Machine Learning - Course $\mathrm{n}^{\circ} 2$

M1 CHEL[s] - Jan.-Apr. 2020

Yohann De Castro \& Aurélien Garivier

Unsupervised Learning: Clustering

Unsupervised learning

- Marketing: finding groups of customers with similar behavior given a large database of customer data containing their properties and past buying records
- Biology: classification of plants and animals given their features
- Insurance: identifying groups of motor insurance policy holders with a high average claim cost, identifying frauds
- City-planning: identifying groups of houses according to their house type, value and geographical location
- Internet: document classification, clustering weblog data to discover groups of similar access patterns

Two main directions

- Data: base of customer data containing their properties and past buying records
- Goal: Use the customers similarities to find groups

Two directions:

- Clustering: propose an explicit grouping of the customers
- Visualization: propose a representation of the customers so that the groups are visibles

Supervised learning reminder

- Training data $D_{n}=\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$
- $\left(x_{i}, y_{i}\right)$ i.i.d \mathbb{P} on $\mathcal{X} \times \mathcal{Y}$
- Construct a predictor $\hat{f}: \mathcal{X} \rightarrow \mathcal{Y}$ using D_{n}
- Loss $\ell(y, f(x))$ measures how well $f(x)$ predicts y well
- Aim is to minimize the generalization error

$$
\mathcal{E}_{X, Y}\left(\ell(Y, \hat{f}(X)) \mid D_{n}\right)=\int \ell(y, \hat{f}(x)) d \mathbb{P}(x, y)
$$

The goal is clear

- Predict y based on feature x

Heard on the street

- Supervised learning is solved. Unsupervised learning isn't

Unsupervised learning

- Training data $D_{n}=\left[x_{1}, \ldots, x_{n}\right]$
- Loss: Not Clear
- Aim: Not Clear

The goal is unclear.

Classical tasks

- Clustering: construct groups of data in homogeneous classes
- Dimension reduction: construct a map of the data in a low-dimension space without distorting it too much

Motivations

- Interpretation of the groups
- Use of the groups in further processing

Clustering

Clustering

- Training data $D_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{i} \in \mathbb{R}^{d}$
- Recover Latent groups
- Construct $f: \mathbb{R}^{d} \rightarrow\{1, \ldots, K\}$ which affects cluster number to x_{i}

$$
f: x_{i} \mapsto k_{i}
$$

- No ground truth for k_{i}

Warning

- Choice of K is hard

Roughly two approaches

- Partition-based
- Model-based

K-means

K-means problem

K-means

- Fix $K \geq 2$, n data points $x_{i} \in \mathbb{R}^{d}$
- Find centroids $c_{1}, \ldots c_{K}$ that minimizes the quantification error

$$
\sum_{i=1}^{n} \min _{k=1, \ldots, K}\left\|x_{i}-c_{k}\right\|_{2}^{2}
$$

- Impossible to find the exact solution (NP Complete)

K-means algorithm

Lloyd (1981) proposes a way of finding local solutions
K-means algorithm

- Choose at random K centroids $\left\{c_{1}, \ldots, c_{K}\right\}$
- For each $k \in\{1, \ldots, K\}$, find the set C_{k} of points that are closer to c_{k} than any $c_{k^{\prime}}$ for $k^{\prime} \neq k$
- Update the centroids:

$$
c_{k}=\frac{1}{\left|C_{k}\right|} \sum_{i \in C_{k}} x_{i}
$$

- Repeat the two previous steps until the sets C_{k} don't change

K-means algorithm

Lloyd (1981) proposes a way of finding local solutions

K-means algorithm

- Choose at random K centroids $\left\{c_{1}, \ldots, c_{K}\right\}$
- For each $k \in\{1, \ldots, K\}$, find the set C_{k} of points that are closer to c_{k} than any $c_{k^{\prime}}$ for $k^{\prime} \neq k$
- Update the centroids:

$$
c_{k}=\frac{1}{\left|C_{k}\right|} \sum_{i \in C_{k}} x_{i}
$$

- Repeat the two previous steps until the sets C_{k} don't change

Remark: K-means computes a Voronoi partitioning, it implicitly assumes convex clusters, that are uniquely defined by their centroids.

Voronoi partitioning

(U) (m)

Bryant park

(U) 些

K-means

K-means

Initialization problem

K-means very sensitive to the choice of initial points

An easy solution:

- Pick a first point at random
- Choose the next initial point the farthest from the previous ones

Farthest point initialization

$$
\begin{aligned}
& \text { OOO } \\
& 0 \text { OOO } \\
& 0000
\end{aligned}
$$

$$
0{ }_{0}^{0}{ }_{0}^{0}{ }_{0}^{0} 0_{0}^{0} 0_{0}^{0} 0
$$

Farthest point initialization

$$
\begin{aligned}
& 0_{0}^{0} 00 \\
& 0000 \\
& 0000
\end{aligned}
$$

Farthest point initialization

Farthest point initialization

Farthest point initialization

But, very sensitive to outliers

But, very sensitive to outliers

But, very sensitive to outliers

Robustness to outliers: K-means++

Principle

Pick the initial centroids as follows
(1) Pick uniformly at random $i \in\left\{x_{1}, \ldots, x_{n}\right\}$, put $c_{1} \leftarrow x_{i}$
(2) $k \leftarrow k+1$
(3) Sample $i \in\left\{X_{1}, \ldots, X_{n}\right\}$ with probability

$$
\frac{\min _{k^{\prime}=1, \ldots, k-1}\left\|x_{i}-c_{k^{\prime}}\right\|_{2}^{2}}{\sum_{i^{\prime}=1}^{n} \min _{k^{\prime}=1, \ldots, k-1}\left\|X_{i^{\prime}}-c_{k^{\prime}}\right\|_{2}^{2}}
$$

(9) Put $c_{k} \leftarrow x_{i}$
(3) If $k<K$ go back to step 2 .

Then use K-means based on these initial clusters
This is between random initialization and furthest point initialization

K-means++

In expectation, leads to a solution close to the optimum. Define the quantification error

$$
Q_{n}\left(c_{1}, \ldots, c_{K}\right)=\sum_{i=1}^{n} \min _{k=1, \ldots, K}\left\|x_{i}-c_{k}\right\|_{2}^{2}
$$

[Arthur and Vassilvitskii, 2006]

If c_{1}, \ldots, c_{K} are centroids obtained with K-means++, then

$$
\mathcal{E}\left[Q_{n}\left(c_{1}, \ldots, c_{K}\right)\right] \leq 8(\log K+2) \min _{c_{1}^{\prime}, \ldots, c_{k}^{\prime}} Q_{n}\left(c_{1}^{\prime}, \ldots, c_{K}^{\prime}\right)
$$

where \mathcal{E} is with respect to random choice of initial centroids

Complexity

$$
O\left(n \times K \times n_{i t}\right)
$$

K-means: Pros and Cons

Pros - Simple: easy to implement

- Efficient: guaranteed to converge in finite number of iterations $O\left(n \times K \times n_{i t}\right)$
- Popular

