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Unsupervised Learning: Clustering



Unsupervised learning

@ Marketing: finding groups of customers with similar behavior
given a large database of customer data containing their
properties and past buying records

@ Biology: classification of plants and animals given their features

@ Insurance: identifying groups of motor insurance policy holders
with a high average claim cost, identifying frauds

@ City-planning: identifying groups of houses according to their
house type, value and geographical location

@ Internet: document classification, clustering weblog data to
discover groups of similar access patterns

EIni
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Two main directions

@ Data: base of customer data containing their properties and past
buying records

@ Goal: Use the customers similarities to find groups
Two directions:

the groups are visibles

@ Clustering: propose an explicit grouping of the customers
@ Visualization: propose a representation of the customers so that




Supervised learning reminder

Gl

@ Training data D, = [(x1, Y1)
@ (x;,y)ii.dPon X x Y

@ Construct a predictor frx—=y using D

© (X”’ yl")]

@ Loss ¢(y,f(x)) measures how well f(x) predicts y well
@ Aim is to minimize the generalization error

Ex y(£(Y, F(X))IDn)

— [ v Fooypixy).
The goal is clear

@ Predict y based on feature x

Heard on the street

@ Supervised learning is solved. Unsupervised learning isn
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Unsupervised learning
@ Training data Dy = [x1,...,Xs]

@ Loss: Not Clear
@ Aim: Not Clear
The goal is unclear.

Classical tasks

@ Clustering: construct groups of data in homogeneous classes

@ Dimension reduction: construct a map of the datain a
low-dimension space without distorting it too much

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing
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Clustering

@ Training data D, = {x4,...,X,} with x; € R
@ Recover Latent groups
@ Construct f: RY — {1,..., K} which affects cluster number to x;
f: Xj — k,'
@ No ground truth for k;
Warning

@ Choice of K is hard

Roughly two approaches

@ Partition-based
@ Model-based

Gl
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K-means problem

K-means
@ Fix K > 2, n data points x; € R?

@ Find centroids cq, . . . ck that minimizes the quantification error

.....

to find the exact solution (NP Complete)

EInt
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K-means algorithm

Lloyd (1981) proposes a way of finding local solutions
K-means algorithm

@ Choose at random K centroids {cy,...,cx}

@ Foreachk € {1,...,K}, find the set Cy of points that are closer to
¢k than any ¢y for k/ # k
@ Update the centroids:

1
% = g 2%

ieCy

@ Repeat the two previous steps until the sets C, don’t change
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K-means algorithm

Lloyd (1981) proposes a way of finding local solutions
K-means algorithm

@ Choose at random K centroids {cy,...,cx}

@ Foreachk € {1,...,K}, find the set Cy of points that are closer to
¢k than any ¢y for k/ # k

@ Update the centroids:

1
Ck=—— ) X
|C| ,GZC '
k
@ Repeat the two previous steps until the sets C, don’t change

Remark: K-means computes a , it implicitly
assumes , that are defined by their
8



Voronoi partitioning
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Bryant park
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K-means
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Initialization problem
K-means very sensitive to the choice of initial points
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An easy solution:

@ Pick a first point at random

@ Choose the next initial point the farthest from the previous ones

13
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Farthest point initialization
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Farthest point initialization
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Farthest point initialization
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Farthest point initialization
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Farthest point initialization
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But, very sensitive to outliers

15
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But, very sensitive to outliers
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But, very sensitive to outliers
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Robustness to outliers: K-means-++

Principle
Pick the initial centroids as follows

@ Pick uniformly at random i € {x1,
Q@ k+k+1

@ Samplei e {Xq,

..y Xn}, PuUt €1  X;

..., Xn} with probability

,,,,,

. 2
22:1 mlnk/:j_,m,kfl ||X,'/ — Cy ||2

@ Putci + x;
@ If k < K go back to step 2.

