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Before we start



Outline (1/2)

• 1. 09.10 Introduction, nearest-neighbor classification

• 09.17 Pot du DI at IFE Descartes (meet your tutor)

• 2. 09.24 ML methodology, k-nearest neighbors, decision trees

• 3. 10.01 PAC Learning Theory, no-free-lunch theorem

• 4. 10.8 VC dimension, empirical risk minimization

• 5. 10.15 Linear separators, Support Vector Machines

• 6. 10.22 Kernels, regularization

• 10.29 holidays
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Outline (2/2)

• 7. 11.5 Boosting, Bagging, Random Forests

• 11.12 winter school

• 8. 11.19 Neural networks and stochastic gradient descent

• 11.26 winter school

• 12.03 no lecture

• 9. 12.10 Regression, model selection

• 10. 12.17 Dimension reduction

• 11. 01.07 Clustering

• 12. 01.14 Online learning
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Reference textbook

General introduction to

Machine Learning theory,

by two leading researchers

of the field.

Covers most of the content

of this course (the converse

is also almost true).
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Additional References

5



Evaluation

Homework and in-class exercises

and

• analysis and review of a research article (report + oral presentation)

• or participation in a student ML challenge

(you choose)
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What is Machine Learning?



Machine Learning (ML): Definition

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being

explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.

7



ML: Learn from and make predictions on data

• Algorithms operate by building a model from example inputs in

order to make data-driven predictions or decisions...

• ...rather than following strictly static program instructions: useful

when designing and programming explicit algorithms is unfeasible or

poorly efficient.

Within Artificial Intelligence

• evolved from the study of pattern recognition and computational

learning theory in artificial intelligence.

• AI: emulate cognitive capabilities of humans

(big data: humans learn from abundant and diverse sources of data).

• a machine mimics ”cognitive” functions that humans associate with

other human minds, such as ”learning” and ”problem solving”.
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Machine Learning: Typical Problems

• spam filtering, text classification

• optical character recognition (OCR)

• search engines

• recommendation platforms

• speach recognition software

• computer vision

• bio-informatics, DNA analysis, medicine

• etc.

For each of this task, it is possible but very inefficient to write an explicit

program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good

decision rules are.

9



Example: MNIST dataset
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Related Fields

• Computational Statistics: focuses in prediction-making through

the use of computers together with statistical models (ex: Bayesian

methods).

• Statistical Learning: ML by statistical methods, with statistical

point of view (probabilistic guarantees: consistency, oracle

inequalities, minimax)

• Data Mining (unsupervised learning) focuses more on exploratory

data analysis: discovery of (previously) unknown properties in the

data. This is the analysis step of Knowledge Discovery in Databases.

• Importance of probability- and statistics-based methods → Data

Science (Michael Jordan)

• Strong ties to Mathematical Optimization, which delivers

methods, theory and application domains to the field
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Machine Learning and Statistics

• Data analysis (inference, description) is the goal of statistics for long.

• Machine Learning has more operational goals (ex: consistency is

important the statistics literature, but often makes little sense in

ML).

Models (if any) are instrumental.

Ex: linear model (nice mathematical theory) vs Random Forests.

• Machine Learning/big data: no seperation between statistical

modelling and optimization (in contrast to the statistics tradition).

• In ML, data is often here before (unfortunately).

• ML more focused on correlation, less on causality.

• Algorithmic considerations play a major role in ML.

• No clear separation (statistics evolves as well), but different

hypotheses focus of interest. Ex: model-free versus model-based,

asymptotic consistency versus finite sample bounds.
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ML and its neighbors

Machine Learning

Statistics

Decision
Theory

Descriptive
Analysis

Inference

Information

Theory

MDL

Learnability

TCS

Complexity
Theory

Algorithmic

Game Theory

Optimization

Convex
Optim.

Stochastic
Gradient

Distr.
Optim.