Cons - Notion of mean: means need to be defined

- Number of clusters: K needs to be specified
- Sensitive to outliers
\mapsto can be fixed by subsampling and/or outlier detection
- Roundish clusters: not suited for spherical data, fails if clusters are not convex/round

Mixture models

Model-based clustering

- use a model on data with clusters
- using a mixture of distributions with different location/mean

Figure 1: Gaussian Mixture in dimension 1

Model-based clustering

- use a model on data with clusters
- using a mixture of distributions with different location/mean

Density mixture - plane [12]

Model-based clustering

- use a model on data with clusters
- using a mixture of distributions with different location/mean

Figure 1: Poisson Mixture

Gaussian Mixture Models (GMM)

from K-means to GMM

... to GMM

远

GMM

Mixture Models

Mixture of densities f_{1}, \ldots, f_{K}

- $K \in \mathbb{N}^{*}$ (number of clusters)
- $\left(p_{1}, \ldots, p_{K}\right) \in\left(\mathbb{R}^{+}\right)^{K}$ s.t. $\sum_{k=1}^{K} p_{k}=1$

Mixture density

$$
f=\sum_{k=1}^{K} p_{k} f_{k}
$$

Gaussian Mixtures Model (GMM)

- Put $f_{k}=\varphi_{\mu_{k}, \Sigma_{k}}=$ density of $N\left(\mu_{k}, \Sigma_{k}\right)$, where we recall

$$
\varphi_{\mu_{k}, \Sigma_{k}}(x)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}\left(\Sigma_{k}\right)}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right)
$$

를 with $\Sigma_{k} \succ 0$

Latent variables

Proposition (Latent variable)

- Let $\left\{P_{\theta}=f_{\theta} \mu: \theta \in \Theta\right\}$ be a statistical model (for r.v. in \mathbb{R}^{d}) dominated by μ, K be a positive integer, $\left(\theta_{1}, \ldots, \theta_{K}\right) \in \Theta^{K}$
- Let $\left(p_{1}, \ldots, p_{K}\right)$ be a probability vector.
- Let now $Z \sim \mathcal{M}\left(1, p_{1}, \ldots, p_{K}\right)$ be a multinomial variable
- $Y:=\sum_{k=1}^{K} k \mathbb{1}_{Z_{k}=1}$.

Then

$$
\forall k \in[K]: \mathbb{P}(Y=k)=p_{k} .
$$

In addition, let X be a random variable such that $X \mid Y \sim P_{\theta_{\gamma}}$. Then

$$
X \sim \sum_{k=1}^{K} p_{k} P_{\theta_{k}} .
$$

On GMM i

Proposition bridges the gap between mixture models and clustering:

- when X is distributed w.r.t to a mixture model with k components, we describe it with k clusters defined by a latent variable $Y \in[k]$.
- Conversely, clustering is naturally modeled by a mixture model: clusters are distributed w.r.t conditional variables $X \mid Y$?

Thus, we focus on the marginal distribution of X, which is, by Bayes' theorem:

$$
\forall x \in \mathbb{R}^{d}: f(x)=\sum_{k=1}^{K} p_{k} f_{\theta_{k}}(x)
$$

where $p_{k}=\mathbb{P}(Y=k)$ is the prior probability of a cluster.

On GMM ii

Then, the Bayes rule for clustering is given by

$$
g^{\star}: x \mapsto \arg \max _{1 \leq k \leq K} \mathbb{P}_{\left(p_{1}, \ldots, p_{k}, \theta\right)}(Y=k \mid X=x)=\arg \max _{1 \leq k \leq K} p_{k} f_{\theta_{k}}(x) .
$$

The final partitioning $\left\{C_{1}, \ldots, C_{K}\right\}$ is $C_{k}=\left\{x \in \mathbb{R}^{d}: g^{\star}(x)=k\right\}$.
\rightsquigarrow explains how to sample X according to a mixture model.

GMM

Gaussian Mixtures Model

- Statistical model with density

$$
f_{\theta}=\sum_{k=1}^{K} p_{k} \varphi_{\mu_{k}, \Sigma_{k}}
$$

- Parameter $\theta=\left(p_{1}, \ldots, p_{K}, \mu_{1}, \ldots, \mu_{K}, \Sigma_{1}, \ldots, \Sigma_{K}\right)$
- Goodness-of-fit is:

$$
R_{n}(\theta)=-\log \text {-likelihood }=-\sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} p_{k} \varphi_{\mu_{k}, \Sigma_{k}}\left(x_{i}\right)\right)
$$

- A local minimizer $\hat{\theta}$ is typically obtained using an algorithm called Expectation-Minimization (EM) algorithm

Gaussian Mixture Models (GMM)

EM algorithm

EM Algorithm

Idea:

- there is a hidden structure in the model
- knowing this structure, the optimization problem is easier

EM Algorithm

Idea:

- there is a hidden structure in the model
- knowing this structure, the optimization problem is easier

Indeed, each point X_{i} belongs to an unknown class $k \in\{1, \ldots, K\}$

- Put $C_{i, k}=1$ when i belongs to class $k, C_{i, k}=0$ otherwise.
- We don't observe $\left\{C_{i, k}\right\}_{1 \leq i \leq n, 1 \leq k \leq K}$
- We say that these are latent variables
- Put $\mathcal{C}_{k}=\left\{i: C_{i, k}=1\right\}$, then $\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}$ is a partition of $\{1, \ldots, n\}$.

Generative model

Generative model:

- i belongs to class \mathcal{C}_{k} with probability p_{k}, namely

$$
C_{i}=\left(C_{i, 1}, \ldots, C_{i, K}\right) \sim \mathcal{M}\left(1, p_{1}, \ldots, p_{K}\right)
$$

[multinomial distribution with parameter $\left(1, p_{1}, \ldots, p_{K}\right)$].