Then use K-means based on these initial clusters

This is between random initialization and furthest point initialization
8

EInt
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K-means+-+
In expectation, leads to a solution close to the optimum. Define the
quantification error
n
Qn(Cl, A

[Arthur and Vassilvitskii, 2006]
If C1l,

., Ck are centroids obtained with K-means++, then
E[Qn(et, - ek)] < 8(log K +2) min Qq(ch, ..., ck)
@) pooodfT
where £ is with respect to random choice of initial centroids
Complexity

O(n x K x nit)

17



K-means: Pros and Cons

Pros e Simple: easy to implement
e Efficient: guaranteed to converge in finite number of iterations
O(n x K x nit)
e Popular

Cons e Notion of mean: means need to be defined
e Number of clusters: K needs to be specified
e Sensitive to outliers
— can be fixed by subsampling and/or outlier detection
e Roundish clusters: not suited for spherical data, fails if clusters are
not convex/round

Gl
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Model-based clustering

@ use a model on data with clusters

@ using a mixture of distributions with different location/mean

0.15
—

010

L
x

Figure 1: Gaussian Mixture in dimension 1

EIni
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Model-based clustering

@ use a model on data with clusters

@ using a mixture of distributions with different location/mean

Density mixture - plane [1 2]

L
it
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Model-based clustering

@ use a model on data with clusters

@ using a mixture of distributions with different location/mean

1

0.3*P(.12
= 0.2*P(.I5)
0.5*P(110)
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Figure 1: Poisson Mixture
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Gaussian Mixture Models (GMM)




Gl

from K-means to GMM

from K-means... ... to GMM

20
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Mixture Models
of densities fq, . .., fk

@ K € N* (humber of clusters)
K

® (p1,-..,px) € RY)Kst. > pe=1

k=1
Mixture density

K
= Z Pifk
k=1

Gaussian Mixtures Model (GMM)

@ Putfy = ¢, v, = density of N(u, Xi), where we recall

1 1

) = 557 Taeren O (-3
with >k =0

(= 1) T x = )

&

EIni
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Latent variables

Proposition (Latent variable)

@ Let {Py = fou : 6 € O} be a statistical model (for r.v. in R)
dominated by 1, K be a positive integer, (01, . . ., 0x) € O

@ Let (p1,...,Pk) be a probability vector.

@ letnow Z ~ M(1,pq,...,pk) be a multinomial variable
oY = Zle k]]-Zkzl-
Then

vk € [K]: P(Y = k) = px.
In addition, let X be a random variable such that X|Y ~ Pg,. Then

K
X~ Z kagk.
k=1

23
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On GMM i

Proposition bridges the gap between mixture models and clustering:

@ when X is distributed w.r.t to a mixture model with k components,
we describe it with k clusters defined by a latent variable Y € [k].

@ Conversely, clustering is naturally modeled by a mixture model:
clusters are distributed w.r.t conditional variables X|Y?

Thus, we focus on the marginal distribution of X, which is, by Bayes’
theorem:

K
Vx € R f(x) = pifa, (x),

k=1
where p, = P(Y = k) is the prior probability of a cluster.

24



On GMM i

Gl

Then, the Bayes rule for clustering is given by

g": X+ arg 1rgkag><KIP’(p17wpK,9) (Y=kX=x)=arg 1rgax pkfo, (X)
The final partitioning {Cy, ..., Ck} is Cx = {x € R?: g*(x) = k}.
~ explains how to sample X according to a mixture model

25



Gl

GMM

Gaussian Mixtures Model

@ Statistical model with density

K
f0 - Z pk(puk,):w
k=1

@ Parameter 6 = (p1,

"7pKaIU/17’"7/“(721’-“72}()
@ Goodness-of-fit is:

n K
Ra(6) = —log-likelihood = — 3" log ( 3" pipyu,x.(6))
i=1 k=1

@ A local minimizer  is typically obtained using an algorithm called
Expectation-Minimization (EM) algorithm

26



Gaussian Mixture Models (GMM)

EM algorithm
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EM Algorithm
Idea:

@ there is a hidden structure in the model

@ knowing this structure, the optimization problem is easier

27
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EM Algorithm

Idea:

@ there is a hidden structure in the model

@ knowing this structure, the optimization problem is easier

Indeed, each point X; belongs to an unknown class k € {1,...,K}
@ Put Cjx = 1 when i belongs to class k, C;x = O otherwise
@ We don't observe {Ci«}1<i<n1<k<k
@ We say that these are latent variables

@ PutC = {i: Cjy =1}, thenCy,...,Ck is a partition of {1,. ..

