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Unsupervised Learning: Clustering
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Unsupervised learning

Marketing: finding groups of customers with similar behavior
given a large database of customer data containing their
properties and past buying records
Biology: classification of plants and animals given their features
Insurance: identifying groups of motor insurance policy holders
with a high average claim cost, identifying frauds
City-planning: identifying groups of houses according to their
house type, value and geographical location
Internet: document classification, clustering weblog data to
discover groups of similar access patterns
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Two main directions

Data: base of customer data containing their properties and past
buying records
Goal: Use the customers similarities to find groups

Two directions:

Clustering: propose an explicit grouping of the customers
Visualization: propose a representation of the customers so that
the groups are visibles
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Supervised learning reminder

Training data Dn = [(x1, y1), . . . , (xn, yn)]

(xi, yi) i.i.d P on X × Y
Construct a predictor f̂ : X → Y using Dn

Loss `(y, f(x)) measures how well f(x) predicts y well
Aim is to minimize the generalization error

EX,Y(`(Y, f̂(X))|Dn) =

∫
`(y, f̂(x))dP(x, y).

The goal is clear

Predict y based on feature x

Heard on the street
Supervised learning is solved. Unsupervised learning isn’t
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Unsupervised learning

Training data Dn = [x1, . . . , xn]

Loss: Not Clear
Aim: Not Clear

The goal is unclear.

Classical tasks
Clustering: construct groups of data in homogeneous classes
Dimension reduction: construct a map of the data in a
low-dimension space without distorting it too much

Motivations

Interpretation of the groups
Use of the groups in further processing
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Clustering
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Clustering

Training data Dn = {x1, . . . , xn} with xi ∈ Rd

Recover Latent groups
Construct f : Rd → {1, . . . ,K} which affects cluster number to xi

f : xi 7→ ki

No ground truth for ki

Warning

Choice of K is hard

Roughly two approaches

Partition-based
Model-based
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K-means



K-means problem

K-means
Fix K ≥ 2, n data points xi ∈ Rd

Find centroids c1, . . . cK that minimizes the quantification error
n∑

i=1
min

k=1,...,K
‖xi − ck‖2

2

Impossible to find the exact solution (NP Complete)
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K-means algorithm

Lloyd (1981) proposes a way of finding local solutions

K-means algorithm
Choose at random K centroids {c1, . . . , cK}
For each k ∈ {1, . . . ,K}, find the set Ck of points that are closer to
ck than any ck′ for k′ 6= k
Update the centroids:

ck =
1
|Ck|

∑
i∈Ck

xi

Repeat the two previous steps until the sets Ck don’t change

Remark: K-means computes a Voronoi partitioning, it implicitly
assumes convex clusters, that are uniquely defined by their centroids.
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Voronoi partitioning
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Bryant park
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K-means
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K-means
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Initialization problem

K-means very sensitive to the choice of initial points
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An easy solution:

Pick a first point at random
Choose the next initial point the farthest from the previous ones
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Farthest point initialization
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Farthest point initialization
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Farthest point initialization
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Farthest point initialization
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Farthest point initialization
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But, very sensitive to outliers
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But, very sensitive to outliers
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Robustness to outliers: K-means++

Principle
Pick the initial centroids as follows

1 Pick uniformly at random i ∈ {x1, . . . , xn}, put c1 ← xi

2 k← k + 1
3 Sample i ∈ {X1, . . . ,Xn} with probability

mink′=1,...,k−1 ‖xi − ck′‖2
2∑n

i′=1 mink′=1,...,k−1 ‖Xi′ − ck′‖2
2

4 Put ck ← xi

5 If k < K go back to step 2.

Then use K-means based on these initial clusters

This is between random initialization and furthest point initialization
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K-means++

In expectation, leads to a solution close to the optimum. Define the
quantification error

Qn(c1, . . . , cK) =
n∑

i=1
min

k=1,...,K
‖xi − ck‖2

2 .