Operations

Research

AI

NLP

Vision

Signal Processing

Image
processing

Time
Series
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ML journals
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ML conferences
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The Learning Models



What ML is composed of

Machine Learning
Unsupervised

Learning

Representation
learning

Clustering

Anomaly
detection

Bayesian
networks

Latent
variables

Density
estimation

Dimension
reduction

Supervised

Learning:

classification,

regression

Decition
Trees

SVM

Ensemble
Methods

Boosting

Bagging
Random

Forest

Neural
Networks

Sparse
dictionary
learning

Model
based

Similarity
/ metric
learning

Recommender
systems

Rule Learning

Inductive
logic pro-
gramming

Association
rule

learning

Reinforcement

Learning

Bandits MDP

• semi-supervised learning
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Unsupervised Learning

• (many) observations on (many) individuals

• need to have a simplified, structured overview of the data

• taxonomy: untargeted search for homogeneous clusters emerging

from the data

• Examples:

• customer segmentation

• image analysis (recognizing different zones)

• exploration of data

17



Example: representing the climate of cities
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Supervised Learning

• Observations = pairs (Xi ,Yi )

• Goal = learn to predict Yi given Xi

• Regression (when Y is continuous)

• Classification (when Y is discrete)

Examples:

• Spam filtering / text categorization

• Image recoginition

• Credit risk ranking
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Reinforcement Learning

Agent

Environment

Learning

reward perception

Critic

actuation
action / state /

[Src: https://en.wikipedia.org/wiki/Reinforcement_learning]

• area of machine learning inspired by behaviourist psychology

• how software agents ought to take actions in an environment so as

to maximize some notion of cumulative reward.

• Model: random system (typically : Markov Decision Process)

• agent

• state

• actions

• rewards

• sometimes called approximate dynamic programming, or

neuro-dynamic programming
20
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Example: A/B testing
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Machine Learning Methodology



ML Data

n-by-p matrix X

• n examples = points of observations

• p features = characteristics measured for each example

Questions to consider:

• Are the features centered?

• Are the features normalized? bounded?

In scikitlearn, all methods expect a 2D array of shape (n, p) often

called

X (n_samples, n_features)
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Data repositories

• Inside R: package datasets

• Inside scikitlearn: package sklearn.datasets

• UCI Machine Learning Repository

• Challenges: Kaggle, etc.
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The big steps of data analysis

1. Extracting the data to expected format

2. Exploring the data

• detection of outliers, of inconsistencies

• descriptive exploration of the distributions, of correlations

• data transformations

• learning sample

• validation sample

• test sample

3. For each algorithm: parameter estimation using training and

validation samples

4. Choice of final algorithm using testing sample, risk estimation
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Machine Learning tools: R
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Machine Learning tools: python
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scikitlearn: http://scikit-learn.org/stable/index.html
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Knime, Weka and co: integrated environments
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Supervised Classification



Statistical Learning Framework

• Domain set X
• Label set Y
• Statistical Model:

{

D probability over X × Y
}

• Training data: pairs (Xi ,Yi ) ∈ X × Y, 1 ≤ i ≤ m

m = sample size

• Learner’s output: ĥ : X → Y. Possibly ĥ ∈ H ⊂ YX .

• Measures of success: risk measure

LD(h) = P(X ,Y )∼D
(

h(X ) 6= Y ) = D
(

{

(x , y) : h(x) 6= y
}

)

.
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Example: Character Recognition

Domain set X 64× 64 images

Label set Y {0, 1, . . . , 9}
Joint distribution D ?

Prediction function h ∈ H ⊂ YX

Risk R(h) = PX ,Y (h(X ) 6= Y )

Sample S = {(xi , yi )}mi=1 MNIST dataset

Empirical risk

LS(h) =
1
m

∑m
i=1 ✶{h(xi ) 6= yi}

Learning algorithm

A = (An)n, An : (X × Y)n → H neural nets, boosting...