27



Generative model

Generative model:

@ i belongs to class C with probability px, namely

Ci=(C1,...,Ck) ~M(1,p1,...,Pk)
[multinomial distribution with parameter (1,p4, ..., pk)].
o X,' ~ DTk if C,‘_’k = 1l

Gl
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@ The joint distribution of (X, C) is, according to this model
K
H pk@uk,zk

[ck = 1 for only one k and O elsewhere] and the marginal density
in X is the one of the mixture

K
0 X) = Zpkwﬂkvzk
k=1

mixture fy

@ This generative model adds a latent variable C, in such a way that
the marginal distribution of (X, C) in X is indeed the one of the

29



Complete Likelihood

Gl

@ PutX=(X; Xn)and C = (Cq,...,Cp)

@ Do as if we observed the latent variables C

@ Write a completed likelihood for these “virtual” observations
(joint distribution of (X, C)):

n

K
(6;X,C) = H PPy 5, (X)) G
i=1 k=1

and the completed log-likelihood:

(0;X,C) = ZZCIK log p + log ¢y, = (Xi)).

i=1 k=1

30



EM-Algorithm

[Dempster et al. (77)]

(E=Expectation, M=Maximization)

Initialize 6(©)
fort =0, ..., until convergence, repeat:

© (E)-step: [Expectation with respect to the latent variables, for the
previous value of §]

Compute
01— Q(6,00) = &y [66(9; X, C)‘x}

© (M)-step: [Maximize this expectation]
Compute

(t+1) (t)
0 € arg max Q(0,60%)

Gl
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EM-Algorithm

EIn:

@ (E) and (M) steps often have explicit solutions

Theorem
The sequence 6 obtained using EM Algorithm satisfies

00D X) > £(6W); X)
for any t.

@ A each step, EM increases the likelihood

@ Initialization will be very important (usually done using K-Means
or K-Means++)

32
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Remains to check that Q; (8¢, 4

) —Qi(6Y,60) < 0:
Qu (8, 09) — Q1(0Y,609) = £y [Z(O(t“); CIX) — £(69; C|X)|X]

+1) (C|X
— [ tog (2D o (et
< o / fyen (c|X)pu(dc) = O,
(Jensen) e

This proves £(8"; X) > £(8"; X) for any t

33



EM: what? and when?

So what is the EM Algorithm, and where do we use this?

@ Itis an algorithm that allows to optimize a likelihood with missing
or latent data

@ For a mixture distribution, we come up with natural latent
variables, that simplify the original optimization problem

Gl

34



Gaussian Mixture Models (GMM)

EM and GMM



EM and GMM (soft Kmeans)

Consider the completed likelihood

n

K
9 X C Z C, Kk |Og Pk + |Og (pﬂhzk(x,')),
i=1 k=1
where
9 = (p17'"7pK7M17"'7MK7217"'7ZK)'
What are the (E) and (M) steps in this case?

Gl
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Compute

n

K
gt [ (6 X, c‘ ] g&; o [Ci|X](log pic + log 0,4, 5, (X)),

i=

which is simply:

Eo[CikIX] = Po(Cik = 1|Xi) =: mi(0),
where

() = PPz (Xi) .
7 Zf’:l pk, SO/*"k’ DY (Xl)

We call 7; () the “soft-assignment” of i in class k

36
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Compute

ta1 t+1)  (t+1 t+1) o (t+1 e
9(t+1):(p(1+ )7-,p’((+ )au(1+ )7"'7‘ul(<+ )7Zg-+ )*7zl(<+ ))
using:

t+1

Z T k(lg(t

(t+1) Z,-:1 ik (0®)X;
Hi

Soig mik(00)
st _ S (006 — )06 — )T
‘ i1 k(6

This is natural: estimation for the means and covariances, weighted by
the soft-assignments

€]
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So, fort = 1,.. ., iterate (E) and (M) until convergence:

(t) X
PR " )

>kt P:(;)SD o £ (X))

Zm

(t+1) _ M

t+1

1
‘ Z::l ﬂ-l,k( )
1 1
S(61) _ T @)X — )06 — )T
‘ Sy mi(6®)

We obtain an estimator § = (P1,

Complexity

O(n x K x njt)
fvith n number of iterations

Gl

"’ﬁK,ﬂ17'"7ﬂK’i17""iK)'
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EM-Algorithm on one picture

Step |

Step E

Step M

Gl
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Clustering: the maximum a posteriori (MAP) rule

@ Given 6, how to affect a cluster number k to a given x € R9?
@ Compute the the soft-assignments

m(X) = K pk@ﬂkik(X)
> =1 Prep, 5, (X)

@ Consider

i € Cy if m(x) > me (x) for any k' # k

Gl
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Soft-Assignment

The MAP rule
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Soft-Assignment

Cluster 2
Cluster 1

Cluster 3

LI E L
> 0] e > 02ie 03l
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Figure 3: Soft-assignments : x —
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Gaussian Mixtures Model
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Gaussian Mixtures Model

spherical

diag

Train accuracy: 88.6
Test accuracy: 91.7

Train accuracy: 88.6
Test accuracy: 94.4

full

tied

Train accuracy: 92.1

Train accuracy: 95.6
Test accuracy: 100.0

setosa
- . versicolor

- virginica
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Point-based objectives
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Point-based objectives

Contrarily to center-based objectives, point-based objectives do not
require to compute a cluster center.

The distortion D(Cy, . .., C) to minimize is computed based on pair of

points belonging to clusters. For example, the sum of in-cluster
distances is

44



Point-based objectives

Lets: X x X — [0, 1] be a similarity measure. Another example lies in
the distortion defined by the sum of interclass similarities:

K

D(Cq,...,Ck) =E (Z s(X, Yﬂxamgq) :

k=1
@ center-based approach: making sure that points in the same

cluster are similar

@ point-based objectives approach: points separated into different
clusters should be dissimilar

CIni
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Graph-cut problem

Representation by a similarity graph

@ each vertex represents a data point X;
@ vertices are connected by an edge whose weight is their similarity

Such a graph can be defined by the similarity (or adjacency) matrix
W = (s(Xi, Xj))1<ij<n

Given the index sets [, of each empirical cluster ffk, the previous
point-based objective function has an empirical twin given by:

k

D(Cy,....C)=D> Wy,
j=1 i€y
o¢l;
Minimizing ﬁ(Cl, ..., Cx) is often referred as the graph cut problem.
)

CIni
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Similarity graph

Consider a similarity graph G = (V, E), for which the vertices

V = (v1,...,Vn) represent the points (X1,...,Xp)

@ Two vertices v; and v; are connected if the similarity s(X;, Xj) > 0
(or > 7 with 7 a threshold)

@ The edge between these two vertices is weighted by their
similarity s(X;, X;).

@ The weighted adjacency matrix is W = (s(X;, Xj))1<i j<n-

@ The graph G is assumed undirected, which is equivalent to W
being symmetric (via a symmetric similarity measure s).

47



Similarity graph: vocabulary

Definition
@ The vieVisdi=>)_, Wi,
GivenA C V,
@ the size of A =|A| = the number of its vertices
@ the volume of A, vol(A) = > icnviea di
@ Ais said if any two vertices of A can be joined by a

path such that all intermediate points also lie in A.

@ Ais called a if it is connected and if there
are no connections between vertices in A and V\A.

EInt
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Similarity graph

CIni

When constructing a similarity graph, the goal is to model the local
neighborhood relationships between data points.

~ 3 popular similarity graphs based on a given distance
d: X x X > R,.
The e-neighborhood graph

@ X; and X; are connected iff d(X;, Xj) < e.

@ If e is small enough, all connected points are roughly at the same
distance.

@ The weights assigned are W;j = 1 (if d(X;, Xj) < eand O
otherwise).