[Arthur and Vassilvitskii, 2006]
If c1, . . . , cK are centroids obtained with K-means++, then

E [Qn(c1, . . . , cK)] ≤ 8(log K + 2) min
c′1,...,c′K

Qn(c′1, . . . , c′K)

where E is with respect to random choice of initial centroids

Complexity

O(n× K × nit)

17



K-means: Pros and Cons

Pros Simple: easy to implement
Efficient: guaranteed to converge in finite number of iterations
O(n× K × nit)

Popular

Cons Notion of mean: means need to be defined
Number of clusters: K needs to be specified
Sensitive to outliers
7→ can be fixed by subsampling and/or outlier detection
Roundish clusters: not suited for spherical data, fails if clusters are
not convex/round
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Mixture models



Model-based clustering

use a model on data with clusters
using a mixture of distributions with different location/mean

Figure 1: Gaussian Mixture in dimension 1
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Model-based clustering

use a model on data with clusters
using a mixture of distributions with different location/mean
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Model-based clustering

use a model on data with clusters
using a mixture of distributions with different location/mean

Figure 1: Poisson Mixture
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Gaussian Mixture Models (GMM)



from K-means to GMM
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GMM
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Mixture Models

Mixture of densities f1, . . . , fK

K ∈ N∗ (number of clusters)

(p1, . . . , pK) ∈ (R+)K s.t.
K∑

k=1
pk = 1

Mixture density

f =
K∑

k=1
pkfk

Gaussian Mixtures Model (GMM)
Put fk = ϕµk,Σk = density of N(µk,Σk), where we recall

ϕµk,Σk (x) =
1

(2π)d/2
√

det(Σk)
exp

(
− 1

2 (x− µk)>Σ−1
k (x− µk)

)
with Σk � 0
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Latent variables

Proposition (Latent variable)
Let {Pθ = fθµ : θ ∈ Θ} be a statistical model (for r.v. in Rd)
dominated by µ, K be a positive integer, (θ1, . . . , θK) ∈ ΘK

Let (p1, . . . , pK) be a probability vector.
Let now Z ∼M(1, p1, . . . , pK) be a multinomial variable
Y :=

∑K
k=1 k1Zk=1.

Then
∀k ∈ [K] : P(Y = k) = pk.

In addition, let X be a random variable such that X|Y ∼ PθY . Then

X ∼
K∑

k=1
pkPθk .
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On GMM i

Proposition bridges the gap between mixture models and clustering:

when X is distributed w.r.t to a mixture model with k components,
we describe it with k clusters defined by a latent variable Y ∈ [k].
Conversely, clustering is naturally modeled by a mixture model:
clusters are distributed w.r.t conditional variables X|Y?

Thus, we focus on the marginal distribution of X, which is, by Bayes’
theorem:

∀x ∈ Rd : f(x) =
K∑

k=1
pkfθk (x),

where pk = P(Y = k) is the prior probability of a cluster.
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On GMM ii

Then, the Bayes rule for clustering is given by

g? : x 7→ arg max
1≤k≤K

P(p1,...,pK,θ) (Y = k|X = x) = arg max
1≤k≤K

pkfθk (x).

The final partitioning {C1, . . . ,CK} is Ck =
{

x ∈ Rd : g?(x) = k
}

.

 explains how to sample X according to a mixture model.
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GMM

Gaussian Mixtures Model

Statistical model with density

fθ =
K∑

k=1
pkϕµk,Σk ,

Parameter θ = (p1, . . . , pK, µ1, . . . , µK,Σ1, . . . ,ΣK)

Goodness-of-fit is:

Rn(θ) = −log-likelihood = −
n∑

i=1
log
( K∑

k=1
pkϕµk,Σk (xi)

)
A local minimizer θ̂ is typically obtained using an algorithm called
Expectation-Minimization (EM) algorithm
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Gaussian Mixture Models (GMM)

EM algorithm



EM Algorithm

Idea:

there is a hidden structure in the model
knowing this structure, the optimization problem is easier

Indeed, each point Xi belongs to an unknown class k ∈ {1, . . . ,K}

Put Ci,k = 1 when i belongs to class k, Ci,k = 0 otherwise.
We don’t observe {Ci,k}1≤i≤n,1≤k≤K

We say that these are latent variables
Put Ck = {i : Ci,k = 1}, then C1, . . . , CK is a partition of {1, . . . , n}.
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Generative model

Generative model:

i belongs to class Ck with probability pk, namely

Ci = (Ci,1, . . . ,Ci,K) ∼M(1, p1, . . . , pK)

[multinomial distribution with parameter (1, p1, . . . , pK)].
Xi ∼ ϕµk,Σk if Ci,k = 1
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Marginal