- $X_{i} \sim \varphi_{\mu_{k}, \Sigma_{k}}$ if $C_{i, k}=1$

Marginal

- The joint distribution of (X, C) is, according to this model

$$
f_{\theta}(x, c)=\prod_{k=1}^{K}\left(p_{k} \varphi_{\mu_{k}, \Sigma_{k}}(x)\right)^{c_{k}}
$$

[$c_{k}=1$ for only one k and 0 elsewhere] and the marginal density in X is the one of the mixture:

$$
f_{\theta}(x)=\sum_{k=1}^{K} p_{k} \varphi_{\mu_{k}, \Sigma_{k}}(x)
$$

- This generative model adds a latent variable C, in such a way that the marginal distribution of (X, C) in X is indeed the one of the mixture f_{θ}

Complete Likelihood

- Put $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\mathbf{C}=\left(C_{1}, \ldots, C_{n}\right)$
- Do as if we observed the latent variables \mathbf{C}
- Write a completed likelihood for these "virtual" observations (joint distribution of (X, C)):

$$
L_{c}(\theta ; \mathbf{X}, \mathbf{C})=\prod_{i=1}^{n} \prod_{k=1}^{K}\left(p_{k} \varphi_{\mu_{k}, \Sigma_{k}}\left(X_{i}\right)\right)^{c_{i, k}}
$$

and the completed log-likelihood:

$$
\ell_{c}(\theta ; \mathbf{X}, \mathbf{C})=\sum_{i=1}^{n} \sum_{k=1}^{K} C_{i, k}\left(\log p_{k}+\log \varphi_{\mu_{k}, \Sigma_{k}}\left(X_{i}\right)\right)
$$

EM-Algorithm

[Dempster et al. (77)]
(E=Expectation, M=Maximization)

Initialize $\theta^{(0)}$ for $t=0, \ldots$, until convergence, repeat:
(1) (E)-step: [Expectation with respect to the latent variables, for the previous value of θ]
Compute

$$
\theta \mapsto Q\left(\theta, \theta^{(t)}\right)=\mathcal{E}_{\theta^{(t)}}\left[\ell_{c}(\theta ; \mathbf{X}, \mathbf{C}) \mid \mathbf{X}\right]
$$

(2) (M)-step: [Maximize this expectation]

Compute

$$
\theta^{(t+1)} \in \arg \max _{\theta \in \Theta} Q\left(\theta, \theta^{(t)}\right)
$$

EM-Algorithm

- (E) and (M) steps often have explicit solutions

Theorem

The sequence $\theta^{(t)}$ obtained using EM Algorithm satisfies

$$
\ell\left(\theta^{(t+1)} ; \mathbf{X}\right) \geq \ell\left(\theta^{(t)} ; \mathbf{X}\right)
$$

for any t.

- A each step, EM increases the likelihood
- Initialization will be very important (usually done using K-Means or K-Means++)

Proof

Remains to check that $\mathrm{Q}_{1}\left(\theta^{(t+1)}, \theta^{(t)}\right)-\mathrm{Q}_{1}\left(\theta^{(t)}, \theta^{(t)}\right) \leq 0$:

$$
\begin{aligned}
\mathbf{Q}_{1}\left(\theta^{(t+1)}, \theta^{(t)}\right)-\mathbf{Q}_{1}\left(\theta^{(t)}, \theta^{(t)}\right) & =\mathcal{E}_{\theta^{(t)}}\left[\ell\left(\theta^{(t+1)} ; \mathbf{C} \mid \mathbf{X}\right)-\ell\left(\theta^{(t)} ; \mathbf{C} \mid \mathbf{X}\right) \mid \mathbf{X}\right] \\
& =\int \log \left(\frac{f_{\theta^{(t+1)}}(c \mid \mathbf{X})}{\left.f_{\theta^{(t)}(c \mid \mathbf{X})}\right)}\right) f_{\theta^{(t)}}(c \mid \mathbf{X}) \mu(d c) \\
& \leq \log \int f_{\theta^{(t+1)}}(c \mid \mathbf{X}) \mu(d c)=0
\end{aligned}
$$

This proves $\ell\left(\theta^{(t+1)} ; \mathbf{X}\right) \geq \ell\left(\theta^{(t)} ; \mathbf{X}\right)$ for any t

EM: what? and when?

So what is the EM Algorithm, and where do we use this?

- It is an algorithm that allows to optimize a likelihood with missing or latent data
- For a mixture distribution, we come up with natural latent variables, that simplify the original optimization problem

Gaussian Mixture Models (GMM)
EM and GMM

EM and GMM (soft Kmeans)

Consider the completed likelihood

$$
\ell_{c}(\theta ; \mathbf{X}, \mathbf{C})=\sum_{i=1}^{n} \sum_{k=1}^{K} C_{i, k}\left(\log p_{k}+\log \varphi_{\mu_{k}, \Sigma_{k}}\left(X_{i}\right)\right)
$$

where

$$
\theta=\left(p_{1}, \ldots, p_{\kappa}, \mu_{1}, \ldots, \mu_{\kappa}, \Sigma_{1}, \ldots, \Sigma_{\kappa}\right) .
$$

What are the (E) and (M) steps in this case?

(E)-Step

Compute

$$
\mathcal{E}_{\theta^{(t)}}\left[\ell_{c}(\theta ; \mathbf{X}, \mathbf{C}) \mid \mathbf{X}\right]=\sum_{i=1}^{n} \sum_{k=1}^{K} \mathcal{E}_{\theta^{(t)}}\left[C_{i, k} \mid \mathbf{X}\right]\left(\log p_{k}+\log \varphi_{\mu_{k}, \Sigma_{k}}\left(X_{i}\right)\right)
$$

which is simply:

$$
\mathcal{E}_{\theta}\left[C_{i, k} \mid \mathbf{X}\right]=\mathbb{P}_{\theta}\left(C_{i, k}=1 \mid X_{i}\right)=: \pi_{i, k}(\theta),
$$

where

$$
\pi_{i, k}(\theta)=\frac{p_{k} \varphi_{\mu_{k}, \Sigma_{k}}\left(X_{i}\right)}{\sum_{k^{\prime}=1}^{K} p_{k^{\prime}} \varphi_{\mu_{k^{\prime}}, \Sigma_{k^{\prime}}}\left(X_{i}\right)} .
$$

We call $\pi_{i, k}(\theta)$ the "soft-assignment" of i in class k.

(E)-Step

Figure 2: Soft-assignments : $x \mapsto \frac{p_{k} \varphi_{\mu_{k}, \Sigma_{k}}(x)}{\sum_{k^{\prime}=1}^{K} p_{k^{\prime}} \varphi_{\mu_{k^{\prime}}}, \Sigma_{k^{\prime}}(x)}$.

(M)-Step

Compute

$$
\theta^{(t+1)}=\left(p_{1}^{(t+1)}, \ldots, p_{K}^{(t+1)}, \mu_{1}^{(t+1)}, \ldots, \mu_{K}^{(t+1)}, \Sigma_{1}^{(t+1)}, \ldots, \Sigma_{K}^{(t+1)}\right)
$$

using:

$$
\begin{aligned}
p_{k}^{(t+1)} & =\frac{1}{n} \sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right), \\
\mu_{k}^{(t+1)} & =\frac{\sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right) X_{i}}{\sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right)} \\
\Sigma_{k}^{(t+1)} & =\frac{\sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right)\left(X_{i}-\mu_{k}^{(t+1)}\right)\left(X_{i}-\mu_{k}^{(t+1)}\right)^{\top}}{\sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right)} .
\end{aligned}
$$

This is natural: estimation for the means and covariances, weighted by the soft-assignments