@ Usually considered as an unweighted graph

49



Similarity graphs
k-nearest neighbor graph
@ X; and X; are connected iff X; € kNN(X))

X; € kNN(X).
e W;; = 1if X; and X; are connected and O otherwise.

Gl
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Similarity graphs

EInt

k-nearest neighbor graph
@ X; and X; are connected iff X; € kNN(X;) or Xj € kNN(X;).
e W;; = 1if X; and X; are connected and O otherwise.
Mutual k-nearest neighbor graph
@ X; and X; are connected iff X; € kNN(X;)

Xj S kNN(X,)
@ W;; = 1if X; and X; are connected and O otherwise.

50



Similarity graphs
k-nearest neighbor graph
@ X; and X; are connected iff X; € kNN(X;) or Xj € kNN(X;).

e W;; = 1if X; and X; are connected and O otherwise.

Mutual k-nearest neighbor graph

@ X; and X; are connected iff X; € kNN(X)) X; € kNN(X;).
@ W;; = 1if X; and X; are connected and O otherwise.
The fully connected graph

@ Points are connected if they have a similarity

@ The edges are weighted by s(X;, X;)

o T, _doxy?
@ A popular choice is the Gaussian similarity: s(x,x') = e~ "2:2,in
which o2 plays a role similar to e and k

50



Spectral clustering




Normalized graph-cut

@ For k = 2, finding a minimal cut of a graph can be done efficiently:
Stoer-Wagner algorithm

@ Problem: often results is separating a vertex from the rest
One solution

Normalizing the empirical distortion either by the size of the clusters:

K
N 1
Di(Cy, ..., Ck) = Z i > Wi,
k i€l

£l

(let us remind that |C;| = |I|) or by their volume:

K
Dn(C1,.. ., C) =D ——

P 1vol Cr)

D> Wie.

i€l
0l

T  Hhese objectives are respectively called and

51



Towards spectral clustering

Gl

@ Problem: the balancing introduced by the cluster importance

makes the minimization problem computationally hard to solve
@ Arelaxation procedure: algorithm.

Definition (Unnormalized graph Laplacian)

Let W € R"™" be a symmetric matrix.

@ The diagonal matrix D € R"*" such that D;; = >~ W, Vi € [n] is
called the degree matrix of the graph defined by W

@ L = D — W is calledthe Laplacian of the graph defined by W

52



Reformulation of ratio-cut

Proposition

Let W and L be respectively the adjacency matrix and the Laplacian of the
similarity graph of (X1, ..., Xn). For any positive integer K and for all
partitioning (Cq, . .., Cx) of (X4, ..., Xn), we have

A

D/(C1,...,Ck) = tr(HTLH),
_ 1 .
where H = (ﬁllk ]l,e,k> o
1<k<K

In addition, the columns of H are orthonormal to each other (HTH = |).

EInt
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First, denoting h; € R" the columns of H (for j € [K]), we have

K K
tr(HTLH) = tr((LY2H) T (LY2H)) = > (LY2h) T(LY?h) = "hLh
j=1

Gl
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In addition, for all u € R",

u'lu=u"Du—u"Wu

2
= E Djjuf — E Wi, cuiug

1<i<n 1<i,f<n
1 2 2 2
=5 > D+ > Degu;—2 > Wi
1<i<n 1<0<n 1<ié<n
1 Wi ou? Wi u? — 2 W W,
=3 Z iedi + Z i.eUy — Z ietite | (Wi, symm.)
1<if<n 1<if<n 1<if<n
1
2
= E Z W,'l(u,‘—Uz) .
1<if<n

Gl
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Therefore, for all j € [K],

1
thth = E WLE(HIJ H&J)z
1<i,<n
i 1 Wi,e 1 W: L
22T TEL T
o¢l; Lel;
1
= m Z Wi,Ea
icl;
i

since H;; — Hyj is nonzero only if i € Iy and ¢ ¢ |; or the other way
around.

Gl
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Gathering everything, we have:

K K
1 2

icl;
egl;

Gl
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one-hot-encoding

@ Up to normalization, H represents the one-hot-encoding.
@ For example, for K = 3, if we reorganize the sample (X, .