The joint distribution of (X,C) is, according to this model

fθ(x, c) =
K∏

k=1
(pkϕµk,Σk (x))ck

[ck = 1 for only one k and 0 elsewhere] and the marginal density
in X is the one of the mixture:

fθ(x) =
K∑

k=1
pkϕµk,Σk (x)

This generative model adds a latent variable C, in such a way that
the marginal distribution of (X,C) in X is indeed the one of the
mixture fθ
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Complete Likelihood

Put X = (X1, . . . ,Xn) and C = (C1, . . . ,Cn)

Do as if we observed the latent variables C
Write a completed likelihood for these “virtual” observations
(joint distribution of (X,C)):

Lc(θ; X,C) =
n∏

i=1

K∏
k=1

(pkϕµk,Σk (Xi))Ci,k

and the completed log-likelihood:

`c(θ; X,C) =
n∑

i=1

K∑
k=1

Ci,k(log pk + logϕµk,Σk (Xi)).
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EM-Algorithm

[Dempster et al. (77)]

(E=Expectation, M=Maximization)

Initialize θ(0)

for t = 0, . . . , until convergence, repeat:

1 (E)-step: [Expectation with respect to the latent variables, for the
previous value of θ]
Compute

θ 7→ Q(θ, θ(t)) = Eθ(t)

[
`c(θ; X,C)

∣∣∣X]
2 (M)-step: [Maximize this expectation]

Compute
θ(t+1) ∈ arg max

θ∈Θ
Q(θ, θ(t))
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EM-Algorithm

(E) and (M) steps often have explicit solutions

Theorem
The sequence θ(t) obtained using EM Algorithm satisfies

`(θ(t+1); X) ≥ `(θ(t); X)

for any t.

A each step, EM increases the likelihood
Initialization will be very important (usually done using K-Means
or K-Means++)
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Proof

Remains to check that Q1(θ
(t+1), θ(t))− Q1(θ

(t), θ(t)) ≤ 0 :

Q1(θ
(t+1), θ(t))− Q1(θ

(t), θ(t)) = Eθ(t)
[
`(θ(t+1);C|X)− `(θ(t);C|X)|X

]
=

∫
log
( fθ(t+1)(c|X)

fθ(t)(c|X)
)

fθ(t)(c|X)µ(dc)

≤
(Jensen)

log

∫
fθ(t+1)(c|X)µ(dc) = 0,

This proves `(θ(t+1);X) ≥ `(θ(t);X) for any t
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EM: what? and when?

So what is the EM Algorithm, and where do we use this?

It is an algorithm that allows to optimize a likelihood with missing
or latent data
For a mixture distribution, we come up with natural latent
variables, that simplify the original optimization problem
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Gaussian Mixture Models (GMM)

EM and GMM



EM and GMM (soft Kmeans)

Consider the completed likelihood

`c(θ; X,C) =
n∑

i=1

K∑
k=1

Ci,k(log pk + logϕµk,Σk (Xi)),

where
θ = (p1, . . . , pK, µ1, . . . , µK,Σ1, . . . ,ΣK).

What are the (E) and (M) steps in this case?
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(E)-Step

Compute

Eθ(t)

[
`c(θ; X,C)

∣∣∣X] =
n∑

i=1

K∑
k=1
Eθ(t) [Ci,k|X](log pk + logϕµk,Σk (Xi)),

which is simply:

Eθ[Ci,k|X] = Pθ(Ci,k = 1|Xi) =: πi,k(θ),

where

πi,k(θ) =
pkϕµk,Σk (Xi)∑K

k′=1 pk′ϕµk′ ,Σk′ (Xi)
.

We call πi,k(θ) the “soft-assignment” of i in class k.
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(E)-Step

Figure 2: Soft-assignments : x 7→ pkϕµk,Σk (x)∑K
k′=1 pk′ϕµk′ ,Σk′

(x)
.
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(M)-Step

Compute

θ(t+1) = (p(t+1)
1 , . . . , p(t+1)

K , µ
(t+1)
1 , . . . , µ

(t+1)
K ,Σ

(t+1)
1 , . . . ,Σ

(t+1)
K )

using:

p(t+1)
k =

1
n

n∑
i=1

πi,k(θ(t)),

µ
(t+1)
k =

∑n
i=1 πi,k(θ(t))Xi∑n

i=1 πi,k(θ(t))

Σ
(t+1)
k =

∑n
i=1 πi,k(θ(t))(Xi − µ

(t+1)
k )(Xi − µ

(t+1)
k )>∑n

i=1 πi,k(θ(t))
.