So, for $t=1, \ldots$, iterate (E) and (M) until convergence:

$$
\begin{aligned}
\pi_{i, k}\left(\theta^{(t)}\right) & =\frac{p_{k}^{(t)} \varphi_{\mu_{k}^{(t)}, \Sigma_{k}^{(t)}}\left(X_{i}\right)}{\sum_{k^{\prime}=1}^{K} p_{k^{\prime}}^{(t)} \varphi_{\mu_{k^{\prime}}(t)}^{(t)} \Sigma_{k^{\prime}}^{(t)}\left(X_{i}\right)} \\
p_{k}^{(t+1)} & =\frac{1}{n} \sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right) \\
\mu_{k}^{(t+1)} & =\frac{\sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right) X_{i}}{\sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right)} \\
\Sigma_{k}^{(t+1)} & =\frac{\sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right)\left(X_{i}-\mu_{k}^{(t+1)}\right)\left(X_{i}-\mu_{k}^{(t+1)}\right)^{\top}}{\sum_{i=1}^{n} \pi_{i, k}\left(\theta^{(t)}\right)} .
\end{aligned}
$$

We obtain an estimator $\hat{\theta}=\left(\hat{p}_{1}, \ldots, \hat{p}_{K}, \hat{\mu}_{1}, \ldots, \hat{\mu}_{K}, \hat{\Sigma}_{1}, \ldots, \hat{\Sigma}_{K}\right)$.

Complexity

$$
O\left(n \times K \times n_{i t}\right)
$$

EM-Algorithm on one picture

Clustering: the maximum a posteriori (MAP) rule

- Given $\hat{\theta}$, how to affect a cluster number k to a given $x \in \mathbb{R}^{d}$?
- Compute the the soft-assignments

$$
\pi_{k}(x)=\frac{\hat{p}_{k} \varphi_{\hat{\mu}_{k}, \hat{\Sigma}_{k}}(x)}{\sum_{k^{\prime}=1}^{K} \hat{p}_{k^{\prime}} \varphi_{\hat{\mu}_{k^{\prime}}, \hat{\Sigma}_{k^{\prime}}}(x)}
$$

- Consider

$$
i \in \mathcal{C}_{k} \text { if } \pi_{k}(x)>\pi_{k^{\prime}}(x) \text { for any } k^{\prime} \neq k
$$

Soft-Assignment

The MAP rule

Mixture $f_{\theta}(x)$

Soft-assignement $\pi_{k}(x)$

Soft-Assignment

Figure 3: Soft-assignments : $x \mapsto \frac{p_{k} \varphi_{\mu_{k}, \Sigma_{k}}(x)}{\sum_{k^{\prime}=1}^{K} p_{k^{\prime}} \varphi_{\mu_{k^{\prime}}, \Sigma_{k^{\prime}}}(x)}$.

Gaussian Mixtures Model

Gaussian Mixtures Model

spherical

diag
Train accuracy: 88.6
Test accuracy: 94.4

tied
Train accuracy: 95.6
Test accuracy: 100.0

Point-based objectives

Point-based objectives

Contrarily to center-based objectives, point-based objectives do not require to compute a cluster center.

The distortion $D\left(C_{1}, \ldots, C_{k}\right)$ to minimize is computed based on pair of points belonging to clusters. For example, the sum of in-cluster distances is

$$
\hat{D}\left(C_{1}, \ldots, C_{K}\right)=\sum_{k=1}^{K} \sum_{X, Y \in \hat{C}_{k}} d(X, Y)
$$

with $\hat{C}_{k}=C_{k} \cap\left\{X_{i}: i=1 ; \ldots, n\right\}$

Point-based objectives

Let $s: \mathcal{X} \times \mathcal{X} \rightarrow[0,1]$ be a similarity measure. Another example lies in the distortion defined by the sum of interclass similarities:

$$
D\left(C_{1}, \ldots, C_{K}\right)=\mathbb{E}\left(\sum_{k=1}^{K} s(X, Y) \mathbb{1}_{X \in C_{k} \cap Y \notin C_{k}}\right)
$$

- center-based approach: making sure that points in the same cluster are similar
- point-based objectives approach: points separated into different clusters should be dissimilar

Graph-cut problem

Representation by a similarity graph

- each vertex represents a data point X_{i}
- vertices are connected by an edge whose weight is their similarity

Such a graph can be defined by the similarity (or adjacency) matrix

$$
W=\left(s\left(X_{i}, X_{j}\right)\right)_{1 \leq i, j \leq n}
$$

Given the index sets I_{k} of each empirical cluster \hat{C}_{k}, the previous point-based objective function has an empirical twin given by:

$$
\hat{D}\left(C_{1}, \ldots, C_{k}\right)=\sum_{j=1}^{k} \sum_{\substack{\left.i \in l_{j} \\ \ell \notin\right|_{j}}} W_{i, \ell} .
$$

Minimizing $\hat{D}\left(C_{1}, \ldots, C_{k}\right)$ is often referred as the graph cut problem.

Similarity graph

Consider a similarity graph $G=(V, E)$, for which the vertices $V=\left(v_{1}, \ldots, V_{n}\right)$ represent the points $\left(X_{1}, \ldots, X_{n}\right)$

- Two vertices v_{i} and v_{j} are connected if the similarity $s\left(X_{i}, X_{j}\right)>0$ (or $>\tau$ with τ a threshold)
- The edge between these two vertices is weighted by their similarity $s\left(X_{i}, X_{j}\right)$.
- The weighted adjacency matrix is $W=\left(s\left(X_{i}, X_{j}\right)\right)_{1 \leq i, j \leq n}$.
- The graph G is assumed undirected, which is equivalent to W being symmetric (via a symmetric similarity measure s).

Similarity graph: vocabulary

Definition

- The degree of a vertex $v_{i} \in V$ is $d_{i}=\sum_{\ell=1}^{n} W_{i, \ell}$.

Given $A \subset V$,

- the size of $A=|A|=$ the number of its vertices
- the volume of $A, \operatorname{vol}(A)=\sum_{i \in[n]: v_{i} \in A} d_{i}$
- A is said connected if any two vertices of A can be joined by a path such that all intermediate points also lie in A.
- A is called a connected component if it is connected and if there are no connections between vertices in A and $V \backslash A$.

Similarity graph

When constructing a similarity graph, the goal is to model the local neighborhood relationships between data points.
$\rightsquigarrow 3$ popular similarity graphs based on a given distance $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$.

The ϵ-neighborhood graph

- X_{i} and X_{j} are connected iff $d\left(X_{i}, X_{j}\right) \leq \epsilon$.
- If ϵ is small enough, all connected points are roughly at the same distance.
- The weights assigned are $W_{i, j}=1$ (if $d\left(X_{i}, X_{j}\right) \leq \epsilon$ and 0 otherwise).
- Usually considered as an unweighted graph

Similarity graphs

k-nearest neighbor graph

- X_{i} and X_{j} are connected iff $X_{i} \in k N N\left(X_{j}\right)$ or $X_{j} \in k N N\left(X_{i}\right)$.
- $W_{i, j}=1$ if X_{i} and X_{j} are connected and 0 otherwise.