.3 Xn)
such that (Ail appears first, then (AZZ and so on, we get

1

|C4 ] & 9

1

|C4 | ? 9

g |C, | 9

H=
1

Y |G, (1)

© ¢ |Cs]
1

Y & |Cs]

Gl
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Ratio-cut problem

The ratio cut problem

K
1
min il Wi,
(617~..,€K)EP({X1,...,X,,})g [l Zglk: i

£y

is equivalent to

min tr(HTLH)

HeRnxK

HTH=1
s.t. . ) )
vj € [K]aVI S [n] o Hi,j E O7 .

en

59



Relaxation for ratio-cut

Problems:

@ thisis an

problem which we may not be able
to solve efficiently.

@ the values (|l4],. .., |lx|) are not known in advance.

: discard the last constraint

min tr(H'LH)

HeRn xK

st. H'TH=1.

60



Relaxation for ratio-cut

Problems:

@ thisis an problem which we may not be able
to solve efficiently.
@ the values (|l4],. .., |lx|) are not known in advance.

: discard the last constraint

min tr(H'LH)
HER"XK

st. H'TH=1.

@ Solved by the matrix H for which the columns are the minor
eigenvectors of L.

@ Resulting algorithm: unnormalized spectral clustering.

g e maps data (X4, ..., Xn) to rows of the K minor eigenvectors of L

. 60
e then performs a vanilla K-means



Unnormalized spectral clustering

Gl

Unnormalized spectral clustering

Require: W € R"*" (adjacency matrix).
L < Laplacian of W

H + K minor eigenvectors of L as columns

Y; < i" row of H (for all i € [n]) {Y; € RK}

(C‘l, : ,(AJK) + output of K-means algorithm based on (Y1,
Ensure: (61, A CK).
Idea

@ Dimension reduction
@ K-means

61



Reformulation for normalized cut

Proposition

Let W and L be respectively the adjacency matrix and the Laplacian of the
similarity graph of (X4, ..., Xy). For any positive integer k and for all
partitioning (Cq, ..., Ck) of (X1, ...,Xs), we have

A~

Dn(Cy, ..., Ck) = tr(HTLH),

hereH = [ —L—1., .
where ( vol(G;) 'EI’) 1<i<n
15j<K
In addition, the columns of D 3 H are orthonormal to each other
(HTDH = I).
% 8
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Reformulation for normalized cut

Proposition

Let W and L be respectively the adjacency matrix and the Laplacian of the
similarity graph of (X4, ..., Xy). For any positive integer k and for all
partitioning (Cq, ..., Ck) of (X1, ...,Xs), we have

A~

Dn(Cy, ..., Ck) = tr(HTLH),

hereH = [ —L—1., .
where ( vol(G;) 'EI’) 1<i<n
15j<K
In addition, the columns of D 3 H are orthonormal to each other

(HTDH = I).

Proof: similar to the one of the previous Proposition except that we
have for all j € [K],
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Relaxation for normalized-cut problem

Gl

The normalized cut problem

K

1
min — = W'.é
(Cl,.4.,6K)6P({X1,.“,Xn})j_zl vol(G)) ; i,
egl;
is equivalent to

min tr(H'LH)

HER"XK

H'DH = |

to . .
*vepviem: e {o. 2l
and can be relaxed to

vol(Gy)

min tr(HTLH) (1)
HE]Rnxk

st.H'DH =1.
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Relaxation for normalized-cut problem

min tr(HTLH) (3)
HeRnxk

st. H'DH = 1I. (4)
can be reformulated

min tr(U" LsU)
HeRnxk

H=D"3U
s.t.
UTu =1,
where L, = D=3LD~ 3.

CIni
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Relaxation for normalized-cut problem

min tr(H"LH) (3)
HeRnxk

st. H'DH = 1. (4)
can be reformulated

min tr(U" LsU)
HeRnxk

H=D"3U
s.t.
UTu =1,
where L, = D=3LD~ 3.

