case otherwise (x does not permit to predict y with

certainty).

Examples:

• spam filtering, character recognition

• credit risk, heart disease prediction

We generally focus on the agnostic case.
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Signal and Noise
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Statistical Learning Framework

• Domain set X
• Label set Y
• Statistical Model:

{
D probability over X × Y

}
• Training data: pairs (Xi ,Yi ) ∈ X × Y, 1 ≤ i ≤ m

m = sample size

• Learner’s output: ĥm : X → Y. Possibly ĥm ∈ H ⊂ YX .

• Measures of success: risk measure of hypothesis h ∈ H

LD(h) = P(X ,Y )∼D
(
h(X ) 6= Y ) = D

({
(x , y) : h(x) 6= y

})
.
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Example: Character Recognition

Domain set X 64× 64 images

Label set Y {0, 1, . . . , 9}
Joint distribution D ?

Prediction function h ∈ H ⊂ YX
Risk R(h) = PX ,Y (h(X ) 6= Y )

Sample S = {(xi , yi )}mi=1 MNIST dataset

Empirical risk

LS(h) = 1
m

∑m
i=1 1{h(xi ) 6= yi}

Learning algorithm

A = (Am)m, Am : (X × Y)m → H neural nets, boosting...

Expected risk Rm(A) = Em[L(Am(Sm)))]

Empirical risk minimizer

ĥm = arg minh∈H LS(h)

Regularized empirical risk minimizer

ĥm = arg minh∈H LS(h) + λC (h)
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Statistical Learning

One can have 2 visions of D:

As a pair (Dx , k), where

• for A ⊂ X , Dx(A) = D
(
A× Y

)
is the

marginal distribution of X ,

• and for x ∈ X and B ⊂ Y,

k(B|x) = P
(
Y ∈ B|X = x) is (a version of)

the conditional distribution of Y given X .

As a pair
(
Dy ,

(
D(·|y)

)
y

)
, where

• for y ∈ Y, Dy (y) = D
(
X × y

)
is the marginal

distribution of Y ,

• and for A ⊂ X and y ∈ Y,

D(A|y) = P
(
X ∈ A|Y = y) is the conditional

distribution of X given Y = y .
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Bayes Classifier

Consider binary classification Y = {0, 1}, let η(x) = P(Y = 1|X = x).

Theorem

The Bayes classifier is defined by

h∗(x) = 1
{
η(x) ≥ 1/2

}
= 1

{
η(x) ≥ 1− η(x)

}
= 1

{
2η(x)− 1 ≥ 0

}
.

For every classifier h : X → Y = {0, 1},

LD(h) ≥ LD(h∗) = E
[

min
(
η(X ), 1− η(X )

)]
.

The Bayes risk L∗D = LD(h∗) is called the noise of the problem.

More precisely,

LD(h)− LD(h∗) = E
[∣∣2η(X )− 1

∣∣ 1{h(X ) 6= h∗(X )
}]

.

Extends to |Y| > 2.
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Proof

LD (h)− LD (h
∗) = E

[
1
{
h(X ) 6= h∗(X )

}(
1
{
Y = 1

}(
1
{
h∗(X ) = 1

}
− 1

{
h∗(X ) = 0

})
+ 1
{
Y = 0

}(
1
{
h∗(X ) = 0

}
− 1

{
h∗(X ) = 1

}))]

= E
[
1
{
h(X ) 6= h∗(X )

}(
21
{
Y = 1

}
− 1
)(

21
{
h∗(X ) = 1

}
− 1
)]

= E
[
1
{
h(X ) 6= h∗(X )

}(
21
{
Y = 1

}
− 1
)(

21
{
η(X ) ≥

1

2

}
− 1
)]

= E
[
1
{
h(X ) 6= h∗(X )

}(
21
{
η(X ) ≥

1

2

}
− 1
)
E
[
21
{
Y = 1

}
− 1

∣∣ X]]

= E
[
1
{
h(X ) 6= h∗(X )

}(
21
{
η(X ) ≥

1

2

}
− 1
)(

2E
[
1
{
Y = 1

}∣∣ X]− 1
)]

= E
[
1
{
h(X ) 6= h∗(X )

}
sign

(
η(X )−

1

2

)(
2η(X )− 1

)]

= E
[
1
{
h(X ) 6= h∗(X )

}∣∣2η(X )− 1
∣∣]
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Nearest-Neighbor Classification



The Nearest-Neighbor Classifier

We assume that X is a metric space with distance d .

The nearest-neighbor classifier ĥNNm : X → Y is defined as

ĥNNm (x) = YI where I ∈ arg min
1≤i≤m

d(x − Xi ) .

Typical distance: L2 norm on Rd ‖x − x ′‖ =
√∑d

j=1(xi − x ′i )
2 .

Buts many other possibilities: Hamming distance on {0, 1}d , etc.
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Numerically
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Numerically
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Analysis

A1. Y = {0, 1}.
A2. X = [0, 1[d .

A3. η is c-Lipschitz continuous:

∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c
∥∥x − x ′‖ .

.

Theorem

Under the previous assumptions, for all distributions D and all m ≥ 1

Rm

(
ĥNNm

)
≤ 2L∗D +

3c
√
d

m1/(d+1)
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Proof Outline

• Conditioning: as I (x) = arg min1≤i≤m ‖x − Xi‖,

Rm

(
ĥNNm

)
= E

[
E
[
1{Y 6= YI (X )}

∣∣X ,X1, . . . ,Xm

]]
.

• Y ∼ B(p), Y ′ ∼ B(q) =⇒ P(Y 6= Y ′) ≤ 2 min(p, 1− p) + |p − q|,

E
[
1{Y 6= YI (X )}|X ,X1, . . . ,Xm

]
≤ 2 min

(
η(X ), 1−η(X )

)
+c
∥∥X−XI (X )

∥∥ .
• Partition X into |C| = T d cells of diameter

√
d/T :

C =

{[
j1 − 1

T
,
j1
T

[
× · · · ×

[
jd − 1

T
,
jd
T

[
, 1 ≤ j1, . . . , jd ≤ T

}
.

• 2 cases: either the cell of X is occupied by a sample point, or not:∥∥X−XI (X )

∥∥ ≤∑
c∈C

1{X ∈ c}
(√

d

T
1

m⋃
i=1

{Xi ∈ c}+
√
d1

m⋂
i=1

{Xi /∈ c}
)
.

• =⇒ E
[
‖X − XI (X )‖

]
≤
√
d

T +
√
dT d

e m and choose T =
⌊
m

1
d+1

⌋
.
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What does the analysis say?

• Is it loose? (sanity check: uniform DX )

• Non-asympototic (finite sample bound)

• The second term 3c
√
d

m1/(d+1) is distribution independent

• Does not give the trajectorial decrease of risk

• Exponential bound d (cannot be avoided...)

=⇒ curse of dimensionality

• How to improve the classifier?
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