Similarity graphs

k-nearest neighbor graph

- X_{i} and X_{j} are connected iff $X_{i} \in k N N\left(X_{j}\right)$ or $X_{j} \in k N N\left(X_{i}\right)$.
- $W_{i, j}=1$ if X_{i} and X_{j} are connected and 0 otherwise.

Mutual k-nearest neighbor graph

- X_{i} and X_{j} are connected iff $X_{i} \in \operatorname{kNN}\left(X_{j}\right)$ and $X_{j} \in \operatorname{kNN}\left(X_{i}\right)$.
- $W_{i, j}=1$ if X_{i} and X_{j} are connected and 0 otherwise.

Similarity graphs

k-nearest neighbor graph

- X_{i} and X_{j} are connected iff $X_{i} \in \operatorname{kNN}\left(X_{j}\right)$ or $X_{j} \in \operatorname{kNN}\left(X_{i}\right)$.
- $W_{i, j}=1$ if X_{i} and X_{j} are connected and 0 otherwise.

Mutual k-nearest neighbor graph

- X_{i} and X_{j} are connected iff $X_{i} \in \operatorname{kNN}\left(X_{j}\right)$ and $X_{j} \in \operatorname{kNN}\left(X_{i}\right)$.
- $W_{i, j}=1$ if X_{i} and X_{j} are connected and 0 otherwise.

The fully connected graph

- Points are connected if they have a similarity $s\left(X_{i}, X_{j}\right)>0$
- The edges are weighted by $s\left(X_{i}, X_{j}\right)$
- A popular choice is the Gaussian similarity: $s\left(x, x^{\prime}\right)=e^{-\frac{d\left(x, x^{\prime}\right)^{2}}{2 \sigma^{2}}}$, in which σ^{2} plays a role similar to ϵ and k

Spectral clustering

Normalized graph-cut

- For $k=2$, finding a minimal cut of a graph can be done efficiently: Stoer-Wagner algorithm
- Problem: often results is separating a vertex from the rest

One solution

Normalizing the empirical distortion either by the size of the clusters:

$$
\hat{\mathrm{D}}_{r}\left(C_{1}, \ldots, c_{K}\right)=\sum_{k=1}^{K} \frac{1}{\left|\hat{C}_{k}\right|} \sum_{\substack{i \in \neq k \\ \ell \notin \neq k}} W_{i, \ell},
$$

(let us remind that $\left|\hat{C}_{k}\right|=\left|I_{k}\right|$) or by their volume:

$$
\hat{D}_{n}\left(C_{1}, \ldots, C_{K}\right)=\sum_{k=1}^{K} \frac{1}{\operatorname{vol}\left(\hat{C}_{k}\right)} \sum_{\substack{\left.i \in l_{k} \\ \ell \notin\right|_{k}}} W_{i, \ell} .
$$

릉 hese objectives are respectively called ratio cut and normalized cut.

Towards spectral clustering

- Problem: the balancing introduced by the cluster importance makes the minimization problem computationally hard to solve
- A relaxation procedure: spectral clustering algorithm.

Definition (Unnormalized graph Laplacian)

Let $W \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

- The diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that $D_{i, i}=\sum_{j=1}^{n} W_{i, j}, \forall i \in[n]$ is called the degree matrix of the graph defined by W
- $L=D-W$ is calledthe Laplacian of the graph defined by W

Reformulation of ratio-cut

Proposition

Let W and L be respectively the adjacency matrix and the Laplacian of the similarity graph of $\left(X_{1}, \ldots, X_{n}\right)$. For any positive integer K and for all partitioning $\left(C_{1}, \ldots, C_{K}\right)$ of $\left(X_{1}, \ldots, X_{n}\right)$, we have

$$
\hat{D}_{r}\left(C_{1}, \ldots, C_{K}\right)=\operatorname{tr}\left(H^{\top} L H\right),
$$

where $H=\left(\frac{1}{\sqrt{|k|}} \mathbb{1}_{\left.i \in\right|_{k}}\right)_{\substack{1 \leq \leq \leq n \\ 1 \leq k \leq K}}$.
In addition, the columns of H are orthonormal to each other $\left(H^{\top} H=I\right)$.

Proof i

First, denoting $h_{j} \in \mathbb{R}^{n}$ the columns of H (for $j \in[K]$), we have

$$
\operatorname{tr}\left(H^{\top} L H\right)=\operatorname{tr}\left(\left(L^{1 / 2} H\right)^{\top}\left(L^{1 / 2} H\right)\right)=\sum_{j=1}^{K}\left(L^{1 / 2} h_{j}\right)^{\top}\left(L^{1 / 2} h_{j}\right)=\sum_{j=1}^{K} h_{j}^{\top} L h_{j} .
$$

Proof ii

In addition, for all $u \in \mathbb{R}^{n}$,

$$
\begin{aligned}
u^{\top} L u & =u^{\top} D u-u^{\top} W u \\
& =\sum_{1 \leq i \leq n} D_{i, i} u_{i}^{2}-\sum_{1 \leq i, \ell \leq n} W_{i, \ell} u_{i} u_{\ell} \\
& =\frac{1}{2}\left(\sum_{1 \leq i \leq n} D_{i, j} u_{i}^{2}+\sum_{1 \leq \ell \leq n} D_{\ell, \ell} u_{\ell}^{2}-2 \sum_{1 \leq i, \ell \leq n} W_{i, \ell} u_{i} u_{\ell}\right) \\
& =\frac{1}{2}\left(\sum_{1 \leq i, \ell \leq n} W_{i, \ell} u_{i}^{2}+\sum_{1 \leq i, \ell \leq n} W_{i, \ell} u_{\ell}^{2}-2 \sum_{1 \leq i, \ell \leq n} W_{i, \ell} u_{i} u_{\ell}\right) \\
& =\frac{1}{2} \sum_{1 \leq i, \ell \leq n} W_{i, \ell}\left(u_{i}-u_{\ell}\right)^{2} .
\end{aligned}
$$

Proof iii

Therefore, for all $j \in[K]$,

$$
\begin{aligned}
h_{j}^{\top} L h_{j} & =\frac{1}{2} \sum_{1 \leq i, \ell \leq n} W_{i, \ell}\left(H_{i, j}-H_{\ell, j}\right)^{2} \\
& =\frac{1}{2} \sum_{\substack{i \in l_{j} \\
\ell \notin I_{j}}} \frac{W_{i, \ell}}{\left|I_{j}\right|}+\frac{1}{2} \sum_{\substack{i \neq\left.\right|_{j} \\
\ell \in I_{j}}} \frac{W_{i, \ell}}{\left|I_{j}\right|} \\
& =\frac{1}{\left|I_{j}\right|} \sum_{\substack{i \in l_{j} \\
\ell \notin j_{j}}} W_{i, \ell},
\end{aligned}
$$

since $H_{i, j}-H_{\ell, j}$ is nonzero only if $i \in I_{j}$ and $\ell \notin I_{j}$ or the other way around.