Expected risk Rn(A) = En[R(An(Dn)))]

Empirical risk minimizer

ĥn = argminh∈H R̂n(h)

Regularized empirical risk minimizer

ĥn = argminh∈H R̂n(h) + λC (h)
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Realizable case vs agnostic learning

One usually distinguishes

• the realizable case: there exists h : X → Y such that

P(X ,Y )∼D
(

h(X ) = Y ) = 1,

• and the agnostic case otherwise (x does not permit to predict y with

certainty).

Examples:

• spam filtering, character recognition

• credit risk, heart disease prediction

We generally focus on the agnostic case.
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Statistical Learning

One can have 2 visions of D:

As a pair (Dx , k), where

• for A ⊂ X , Dx(A) = D
(

A× Y
)

is the

marginal distribution of X ,

• and for x ∈ X and B ⊂ Y,

k(B |x) = P
(

Y ∈ B |X = x) is (a version of)

the conditional distribution of Y given X .

As a pair
(

Dy ,
(

D(·|y)
)

y

)

, where

• for y ∈ Y, Dy (y) = D
(

X × y
)

is the marginal

distribution of Y ,

• and for A ⊂ X and y ∈ Y,

D(A|y) = P
(

X ∈ A|Y = y) is the conditional

distribution of X given Y = y .
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Statistical Learning

One can have 2 visions of D:

As a pair (Dx , k), where

• for A ⊂ X , Dx(A) = D
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A× Y
)

is the

marginal distribution of X ,
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(
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Bayes Classifier

Consider binary classification Y = {0, 1}.
Theorem

The Bayes classifier is defined by

h∗(x) = ✶
{

η(x) ≥ 1/2
}

= ✶
{

η(x) ≥ 1− η(x)
}

= ✶
{

2η(x)− 1 ≥ 0
}

.

For every classifier h : X → Y = {0, 1},

LD(h) ≥ LD(h
∗) = E

[

min
(

η(X ), 1− η(X )
)

]

.

The Bayes risk L∗D = LD(h
∗) is called the noise of the problem.

More precisely,

LD(h)− LD(h
∗) = E

[

∣

∣2η(X )− 1
∣

∣ ✶
{

h(X ) 6= h∗(X )
}

]

.

Extends to |Y| > 2.
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Nearest-Neighbor Classification



The Nearest-Neighbor Classifier

We assume that X is a metric space with distance d .

The nearest-neighbor classifier ĥNNm : X → Y is defined as

ĥNNm (x) = YI where I ∈ argmin
1≤i≤m

d(x − Xi ) .

Typical distance: L2 norm on R
d ‖x − x ′‖ =

√

∑d
j=1(xi − x ′i )

2 .

Buts many other possibilities: Hamming distance on {0, 1}d , etc.
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Numerically
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Analysis

A1. Y = {0, 1}.
A2. X = [0, 1[d .

A3. η is c-Lipschitz continuous:

∀x , x ′ ∈ X ,
∣

∣η(x)− η(x ′)
∣

∣ ≤ c
∥

∥x − x ′‖ .

.

Theorem

Under the previous assumptions, for all distributions D and all m ≥ 1

LD
(

ĥNNm

)

≤ 2L∗D +
3c

√
d

m1/(d+1)
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Proof Outline

• Conditioning: as I (x) = argmin1≤i≤m ‖x − Xi‖,

LD(ĥ
NN
n ) = E

[

E
[

✶{Y 6= YI (X )}
∣

∣X ,X1, . . . ,Xm

]

]

.

• Y ∼ B(p), Y ′ ∼ B(q) =⇒ P(Y 6= Y ′) ≤ 2min(p, 1− p) + |p − q|,

E

[

✶{Y 6= YI (X )}|X ,X1, . . . ,Xm

]

≤ 2min
(

η(X ), 1−η(X )
)

+c
∥

∥X−XI (X )

∥

∥ .

• Partition X into |C| = T d cells of diameter
√
d/T :

C =

{[

j1 − 1

T
,
j1

T

[

× · · · ×
[

jd − 1

T
,
jd

T

[

, 1 ≤ j1, . . . , jd ≤ T

}

.