This is natural: estimation for the means and covariances, weighted by
the soft-assignments
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So, for t = 1, . . ., iterate (E) and (M) until convergence:

πi,k(θ(t)) =
p(t)

k ϕ
µ

(t)
k ,Σ

(t)
k

(Xi)∑K
k′=1 p(t)

k′ ϕµ(t)
k′ ,Σ

(t)
k′

(Xi)

p(t+1)
k =

1
n

n∑
i=1

πi,k(θ(t))

µ
(t+1)
k =

∑n
i=1 πi,k(θ(t))Xi∑n

i=1 πi,k(θ(t))

Σ
(t+1)
k =

∑n
i=1 πi,k(θ(t))(Xi − µ

(t+1)
k )(Xi − µ

(t+1)
k )>∑n

i=1 πi,k(θ(t))
.

We obtain an estimator θ̂ = (p̂1, . . . , p̂K, µ̂1, . . . , µ̂K, Σ̂1, . . . , Σ̂K).

Complexity

O(n× K × nit)

with nit number of iterations
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EM-Algorithm on one picture
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Clustering: the maximum a posteriori (MAP) rule

Given θ̂, how to affect a cluster number k to a given x ∈ Rd?
Compute the the soft-assignments

πk(x) =
p̂kϕµ̂k,Σ̂k

(x)∑K
k′=1 p̂k′ϕµ̂k′ ,Σ̂k′

(x)

Consider
i ∈ Ck if πk(x) > πk′(x) for any k′ 6= k
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Soft-Assignment

The MAP rule

Mixture fθ(x) Soft-assignement πk(x)
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Soft-Assignment

Figure 3: Soft-assignments : x 7→ pkϕµk,Σk (x)∑K
k′=1 pk′ϕµk′ ,Σk′

(x)
.
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Gaussian Mixtures Model
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Gaussian Mixtures Model
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Point-based objectives



Point-based objectives

Contrarily to center-based objectives, point-based objectives do not
require to compute a cluster center.

The distortion D(C1, . . . ,Ck) to minimize is computed based on pair of
points belonging to clusters. For example, the sum of in-cluster
distances is

D̂(C1, . . . ,CK) =
K∑

k=1

∑
X,Y∈Ĉk

d(X,Y).

with Ĉk = Ck ∩ {Xi : i = 1; . . . , n}
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Point-based objectives

Let s : X × X → [0,1] be a similarity measure. Another example lies in
the distortion defined by the sum of interclass similarities:

D(C1, . . . ,CK) = E

( K∑
k=1

s(X,Y)1X∈Ck∩Y/∈Ck

)
.

center-based approach: making sure that points in the same
cluster are similar
point-based objectives approach: points separated into different
clusters should be dissimilar
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Graph-cut problem

Representation by a similarity graph

each vertex represents a data point Xi
vertices are connected by an edge whose weight is their similarity

Such a graph can be defined by the similarity (or adjacency) matrix

W = (s(Xi,Xj))1≤i,j≤n

Given the index sets Ik of each empirical cluster Ĉk, the previous
point-based objective function has an empirical twin given by:

D̂(C1, . . . ,Ck) =
k∑

j=1

∑
i∈Ij
`/∈Ij

Wi,`.

Minimizing D̂(C1, . . . ,Ck) is often referred as the graph cut problem.
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Similarity graph

Consider a similarity graph G = (V, E), for which the vertices
V = (v1, . . . , vn) represent the points (X1, . . . ,Xn)

Two vertices vi and vj are connected if the similarity s(Xi,Xj) > 0
(or > τ with τ a threshold)
The edge between these two vertices is weighted by their
similarity s(Xi,Xj).
The weighted adjacency matrix is W = (s(Xi,Xj))1≤i,j≤n.
The graph G is assumed undirected, which is equivalent to W
being symmetric (via a symmetric similarity measure s).
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Similarity graph: vocabulary

Definition
The degree of a vertex vi ∈ V is di =

∑n
`=1 Wi,`.

Given A ⊂ V,
the size of A =|A| = the number of its vertices
the volume of A, vol(A) =

∑
i∈[n]:vi∈A di

A is said connected if any two vertices of A can be joined by a
path such that all intermediate points also lie in A.
A is called a connected component if it is connected and if there
are no connections between vertices in A and V\A.
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Similarity graph

When constructing a similarity graph, the goal is to model the local
neighborhood relationships between data points.