@ Solved by U for which the columns are minor eigenvectors of L

CIni

@ corr. to H for which columns are minor eigenvectors of L, = DL
@ @ resulting algorithm:
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Normalized spectral clustering

EIn:

Normalized spectral clustering (with L,)

Require: W ¢ R"*" (adjacency matrix).
L, < Laplacian of W

H + K minor eigenvectors of L,, as columns {similar to the
generalized eigenproblem Lu = A\Du}
Y; + ith row of H (for all i € [n]) {Y; € RK}

(C1,...,Cx) + output of k-means algorithm based on (Y1, ..., Y;)
Ensure: (Cy,...,Cx).

Remark: \ € R, is eigenvalue of L,, with eigenvector u iff A and u solve
the generalized eigenvalue problem Lu = ADu.
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Ratio cut vs. normalized cut i

@ Both objective functions: points separated into different clusters
should be dissimilar

@ Both take into account the importance of the clusters (by their size
or their volume)

Different behavior on cluster importance:

@ it is easy to see that, for all j € [K]:

ZW@—VOI Zw,g

le! lel
Zelj Z&lj

In other words, the intra-cluster similarity is maximized as soon as
the volume of the cluster is maximized and the cut with the rest

Gl

66



Ratio cut vs. normalized cut ii

of the vertices is minimized; which is what is achieved by
normalized cut minimization.

@ On the other hand, the size \é,-| of a cluster is not necessarily
related to the intra-cluster similarity.

~ normalized cut minimization addresses both parts of clustering

Gl
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(€Y

(+) Normalized spectral clustering: L,, behaves as expected when
n — oo

(-) L can lead to completely unreliable results, even for small sample
size Von Luxburg, 2007
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(+) Normalized spectral clustering: L,, behaves as expected when

n — oo

(-) L can lead to completely unreliable results, even for small sample

size Von Luxburg, 2007

There exists another spectral algo:

Normalized spectral clustering (with L)

Require: W ¢ R"*" (adjacency matrix).
Ls + Laplacian of W
H + K minor eigenvectors of L as columns
Y; < i row of H normalized to 1 (for all i € [n]) {Y; € RK,

SR =1}

j
(Cq,...,Ck) < output of k-means algorithm based on (Y4,
Ensure: (Cy,...,Cx).
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On spectral relaxations

@ There is no theoretical guarantees concerning the “quality” of
these two relaxations.

@ Second, there exist many other relaxations: relying on
semidefinite programming

@ Spectral relaxations are not appealing for the quality of the
solutions they provide but for the simplicity of the problem in

which they result (standard linear algebra - eigenvalue -
problems).

Gl
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Properties of graph Laplacian

@ W e R*" a symmetric adjacency matrix
@ D € R"™" its degree matrix

So far, we have seen three Laplacians:
Definition

Unnormalized Laplacian: L = D — W,
Nomalized Laplacian 1: L = D-?LD~% = | — D-:WD~%;
Nomalized Laplacian 2: L, = D=L =1 — D-1W.

Indexed by s and w: they are respectively symmetrically normalized by
D2 (on left and right) and whitened by D.

CIni
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Properties of graph Laplacian

@ Bridging gap between graph cut and eigenvalue dec.

Proposition

@ Discover that O is an eigenvalue of L and L,, with eigenvector 1.
Q@ VueR"

2
1 U: u
T ; /
ulsu=> Wi,e( —) .
2 1<if<n \/D—” \/m

@ Ois eigenvalue of L and L,, with eigenvector 1. O is eigenvalue of L
with eigenvector D 21

@ )\ € R, is eigenvalue of L, with eigenvector u if and only if X is
eigenvalue of L with eigenvector D 2u.

CIni

89 L, Ls and L,, are symmetric SDP matrices.
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CIni

Properties of graph Laplacian

Proof :

© See above.

@ Obvious.

Q@ w=Lu < \=Du < ADzu)=D LD 2(Dzu).

@ Symmetry comes from symmetry of W. SDPness comes from
Point 1 and Point 3.
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Proof :

© See above.
@ Obvious.

Q@ w=Lu < \=Du < ADzu)=D LD 2(Dzu).

@ Symmetry comes from symmetry of W. SDPness comes from
Point 1 and Point 3.

Proposition

Let G be an undirected graph with non-negative weights.