• 2 cases: either the cell of X is occupied by a sample point, or not:

∥

∥X−XI (X )

∥

∥ ≤
∑

c∈C
✶{X ∈ c}

(√
d

T
✶

m
⋃

i=1

{Xi ∈ c}+
√
d✶

m
⋂

i=1

{Xi /∈ c}
)

.

• =⇒ E
[

‖X − XI (X )‖
]

≤
√
d

T
+

√
dT d

e m
and choose T =

⌊

m
1

d+1

⌋

.
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What does the analysis say?

• Is it loose? (sanity check: uniform DX )

• Non-asympototic (finite sample bound)

• The second term 3c
√
d

m1/(d+1) is distribution independent

• Does not give the trajectorial decrease of risk

• Exponential bound d (cannot be avoided...)

=⇒ curse of dimensionality

• How to improve the classifier?

38



Deviation Bound for Bernoulli

Variables



Remember: Jensen’s Inequality

Basic version: if φ : X → R is convex and t ∈ (0, 1) then for all

x , x ′ ∈ X , f (tx + (1− t)x ′) ≤ tf (x) + (1− t)f (x ′).

Probabilistic version: If φ : X → R is convex and if X is a random

variable with range in X , then φ
(

E[X ]
)

≤ E
[

φ(X =)
]

.

Example: For a real-valued random variable X E[X 2] ≥ E[X ]2 and thus

Var [X ] = E[X 2]− E[X ]2 ≥ 0.

Think about equality case.
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Chernoff’s Bound

Theorem (Chernoff-Hoeffding Deviation Bound)

Let µ ∈ (0, 1). X1, . . . ,Xn
iid∼ B(µ), and let x ∈ (µ, 1].

(i) Chernoffs’ bound for Bernoulli variables:

P(X̄n ≥ x) ≤ exp
(

− n kl(x , µ)
)

, (1)

where kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

(ii) Hoeffding’s bound for Bernoulli variables: since kl(p, q) ≥ 2(p − q)2,

P(X̄n ≥ x) ≤ exp
(

− 2n(x , µ)2
)

. (2)

(iii) Inequalities (1) and (2) hold for arbitrary independent random

variables with range [0, 1] and expectation µ.

Reason: exp(λx) ≤ (1 − x) exp(0) + x exp(λ).
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Kullback-Leibler Divergence

Definition

Let P and Q be two probability distributions on a set X . The

Kullback-Leibler divergence from Q to P is defined as follows:

• if P is not absolutely continuous with respect to Q, then

KL(P ,Q) = +∞;

• otherwise, let dP
dQ

be the Radon-Nikodym derivative of P with

respect to Q. Then

KL(P ,Q) =

∫

X
log

dP

dQ
dP =

∫

X

dP

dQ
log

dP

dQ
dQ .

The integral always exists but may be equal to +∞.

Examples:

• KL
(

B(p),B(q)
)

= kl(p, q),

• KL
(

N (µ1, σ
2), N (µ2, σ

2)
)

= (µ1−µ2)
2

2σ2 .
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Properties

Tensorization of entropy: If P = P1 ⊗ P2 and Q = Q1 ⊗ Q2, then

KL(P ,Q) = KL(P1,Q1) + KL(P2,Q2) .

Contraction of entropy aka data-processing inequality:

Let P and Q be probability distributions on X , and let X ∼ P and

Y ∼ Q. If f : X → X ′ is a measurable function and if P̃ (resp. Q̃) is the

distribution of f (X ) (resp. f (Y )), then

KL(P̃ , Q̃) ≤ KL(P ,Q) .
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Application: Lower bound

Let µ ∈ (0, 1). X1, . . . ,Xn
iid∼ B(µ), and let x ∈ (µ, 1]. Then

lim inf
m

1

m
logP(X̄m > x) ≥ − kl(x , µ)

”Chernoff’s bound is asymptotically almost tight”
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