Proof iv

Gathering everything, we have:

$$
\operatorname{tr}\left(H^{\top} L H\right)=\sum_{j=1}^{K} h_{j}^{\top} L h_{j}=\sum_{j=1}^{K} \frac{1}{\left|I_{j}\right|} \sum_{\substack{\left.\left.i \in\right|_{j} \\ \ell \notin\right|_{j}}} W_{i, \ell}=\hat{D}_{r}\left(C_{1}, \ldots, C_{K}\right) .
$$

one-hot-encoding

- Up to normalization, H represents the one-hot-encoding.
- For example, for $K=3$, if we reorganize the sample $\left(X_{1}, \ldots, X_{n}\right)$ such that \hat{C}_{1} appears first, then \hat{C}_{2} and so on, we get

$$
H=\left(\begin{array}{ccc}
\frac{1}{\left|\hat{c}_{1}\right|} & 0 & 0 \\
\vdots & \vdots & \vdots \\
\frac{1}{\left|\hat{C}_{1}\right|} & 0 & 0 \\
0 & \frac{1}{\left|\hat{c}_{2}\right|} & 0 \\
\vdots & \vdots & \vdots \\
0 & \frac{1}{\left|\hat{c}_{2}\right|} & 0 \\
0 & 0 & \frac{1}{\left|\hat{C}_{3}\right|} \\
\vdots & \vdots & \vdots \\
0 & 0 & \frac{1}{\left|\hat{c}_{3}\right|}
\end{array}\right) .
$$

Ratio-cut problem

The ratio cut problem

$$
\min _{\left(\hat{c}_{1}, \ldots, \hat{c}_{K}\right) \in P\left(\left\{X_{1}, \ldots, X_{n}\right\}\right)} \sum_{k=1}^{K} \frac{1}{\left|I_{k}\right|} \sum_{\substack{i \in 1_{k} \\ \ell \notin \dot{k}_{k}}} W_{i, \ell}
$$

is equivalent to

$$
\begin{aligned}
& \min _{H \in \mathbb{R}^{n \times K}} \operatorname{tr}\left(H^{\top} L H\right) \\
& \text { s.t. }\left\{\begin{array}{l}
H^{\top} H=1 \\
\forall j \in[K], \forall i \in[n]: H_{i, j} \in\left\{0, \frac{1}{\sqrt{\mid i, j}}\right\} .
\end{array}\right.
\end{aligned}
$$

Relaxation for ratio-cut

Problems:

- this is an integer programming problem which we may not be able to solve efficiently.
- the values $\left(\left|I_{1}\right|, \ldots,\left|I_{K}\right|\right)$ are not known in advance.

Idea: discard the last constraint

$$
\begin{gathered}
\min _{H \in \mathbb{R}^{n \times K}} \operatorname{tr}\left(H^{\top} L H\right) \\
\text { s.t. } H^{\top} H=1 .
\end{gathered}
$$

Relaxation for ratio-cut

Problems:

- this is an integer programming problem which we may not be able to solve efficiently.
- the values $\left(\left|I_{1}\right|, \ldots,\left|I_{K}\right|\right)$ are not known in advance.

Idea: discard the last constraint

$$
\begin{gathered}
\min _{H \in \mathbb{R}^{n \times K}} \operatorname{tr}\left(H^{\top} L H\right) \\
\text { s.t. } H^{\top} H=l .
\end{gathered}
$$

- Solved by the matrix H for which the columns are the minor eigenvectors of L.
- Resulting algorithm: unnormalized spectral clustering.
- maps data $\left(X_{1}, \ldots, X_{n}\right)$ to rows of the K minor eigenvectors of L
- then performs a vanilla K-means

Unnormalized spectral clustering

```
Unnormalized spectral clustering
Require: \(W \in \mathbb{R}^{n \times n}\) (adjacency matrix).
    \(L \leftarrow\) Laplacian of \(W\)
    \(H \leftarrow K\) minor eigenvectors of \(L\) as columns
    \(Y_{i} \leftarrow i^{\text {th }}\) row of \(H\) (for all \(\left.i \in[n]\right)\left\{Y_{i} \in \mathbb{R}^{K}\right\}\)
    \(\left(\hat{C}_{1}, \ldots, \hat{C}_{K}\right) \leftarrow\) output of \(K\)-means algorithm based on \(\left(Y_{1}, \ldots, Y_{n}\right)\)
Ensure: \(\left(\hat{C}_{1}, \ldots, \hat{C}_{K}\right)\).
```

Idea
(1) Dimension reduction
(2) K-means

Reformulation for normalized cut

Proposition

Let W and L be respectively the adjacency matrix and the Laplacian of the similarity graph of $\left(X_{1}, \ldots, X_{n}\right)$. For any positive integer k and for all partitioning $\left(C_{1}, \ldots, C_{K}\right)$ of $\left(X_{1}, \ldots, X_{n}\right)$, we have

$$
\hat{D}_{n}\left(C_{1}, \ldots, C_{K}\right)=\operatorname{tr}\left(H^{\top} L H\right),
$$

where $H=\left(\frac{1}{\sqrt{\operatorname{vol}\left(C_{j}\right)}} \mathbb{1}_{i \in l_{j}}\right)_{\substack{1 \leq \leq \leq n \\ 1 \leq \leq i}}$.
In addition, the columns of $D^{\frac{1}{2}} \mathrm{H}$ are orthonormal to each other ($H^{\top} D H=I$).

Reformulation for normalized cut

Proposition

Let W and L be respectively the adjacency matrix and the Laplacian of the similarity graph of $\left(X_{1}, \ldots, X_{n}\right)$. For any positive integer k and for all partitioning $\left(C_{1}, \ldots, C_{K}\right)$ of $\left(X_{1}, \ldots, X_{n}\right)$, we have

$$
\hat{D}_{n}\left(C_{1}, \ldots, C_{K}\right)=\operatorname{tr}\left(H^{\top} L H\right),
$$

where $H=\left(\frac{1}{\sqrt{\operatorname{vol}\left(G_{j}\right)}} \mathbb{1}_{i \in I_{j}}\right)_{\substack{1 \leq i \leq n \\ 1 \leq \leq \leq K}}$.
In addition, the columns of $D^{\frac{1}{2}} \mathrm{H}$ are orthonormal to each other ($H^{\top} D H=I$).