 3 popular similarity graphs based on a given distance
d : X × X → R+.

The ε-neighborhood graph
Xi and Xj are connected iff d(Xi,Xj) ≤ ε.
If ε is small enough, all connected points are roughly at the same
distance.
The weights assigned are Wi,j = 1 (if d(Xi,Xj) ≤ ε and 0
otherwise).
Usually considered as an unweighted graph
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Similarity graphs
k-nearest neighbor graph

Xi and Xj are connected iff Xi ∈ kNN(Xj) or Xj ∈ kNN(Xi).
Wi,j = 1 if Xi and Xj are connected and 0 otherwise.

Mutual k-nearest neighbor graph
Xi and Xj are connected iff Xi ∈ kNN(Xj) and Xj ∈ kNN(Xi).
Wi,j = 1 if Xi and Xj are connected and 0 otherwise.

The fully connected graph
Points are connected if they have a similarity s(Xi,Xj) > 0
The edges are weighted by s(Xi,Xj)

A popular choice is the Gaussian similarity: s(x, x′) = e−
d(x,x′)2

2σ2 , in
which σ2 plays a role similar to ε and k
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Spectral clustering



Normalized graph-cut

For k = 2, finding a minimal cut of a graph can be done efficiently:
Stoer-Wagner algorithm
Problem: often results is separating a vertex from the rest

One solution
Normalizing the empirical distortion either by the size of the clusters:

D̂r(C1, . . . ,CK) =
K∑

k=1

1
|Ĉk|

∑
i∈Ik
`/∈Ik

Wi,`,

(let us remind that |Ĉk| = |Ik|) or by their volume:

D̂n(C1, . . . ,CK) =
K∑

k=1

1
vol(Ĉk)

∑
i∈Ik
`/∈Ik

Wi,`.

These objectives are respectively called ratio cut and normalized cut. 51



Towards spectral clustering

Problem: the balancing introduced by the cluster importance
makes the minimization problem computationally hard to solve
A relaxation procedure: spectral clustering algorithm.

Definition (Unnormalized graph Laplacian)
Let W ∈ Rn×n be a symmetric matrix.

The diagonal matrix D ∈ Rn×n such that Di,i =
∑n

j=1 Wi,j, ∀i ∈ [n] is
called the degree matrix of the graph defined by W
L = D−W is calledthe Laplacian of the graph defined by W
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Reformulation of ratio-cut

Proposition
Let W and L be respectively the adjacency matrix and the Laplacian of the
similarity graph of (X1, . . . ,Xn). For any positive integer K and for all
partitioning (C1, . . . ,CK) of (X1, . . . ,Xn), we have

D̂r(C1, . . . ,CK) = tr(H>LH),

where H =

(
1√
|Ik|
1i∈Ik

)
1≤i≤n
1≤k≤K

.

In addition, the columns of H are orthonormal to each other (H>H = I).
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Proof i

First, denoting hj ∈ Rn the columns of H (for j ∈ [K]), we have

tr(H>LH) = tr((L1/2H)>(L1/2H)) =
K∑

j=1
(L1/2hj)

>(L1/2hj) =
K∑

j=1
h>j Lhj.
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Proof ii

In addition, for all u ∈ Rn,

u>Lu = u>Du− u>Wu

=
∑

1≤i≤n
Di,iu2

i −
∑

1≤i,`≤n
Wi,`uiu`

=
1
2

 ∑
1≤i≤n

Di,iu2
i +

∑
1≤`≤n

D`,`u2
` − 2

∑
1≤i,`≤n

Wi,`uiu`


=

1
2

 ∑
1≤i,`≤n

Wi,`u2
i +

∑
1≤i,`≤n

Wi,`u2
` − 2

∑
1≤i,`≤n

Wi,`uiu`

 (Wi,` symm.)

