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The result of last lecture on the nearest-neighbor classifier

Al. Y ={0,1}.
A2. X =[0,1[“.

A3. 71 is c-Lipschitz continuous:

Vx,x" € X, |n(x) — n(x)| < c|x =X .

Theorem
Under the previous assumptions, for all distributions D and all m > 1
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LD(hm ) <2lp+ ml/(d+1)



Numerically




What does the analysis say?

e Where is the analysis loose? (sanity check: uniform Dx)

e finite sample bound: explicit, non-asympototic

e The second term miiﬁ) is distribution-free

e Does not give the trajectorial decreasing rate of the risk

e Exponential bound d (cannot be avoided...)
— curse of dimensionality

e Is is better than a simple grid approach?
— adaptivity to the dimension of manifold supporting data

e How to improve the classifier?
— k-nearest neighbors



More neighbors are better?

In general, yes in the sense that for m large enough, larger k is better.
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But one can find counter-examples: Vk > 3,VYm > k, L(/A7,’§,’VN) > (ﬁﬁ”)
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Deviation Bound for Bernoulli
Variables




Remember: Jensen’s Inequality

Let X' be a convex set and ¢ : x — R be a convex function.
Basic: For all x,x" € X, ¢(tx + (1 — t)x’) < top(x) + (1 — t)p(x)).

Probabilistic version: If ¢ : X — R is convex and if X is a random
variable with range in X, then ¢(E[X]) < E[¢(X)].

Conditional version: If X and Y are random variables and the range of
X in included in X, if ¢(X) is integrable then ¢(E[X|Y]) < E[¢(X)|Y].

Example: For a real-valued random variable X with finite expectation,
E[X?] > E[X]? and thus Var[X] = E[X?] — E[X]? > 0.

Make a picture. Think about equality case.



Chernoff’s Bound

Theorem (Chernoff-Hoeffding Deviation Bound)
Let i € (0,1). X1,...,Xn 2 B(w), and let x € (i, 1].

(i) Chernoffs’ bound for Bernoulli variables:

P(X, > x) < exp (= n KI(x, 1)) , (1)

1
where kl(p, q) = plog & + (1 — p) log lip Same for left deviations.
q —q

(i) If ¢(x) = kI(x, p), then ¢"'(x) = 1/[x(1 — x)] and

x — p)? 7
o) = CE [ ot o= ) 20— sy

2
X — 2u + x 1 1
( ) with % = X by Jensen, since ¢ is convex and / s2(1 —s)ds = =

= 2%(1—R) 3 0
1 2 2
—— (x — > 2(x — .
T 2maxy<y<p u(l — u) (X #) 2 2x = n)
(iii) Hoeffding’s bound for Bernoulli variables:

P(Xy > x) < exp (= 2n(x — p)?) . )

(iv) Inequalities (1) and (2) hold for arbitrary independent random variables with range [0, 1] 7

and expectation 1i.



o Ifpu<1/2,

P ()‘(k > ;) < exp (g(l - 2#)2) :

(Consequence of Chernoff or direct computation with (1 — u)* < exp(—k u), or of

Hoeffding).

e For all 1z € [0,1], Chernoff's bound with log(u) > (v — 1)/u yields

- L 1 —log(2) kit
— ) < ————ku | = —0. < —— |
P (Xk < 2) < exp ( > ki exp (—0.153 kp) < exp 7

Hoeffding yields a very poor result, but (ii) gives:

_ 3 k
P (Xk < g) < exp (—20ku) =exp(—0.15 k) < exp (—S’M) .



Bennett’'s and Bernstein’s inequalities

Let (Xi)1<i<n be independent random variables upper-bounded by 1, let
i = (E[X1] + -+ E[X,])/n, let % be such that E[X?] < o2 for all i and
let ¢(u) = (1 + u)log(l+ u) — u. Then, for all x >0,

IP’()_( >l +x) < exp (fno2q5 (%)) < exp ( 1n:2X//23) .

X2
2(14%)
Extension: if X; < b with b > 0,

Bernstein from Bennett: ¢(x) > since (x) = 2 (1 + %) ¢(x) — x* > 0.

Example: for X with range in [0, 1],

- 3 3 1 3k
P (Xk < g) < exp <—k (2 Iogi — 2) ,u) < exp (—2;) .



k-nearest neighbours




Let X' be a (pre-compact) metric space with distance d.

RNV X 1{A(x)

where

d(X)(X):

> 1/2} = plugin for Bayes classifier with estimator

1k
=% 2 Yol

X) < d(Xe)(X).X) < -+ < d(Xem(X). )
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Risk bound

Let C. be an e-covering of X:
VxeX,Ix e C:d(x,x") <e

If 7 is c-Lipschitz continuous: Vx,x" € X,
then for all k > 2 and all m > 1:

n(x) — n(x’)| < cd(x,x’),

. 1 2k|C.
L(RMNY — L(h*) < 7t # + 4ce
1 1
1 ak T for e = (k)™ |
< + (24 4c¢) () m
Vke m if |Cc| < ae™?

<(3+49) (2)7 fork= (D)7 .
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S h of the analysis

L(A™) = L(h") =E [J2n(x) — 1] 1{F"™ # b"(x)}]

<P (d(X, X)) > 2€) +E [|2000) — 1| 1{H" # 5" ()} 1{d (X, X)) < 2¢}]

2k|C.
o P (d(X, Xuy) >2¢) < > P(X €c,Ne < k) < 24|
ceCe (e
e For x such that n(x) < 1/2 — 2ce,
P(A™(x) = 1|X = x, d(X, X)) < 2¢) < exp (f§(2n(x) +4ce — 1)2> :

Same for n(x) > 1/2 + 2ce. And for 1/2 — 2ce < n(x) < 1/2 + 2ce the probability is
upper-bounded by 1. In all cases, on {d(X7 X(k)) < 26}:

[2n(X) — 1|P(i1kmNN(X) # h" (X)) < 4ce + igpéuexp(fkuz/@ = 4ce + \/% .
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