Proof: similar to the one of the previous Proposition except that we have for all $j \in[K]$,

$$
h_{j}^{\top} L h_{j}=\frac{1}{\operatorname{vol}\left(\hat{C}_{j}\right)} \sum_{\substack{\left.i \in\right|_{j} \\ \ell \notin j}} W_{i, \ell} .
$$

Relaxation for normalized-cut problem

The normalized cut problem

$$
\min _{\left(\hat{c}_{1}, \ldots, \hat{C}_{k}\right) \in P\left(\left\{X_{1}, \ldots, X_{n}\right\}\right)} \sum_{j=1}^{K} \frac{1}{\operatorname{vol}\left(\hat{C}_{j}\right)} \sum_{\substack{\left.i \in \epsilon_{j} \\ \ell \notin\right|_{j}}} W_{i, \ell}
$$

is equivalent to

$$
\begin{aligned}
\min _{H \in \mathbb{R}^{n \times K}} & \operatorname{tr}\left(H^{\top} L H\right) \\
& H^{\top} D H=1 \\
\text { s.t. } & \forall j \in[K], \forall i \in[n]: H_{i, j} \in\left\{0, \frac{1}{\sqrt{\operatorname{vol}\left(\hat{C}_{\mathrm{i}}\right)}}\right\},
\end{aligned}
$$

and can be relaxed to

$$
\begin{align*}
\min _{H \in \mathbb{R}^{n \times k}} \operatorname{tr}\left(H^{\top} L H\right) \tag{1}\\
\text { s.t. } H^{\top} D H=I . \tag{2}
\end{align*}
$$

Relaxation for normalized-cut problem

$$
\begin{align*}
& \min _{H \in \mathbb{R}^{n \times k}} \operatorname{tr}\left(H^{\top} L H\right) \tag{3}\\
& \text { s.t. } H^{\top} D H=l . \tag{4}
\end{align*}
$$

can be reformulated

$$
\begin{aligned}
\min _{H \in \mathbb{R}^{n \times k}} & \operatorname{tr}\left(U^{\top} L_{s} U\right) \\
\text { s.t. } & H=D^{-\frac{1}{2}} U \\
& U^{\top} U=l
\end{aligned}
$$

where $L_{s}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$.

Relaxation for normalized-cut problem

$$
\begin{align*}
& \min _{H \in \mathbb{R}^{n \times k}} \operatorname{tr}\left(H^{\top} L H\right) \tag{3}\\
& \text { s.t. } H^{\top} D H=l . \tag{4}
\end{align*}
$$

can be reformulated

$$
\begin{aligned}
\min _{H \in \mathbb{R}^{n \times k}} & \operatorname{tr}\left(U^{\top} L_{s} U\right) \\
\text { s.t. } & H=D^{-\frac{1}{2}} U \\
& U^{\top} U=I,
\end{aligned}
$$

where $L_{s}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$.

- Solved by U for which the columns are minor eigenvectors of L_{s}
- corr. to H for which columns are minor eigenvectors of $L_{w}=D^{-1} L$

릉 - resulting algorithm: normalized spectral clustering.

Normalized spectral clustering

Normalized spectral clustering (with L_{w})
Require: $W \in \mathbb{R}^{n \times n}$ (adjacency matrix).
$L_{w} \leftarrow$ Laplacian of W
$H \leftarrow K$ minor eigenvectors of L_{w} as columns \{similar to the
generalized eigenproblem $L u=\lambda D u\}$
$Y_{i} \leftarrow i^{\text {th }}$ row of H (for all $\left.i \in[n]\right)\left\{Y_{i} \in \mathbb{R}^{K}\right\}$
$\left(\hat{C}_{1}, \ldots, \hat{C}_{K}\right) \leftarrow$ output of k-means algorithm based on $\left(Y_{1}, \ldots, Y_{n}\right)$
Ensure: $\left(\hat{C}_{1}, \ldots, \hat{C}_{K}\right)$.

Remark: $\lambda \in \mathbb{R}_{+}$is eigenvalue of L_{w} with eigenvector u iff λ and u solve the generalized eigenvalue problem $L u=\lambda D u$.

Ratio cut vs. normalized cut i

- Both objective functions: points separated into different clusters should be dissimilar
- Both take into account the importance of the clusters (by their size or their volume)

Different behavior on cluster importance:

- it is easy to see that, for all $j \in[K]$:

$$
\sum_{\substack{i \in j_{j} \\ \ell \in j_{j}}} W_{i, \ell}=\operatorname{vol}\left(\hat{C}_{j}\right)-\sum_{\substack{\left.i \in j_{j} \\ \ell \notin\right|_{j}}} W_{i, \ell} .
$$

In other words, the intra-cluster similarity is maximized as soon as the volume of the cluster is maximized and the cut with the rest

Ratio cut vs. normalized cut ii

of the vertices is minimized; which is what is achieved by normalized cut minimization.

- On the other hand, the size $\left|\hat{C}_{j}\right|$ of a cluster is not necessarily related to the intra-cluster similarity.
\rightsquigarrow normalized cut minimization addresses both parts of clustering
(+) Normalized spectral clustering: L_{w} behaves as expected when $n \rightarrow \infty$
(-) L can lead to completely unreliable results, even for small sample size Von Luxburg, 2007
(+) Normalized spectral clustering: L_{w} behaves as expected when $n \rightarrow \infty$
(-) L can lead to completely unreliable results, even for small sample size Von Luxburg, 2007

There exists another spectral algo:
Normalized spectral clustering (with L_{s})
Require: $W \in \mathbb{R}^{n \times n}$ (adjacency matrix).
$L_{s} \leftarrow$ Laplacian of W
$H \leftarrow K$ minor eigenvectors of L_{s} as columns
$Y_{i} \leftarrow i^{\text {th }}$ row of H normalized to 1 (for all $\left.i \in[n]\right)\left\{Y_{i} \in \mathbb{R}^{K}\right.$,
$\left.\sum_{j=1}^{K}\left(Y_{i}\right)_{j}^{2}=1\right\}$
$\left(\hat{C}_{1}, \ldots, \hat{C}_{K}\right) \leftarrow$ output of k-means algorithm based on $\left(Y_{1}, \ldots, Y_{n}\right)$
Ensure: $\left(\hat{C}_{1}, \ldots, \hat{C}_{K}\right)$.

On spectral relaxations

- There is no theoretical guarantees concerning the "quality" of these two relaxations.
- Second, there exist many other relaxations: relying on semidefinite programming
- Spectral relaxations are not appealing for the quality of the solutions they provide but for the simplicity of the problem in which they result (standard linear algebra - eigenvalue problems).

Properties of graph Laplacian

- $W \in \mathbb{R}_{+}^{n \times n}$ a symmetric adjacency matrix
- $D \in \mathbb{R}^{n \times n}$ its degree matrix

So far, we have seen three Laplacians:

Definition

Unnormalized Laplacian: $L=D-W$;
Nomalized Laplacian 1: $L_{s}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}=I-D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$;
Nomalized Laplacian 2: $L_{w}=D^{-1} L=I-D^{-1} W$.
Indexed by s and w: they are respectively symmetrically normalized by $D^{-\frac{1}{2}}$ (on left and right) and whitened by D.

Properties of graph Laplacian

- Bridging gap between graph cut and eigenvalue dec.
- Discover that 0 is an eigenvalue of L and L_{w} with eigenvector $\mathbb{1}$.