=
1
2
∑

1≤i,`≤n
Wi,`(ui − u`)2.
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Proof iii

Therefore, for all j ∈ [K],

h>j Lhj =
1
2
∑

1≤i,`≤n
Wi,`(Hi,j − H`,j)2

=
1
2
∑

i∈Ij
`/∈Ij

Wi,`
|Ij|

+
1
2
∑

i/∈Ij
`∈Ij

Wi,`
|Ij|

=
1
|Ij|
∑

i∈Ij
`/∈Ij

Wi,`,

since Hi,j − H`,j is nonzero only if i ∈ Ij and ` /∈ Ij or the other way
around.
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Proof iv

Gathering everything, we have:

tr(H>LH) =
K∑

j=1
h>j Lhj =

K∑
j=1

1
|Ij|
∑

i∈Ij
`/∈Ij

Wi,` = D̂r(C1, . . . ,CK).
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one-hot-encoding

Up to normalization, H represents the one-hot-encoding.
For example, for K = 3, if we reorganize the sample (X1, . . . ,Xn)

such that Ĉ1 appears first, then Ĉ2 and so on, we get

H =



1
|Ĉ1|

0 0
...

...
...

1
|Ĉ1|

0 0
0 1

|Ĉ2|
0

...
...

...
0 1

|Ĉ2|
0

0 0 1
|Ĉ3|

...
...

...
0 0 1

|Ĉ3|



.
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Ratio-cut problem

The ratio cut problem

min
(Ĉ1,...,ĈK)∈P({X1,...,Xn})

K∑
k=1

1
|Ik|
∑
i∈Ik
`/∈Ik

Wi,`

is equivalent to

min
H∈Rn×K

tr(H>LH)

s.t.

 H>H = I

∀j ∈ [K],∀i ∈ [n] : Hi,j ∈
{

0, 1√
|Ij|

}
.
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Relaxation for ratio-cut

Problems:

this is an integer programming problem which we may not be able
to solve efficiently.
the values (|I1|, . . . , |IK|) are not known in advance.

Idea: discard the last constraint

min
H∈Rn×K

tr(H>LH)

s.t. H>H = I.

Solved by the matrix H for which the columns are the minor
eigenvectors of L.
Resulting algorithm: unnormalized spectral clustering.

maps data (X1, . . . ,Xn) to rows of the K minor eigenvectors of L
then performs a vanilla K-means
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Unnormalized spectral clustering

Unnormalized spectral clustering
Require: W ∈ Rn×n (adjacency matrix).

L← Laplacian of W
H← K minor eigenvectors of L as columns
Yi ← ith row of H (for all i ∈ [n]) {Yi ∈ RK}
(Ĉ1, . . . , ĈK)← output of K-means algorithm based on (Y1, . . . ,Yn)

Ensure: (Ĉ1, . . . , ĈK).

Idea

1 Dimension reduction
2 K-means
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Reformulation for normalized cut

Proposition
Let W and L be respectively the adjacency matrix and the Laplacian of the
similarity graph of (X1, . . . ,Xn). For any positive integer k and for all
partitioning (C1, . . . ,CK) of (X1, . . . ,Xn), we have

D̂n(C1, . . . ,CK) = tr(H>LH),

where H =

(
1√

vol(Cj)
1i∈Ij

)
1≤i≤n
1≤j≤K

.

In addition, the columns of D 1
2 H are orthonormal to each other

(H>DH = I).

Proof: similar to the one of the previous Proposition except that we
have for all j ∈ [K],

h>j Lhj =
1

vol(Ĉj)

∑
i∈Ij
`/∈Ij

Wi,`.
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Reformulation for normalized cut

Proposition
Let W and L be respectively the adjacency matrix and the Laplacian of the
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1
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Relaxation for normalized-cut problem

The normalized cut problem

min
(Ĉ1,...,ĈK)∈P({X1,...,Xn})

K∑
j=1

1
vol(Ĉj)

∑
i∈Ij
`/∈Ij

Wi,`

is equivalent to

min
H∈Rn×K

tr(H>LH)

s.t.
H>DH = I

∀j ∈ [K],∀i ∈ [n] : Hi,j ∈
{

0, 1√
vol(Ĉj)

}
,

and can be relaxed to

min
H∈Rn×k

tr(H>LH) (1)

s.t. H>DH = I. (2)
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Relaxation for normalized-cut problem

min
H∈Rn×k

tr(H>LH) (3)

s.t. H>DH = I. (4)

can be reformulated

min
H∈Rn×k

tr(U>LsU)

s.t. H = D− 1
2 U

U>U = I,

where Ls = D− 1
2 LD− 1

2 .

Solved by U for which the columns are minor eigenvectors of Ls
corr. to H for which columns are minor eigenvectors of Lw = D−1L
resulting algorithm: normalized spectral clustering.
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Normalized spectral clustering

Normalized spectral clustering (with Lw)
Require: W ∈ Rn×n (adjacency matrix).