@ the muiltiplicities of the eigenvalue O of L, Ls and L,, are the same and
equal the number k of connected components (A1,

000 ,Ak) in G.
@ the eigenspace of O for both L and L, is spanned by {14, ..., 14}
and the eigenspace of O for L is spanned by {D*% Tags---, D3 Ia, }-

Properties of graph Laplacian
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Hierarchical clustering




Hierarchical clustering

Drawback of K-means

Lack of hierarchy in clusters (i.e. decreasing K does not lead to
merging clusters)

~» Hierachical clustering to address this issue

Gl
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Hierarchical clustering

Drawback of K-means

Lack of hierarchy in clusters (i.e. decreasing K does not lead to
merging clusters)

~» Hierachical clustering to address this issue

How?

@ Introduce very simple methods based on measuring the similarity
(or linkage) between clusters.

Gl
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Hierarchical clustering

Drawback of K-means

Lack of hierarchy in clusters (i.e. decreasing K does not lead to
merging clusters)

~» Hierachical clustering to address this issue

How?

@ Introduce very simple methods based on measuring the similarity
(or linkage) between clusters.

What?

@ Focus on agglomerative approaches (which is based on merging
clusters) ~ bottom-up

@ We put divisive ones aside (based on splitting clusters) ~
top-down

Gl
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Agglomerative approaches

Linkage-based methods are probably the simplest and most intuitive
paradigm of clustering.

Agglomerative version

@ start from the partitioning of training set (X4, ..., X,) in which
each cluster is a unit set {X;} (fori € [n)])

@ merge successively the closest clusters

Straightforwardly,

@ the number of clusters decreases at each iteration
@ clusters are nested

@ each cluster Ct at iteration t is either the same Ct = Ct—1 or the
union of two previous clusters Ct = Ct~* u C5 ™.

Two parameters need to be defined in such a procedure

CIni

@ the (dis)similarity (or linkage) between two clusters
Y o the merging stopping rule
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Some dissimilarities

Letd: X x X — R, be adissimilarity and consider two subsets A and
B of (X1,...,Xn).

Here are some cluster dissimilarities D : P({X1,...,X,})? — R,.

Single linkage
D(A,B) = XerRlyneBd(x, y).

Complete linkage

D(A,B) = made(x7 y).

x€eA,ye

o e

EInt
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Some dissimilarities

Average linkage
1

D(A,B) = —— d(x,y).
&0 = AT g, )
Ward’s minimum variance
Given the intraclass inertia for a generic subset C C (X1, ...,X,):
(€)= d(xme)*,
xeC

where m¢c = ﬁ ZyeC y, the cluster distance in Ward’s method is
D(A,B) =I(AUB) — I(A) — I(B),

which is the increase of intraclass inertia when merging A and B.
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EIni

For the Euclidean distance,
A[|B| 2
D(A,B) = ma — mg||”.
(A.8)= g | H

Since Ward’s method merges clusters by minimizing the increase in the
total intraclass inertia, it is very similar k-means but greedy procedure

Linkage methods can be used with a variety of distances (or affinities),
in particular:

@ Euclidean distance (or 12);

@ Manhattan distance (or Cityblock, or I1);
@ cosine distance;

@ any precomputed affinity matrix.

77



Stopping criterion

@ If the agglomerative procedure runs until the end, all points share
the same large cluster.

@ The resulting sequence of partitioning can be represented as a
, called a dendrogram

e the root = unique cluster that gathers all points (the final cluster)
o the leaves = the unit set clusters (algorithm initialization)
Stopping rules
@ a fixed number of clusters
@ a distance upper bound D (or alternatively a scaled distance upper

bound a € R such that D = a max<; j<, d(X;, X;) for single,
complete and average linkages)

Gl
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Agglomerative clustering

Complexity

cluster

@ O(n®) if no restriction on the merging possibilities
@ O(n?) if only a bounded number of merging is possible for a given
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Agglomerative clustering on some pictures
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Concluding remarks

K-Means and GMM don’t work for “embedded” cluster structures

MiniBatchKMeans AffinityPropagation

MeanShift
SR

SpectralClustering Ward DBSCAN
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