Proposition

(1) $\forall u \in \mathbb{R}^{n}$:

$$
\begin{aligned}
u^{\top} L u & =\frac{1}{2} \sum_{1 \leq i, \ell \leq n} W_{i, \ell}\left(u_{i}-u_{\ell}\right)^{2} \\
u^{\top} L_{s} u & =\frac{1}{2} \sum_{1 \leq i, \ell \leq n} W_{i, \ell}\left(\frac{u_{i}}{\sqrt{D_{i, i}}}-\frac{u_{\ell}}{\sqrt{D_{\ell, \ell}}}\right)^{2} .
\end{aligned}
$$

(2) 0 is eigenvalue of L and L_{w} with eigenvector $\mathbb{1}$. 0 is eigenvalue of L_{s} with eigenvector $D^{\frac{1}{2}} \mathbb{1}$.
(3) $\lambda \in \mathbb{R}_{+}$is eigenvalue of L_{w} with eigenvector u if and only if λ is eigenvalue of L_{s} with eigenvector $D^{\frac{1}{2}} u$.
릉 L, L_{s} and L_{w} are symmetric SDP matrices.

Properties of graph Laplacian

Proof:
(1) See above.
(2) Obvious.
(3) $\lambda u=L_{w} u \Longleftrightarrow \lambda u=D^{-1} L u \Longleftrightarrow \lambda\left(D^{\frac{1}{2}} u\right)=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}\left(D^{\frac{1}{2}} u\right)$.
(9) Symmetry comes from symmetry of W. SDPness comes from Point 1 and Point 3.

Properties of graph Laplacian

Proof :
(1) See above.
(2) Obvious.
(3) $\lambda u=L_{w} u \Longleftrightarrow \lambda u=D^{-1} L u \Longleftrightarrow \lambda\left(D^{\frac{1}{2}} u\right)=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}\left(D^{\frac{1}{2}} u\right)$.
(9) Symmetry comes from symmetry of W. SDPness comes from Point 1 and Point 3.

Proposition

Let G be an undirected graph with non-negative weights.

- the multiplicities of the eigenvalue 0 of L, L_{s} and L_{w} are the same and equal the number k of connected components $\left(A_{1}, \ldots, A_{k}\right)$ in G.
- the eigenspace of 0 for both L and L_{w} is spanned by $\left\{\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}\right\}$ and the eigenspace of 0 for L_{s} is spanned by $\left\{D^{-\frac{1}{2}} \mathbb{1}_{A_{1}}, \ldots, D^{-\frac{1}{2}} \mathbb{1}_{A_{k}}\right\}$.

Hierarchical clustering

Hierarchical clustering

Drawback of K-means

Lack of hierarchy in clusters (i.e. decreasing K does not lead to merging clusters)
\rightsquigarrow Hierachical clustering to address this issue

Hierarchical clustering

Drawback of K-means

Lack of hierarchy in clusters (i.e. decreasing K does not lead to merging clusters)
\rightsquigarrow Hierachical clustering to address this issue

How?

- Introduce very simple methods based on measuring the similarity (or linkage) between clusters.

Hierarchical clustering

Drawback of K-means

Lack of hierarchy in clusters (i.e. decreasing K does not lead to merging clusters)
\rightsquigarrow Hierachical clustering to address this issue
How?

- Introduce very simple methods based on measuring the similarity (or linkage) between clusters.

What?

- Focus on agglomerative approaches (which is based on merging clusters) \rightsquigarrow bottom-up
- We put divisive ones aside (based on splitting clusters) \rightsquigarrow top-down

Agglomerative approaches

Linkage-based methods are probably the simplest and most intuitive paradigm of clustering.

Agglomerative version

- start from the partitioning of training set $\left(X_{1}, \ldots, X_{n}\right)$ in which each cluster is a unit set $\left\{X_{i}\right\}$ (for $\left.i \in[n)\right]$)
- merge successively the closest clusters

Straightforwardly,

- the number of clusters decreases at each iteration
- clusters are nested
- each cluster \hat{C}^{t} at iteration t is either the same $\hat{C}^{t}=\hat{C}^{t-1}$ or the union of two previous clusters $\hat{C}^{t}=\hat{C}_{1}^{t-1} \cup \hat{C}_{2}^{t-1}$.
Two parameters need to be defined in such a procedure:
- the (dis)similarity (or linkage) between two clusters
- the merging stopping rule

Some dissimilarities

Let $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$be a dissimilarity and consider two subsets A and B of $\left(X_{1}, \ldots, X_{n}\right)$.
Here are some cluster dissimilarities $D: P\left(\left\{X_{1}, \ldots, X_{n}\right\}\right)^{2} \rightarrow \mathbb{R}_{+}$.
Single linkage

$$
D(A, B)=\min _{x \in A, y \in B} d(x, y) .
$$

Complete linkage

$$
D(A, B)=\max _{x \in A, y \in B} d(x, y)
$$

Some dissimilarities

Average linkage

$$
D(A, B)=\frac{1}{|A||B|} \sum_{x \in A, y \in B} d(x, y) .
$$

Ward's minimum variance

Given the intraclass inertia for a generic subset $C \subset\left(X_{1}, \ldots, X_{n}\right)$:

$$
I(C)=\sum_{x \in C} d\left(x, m_{C}\right)^{2}
$$

where $m_{C}=\frac{1}{|C|} \sum_{y \in C} y$, the cluster distance in Ward's method is

$$
D(A, B)=I(A \cup B)-I(A)-I(B),
$$

which is the increase of intraclass inertia when merging A and B.

Linkage

For the Euclidean distance,

$$
D(A, B)=\frac{|A||B|}{|A|+|B|}\left\|m_{A}-m_{B}\right\|^{2} .
$$

Since Ward's method merges clusters by minimizing the increase in the total intraclass inertia, it is very similar k-means but greedy procedure

Linkage methods can be used with a variety of distances (or affinities), in particular:

- Euclidean distance (or I2);
- Manhattan distance (or Cityblock, or I1);
- cosine distance;
- any precomputed affinity matrix.

Stopping criterion

- If the agglomerative procedure runs until the end, all points share the same large cluster.
- The resulting sequence of partitioning can be represented as a tree, called a dendrogram
- the root = unique cluster that gathers all points (the final cluster)
- the leaves $=$ the unit set clusters (algorithm initialization)

Stopping rules

- a fixed number of clusters
- a distance upper bound \bar{D} (or alternatively a scaled distance upper bound $\alpha \in \mathbb{R}_{+}$such that $\bar{D}=\alpha \max _{1 \leq i, j \leq n} d\left(X_{i}, X_{j}\right)$ for single, complete and average linkages)

Agglomerative clustering

Complexity

- $O\left(n^{3}\right)$ if no restriction on the merging possibilities
- $O\left(n^{2}\right)$ if only a bounded number of merging is possible for a given cluster

Agglomerative clustering on some pictures

Cluster Dendogram

Concluding remarks

K-Means and GMM don't work for "embedded" cluster structures