Lw ← Laplacian of W
H← K minor eigenvectors of Lw as columns {similar to the
generalized eigenproblem Lu = λDu}
Yi ← ith row of H (for all i ∈ [n]) {Yi ∈ RK}
(Ĉ1, . . . , ĈK)← output of k-means algorithm based on (Y1, . . . ,Yn)

Ensure: (Ĉ1, . . . , ĈK).

Remark: λ ∈ R+ is eigenvalue of Lw with eigenvector u iff λ and u solve
the generalized eigenvalue problem Lu = λDu.
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Ratio cut vs. normalized cut i

Both objective functions: points separated into different clusters
should be dissimilar
Both take into account the importance of the clusters (by their size
or their volume)

Different behavior on cluster importance:

it is easy to see that, for all j ∈ [K]:∑
i∈Ij
`∈Ij

Wi,` = vol(Ĉj)−
∑

i∈Ij
`/∈Ij

Wi,`.

In other words, the intra-cluster similarity is maximized as soon as
the volume of the cluster is maximized and the cut with the rest
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Ratio cut vs. normalized cut ii

of the vertices is minimized; which is what is achieved by
normalized cut minimization.
On the other hand, the size |Ĉj| of a cluster is not necessarily
related to the intra-cluster similarity.

 normalized cut minimization addresses both parts of clustering
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(+) Normalized spectral clustering: Lw behaves as expected when
n→∞

(–) L can lead to completely unreliable results, even for small sample
size Von Luxburg, 2007

There exists another spectral algo:

Normalized spectral clustering (with Ls)
Require: W ∈ Rn×n (adjacency matrix).

Ls ← Laplacian of W
H← K minor eigenvectors of Ls as columns
Yi ← ith row of H normalized to 1 (for all i ∈ [n]) {Yi ∈ RK ,∑K

j=1(Yi)
2
j = 1}

(Ĉ1, . . . , ĈK)← output of k-means algorithm based on (Y1, . . . ,Yn)

Ensure: (Ĉ1, . . . , ĈK).
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Ensure: (Ĉ1, . . . , ĈK).
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On spectral relaxations

There is no theoretical guarantees concerning the “quality” of
these two relaxations.
Second, there exist many other relaxations: relying on
semidefinite programming
Spectral relaxations are not appealing for the quality of the
solutions they provide but for the simplicity of the problem in
which they result (standard linear algebra – eigenvalue –
problems).
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Properties of graph Laplacian

W ∈ Rn×n
+ a symmetric adjacency matrix

D ∈ Rn×n its degree matrix

So far, we have seen three Laplacians:

Definition
Unnormalized Laplacian: L = D−W;
Nomalized Laplacian 1: Ls = D− 1

2 LD− 1
2 = I− D− 1

2 WD− 1
2 ;

Nomalized Laplacian 2: Lw = D−1L = I− D−1W.

Indexed by s and w: they are respectively symmetrically normalized by
D− 1

2 (on left and right) and whitened by D.

70



Properties of graph Laplacian

Bridging gap between graph cut and eigenvalue dec.
Discover that 0 is an eigenvalue of L and Lw with eigenvector 1.

Proposition
1 ∀u ∈ Rn:

u>Lu =
1
2
∑

1≤i,`≤n
Wi,`(ui − u`)2

u>Lsu =
1
2
∑

1≤i,`≤n
Wi,`

(
ui√
Di,i
− u`√

D`,`

)2

.

2 0 is eigenvalue of L and Lw with eigenvector 1. 0 is eigenvalue of Ls
with eigenvector D 1

21.
3 λ ∈ R+ is eigenvalue of Lw with eigenvector u if and only if λ is

eigenvalue of Ls with eigenvector D 1
2 u.

4 L, Ls and Lw are symmetric SDP matrices.
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Properties of graph Laplacian

Proof :

1 See above.
2 Obvious.
3 λu = Lwu ⇐⇒ λu = D−1Lu ⇐⇒ λ(D 1

2 u) = D− 1
2 LD− 1

2 (D 1
2 u).

4 Symmetry comes from symmetry of W. SDPness comes from
Point 1 and Point 3.

Proposition
Let G be an undirected graph with non-negative weights.

the multiplicities of the eigenvalue 0 of L, Ls and Lw are the same and
equal the number k of connected components (A1, . . . ,Ak) in G.
the eigenspace of 0 for both L and Lw is spanned by {1A1 , . . . ,1Ak}
and the eigenspace of 0 for Ls is spanned by {D− 1

21A1 , . . . ,D−
1
21Ak}.

72



Properties of graph Laplacian

Proof :

1 See above.
2 Obvious.
3 λu = Lwu ⇐⇒ λu = D−1Lu ⇐⇒ λ(D 1

2 u) = D− 1
2 LD− 1

2 (D 1
2 u).

4 Symmetry comes from symmetry of W. SDPness comes from
Point 1 and Point 3.

Proposition
Let G be an undirected graph with non-negative weights.

the multiplicities of the eigenvalue 0 of L, Ls and Lw are the same and
equal the number k of connected components (A1, . . . ,Ak) in G.
the eigenspace of 0 for both L and Lw is spanned by {1A1 , . . . ,1Ak}
and the eigenspace of 0 for Ls is spanned by {D− 1

21A1 , . . . ,D−
1
21Ak}.

72



Hierarchical clustering



Hierarchical clustering

Drawback of K-means
Lack of hierarchy in clusters (i.e. decreasing K does not lead to
merging clusters)

 Hierachical clustering to address this issue

How?

Introduce very simple methods based on measuring the similarity
(or linkage) between clusters.

What?

Focus on agglomerative approaches (which is based on merging
clusters) bottom-up
We put divisive ones aside (based on splitting clusters) 
top-down
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Agglomerative approaches

Linkage-based methods are probably the simplest and most intuitive
paradigm of clustering.

Agglomerative version
start from the partitioning of training set (X1, . . . ,Xn) in which
each cluster is a unit set {Xi} (for i ∈ [n)])
merge successively the closest clusters

Straightforwardly,

the number of clusters decreases at each iteration
clusters are nested
each cluster Ĉt at iteration t is either the same Ĉt = Ĉt−1 or the
union of two previous clusters Ĉt = Ĉt−1

1 ∪ Ĉt−1
2 .

Two parameters need to be defined in such a procedure:

the (dis)similarity (or linkage) between two clusters
the merging stopping rule 74



Some dissimilarities

Let d : X × X → R+ be a dissimilarity and consider two subsets A and
B of (X1, . . . ,Xn).

Here are some cluster dissimilarities D : P({X1, . . . ,Xn})2 → R+.

Single linkage

D(A,B) = min
x∈A,y∈B

d(x, y).

Complete linkage

D(A,B) = max
x∈A,y∈B

d(x, y).
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Some dissimilarities

Average linkage

D(A,B) =
1
|A||B|

∑
x∈A,y∈B

d(x, y).

Ward’s minimum variance
Given the intraclass inertia for a generic subset C ⊂ (X1, . . . ,Xn):

I(C) =
∑
x∈C

d (x,mC)2
,

where mC = 1
|C|
∑

y∈C y, the cluster distance in Ward’s method is

D(A,B) = I(A ∪ B)− I(A)− I(B),

which is the increase of intraclass inertia when merging A and B.
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Linkage

For the Euclidean distance,

D(A,B) =
|A||B|
|A|+ |B| ‖mA −mB‖2

.

Since Ward’s method merges clusters by minimizing the increase in the
total intraclass inertia, it is very similar k-means but greedy procedure

Linkage methods can be used with a variety of distances (or affinities),
in particular:

Euclidean distance (or l2);
Manhattan distance (or Cityblock, or l1);
cosine distance;
any precomputed affinity matrix.
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Stopping criterion

If the agglomerative procedure runs until the end, all points share
the same large cluster.

The resulting sequence of partitioning can be represented as a
tree, called a dendrogram

the root = unique cluster that gathers all points (the final cluster)
the leaves = the unit set clusters (algorithm initialization)

Stopping rules
a fixed number of clusters
a distance upper bound D̄ (or alternatively a scaled distance upper
bound α ∈ R+ such that D̄ = αmax1≤i,j≤n d(Xi,Xj) for single,
complete and average linkages)
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Agglomerative clustering

Complexity
O(n3) if no restriction on the merging possibilities
O(n2) if only a bounded number of merging is possible for a given
cluster
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Agglomerative clustering on some pictures

80



Cluster Dendogram
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Concluding remarks

K-Means and GMM don’t work for “embedded” cluster structures
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