Machine Learning 2: k-nearest neighbors, deviation bounds

Master 2 Computer Science

Aurélien Garivier 2018-2019

- 1. Deviation Bound for Bernoulli Variables
- 2. k-nearest neighbours

A1. $\mathcal{Y} = \{0, 1\}.$ **A2.** $\mathcal{X} = [0, 1[^d].$ **A3.** η is *c*-Lipschitz continuous:

$$orall x, x' \in \mathcal{X}, ig| \eta(x) - \eta(x') ig| \leq c ig\| x - x' \| \; .$$

Theorem

Under the previous assumptions, for all distributions D and all $m \ge 1$

$$L_D(\hat{h}_m^{NN}) \le 2L_D^* + \frac{3c\sqrt{d}}{m^{1/(d+1)}}$$

Numerically

What does the analysis say?

- Where is the analysis loose? (sanity check: uniform \mathcal{D}_X)
- finite sample bound: explicit, non-asympototic
- The second term $\frac{3c\sqrt{d}}{m^{1/(d+1)}}$ is distribution-free
- Does not give the trajectorial decreasing rate of the risk
- Exponential bound *d* (cannot be avoided...)

 \implies curse of dimensionality

• Is is better than a simple grid approach?

 \implies adaptivity to the dimension of manifold supporting data

- How to improve the classifier?
 - \implies k-nearest neighbors

More neighbors are better?

In general, yes in the sense that for m large enough, larger k is better.

But one can find counter-examples: $\forall k \geq 3, \forall m \geq k, \ L(\hat{h}_m^{kNN}) \geq (\hat{h}_m^{NN}).$

More neighbors are better?

In general, yes in the sense that for m large enough, larger k is better.

But one can find counter-examples: $\forall k \geq 3, \forall m \geq k, \ L(\hat{h}_m^{kNN}) \geq (\hat{h}_m^{NN}).$

Deviation Bound for Bernoulli Variables

Let \mathcal{X} be a convex set and $\phi : x \to \mathbb{R}$ be a convex function.

Basic: For all $x, x' \in \mathcal{X}$, $\phi(tx + (1 - t)x') \le t\phi(x) + (1 - t)\phi(x')$.

Probabilistic version: If $\phi : \mathcal{X} \to \mathbb{R}$ is convex and if X is a random variable with range in \mathcal{X} , then $\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]$.

Conditional version: If X and Y are random variables and the range of X in included in \mathcal{X} , if $\phi(X)$ is integrable then $\phi(\mathbb{E}[X|Y]) \leq \mathbb{E}[\phi(X)|Y]$.

Example: For a real-valued random variable X with finite expectation, $\mathbb{E}[X^2] \ge \mathbb{E}[X]^2$ and thus $\mathbb{V}ar[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \ge 0$.

Make a picture. Think about equality case.

Chernoff's Bound

Theorem (Chernoff-Hoeffding Deviation Bound)

Let $\mu \in (0, 1)$. $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{B}(\mu)$, and let $x \in (\mu, 1]$.

(i) Chernoffs' bound for Bernoulli variables:

$$\mathbb{P}(\bar{X}_n \ge x) \le \exp\left(-n \, \mathrm{kl}(x, \mu)\right) \,, \tag{1}$$

where kl(
$$p, q$$
) = $p \log \frac{p}{q} + (1 - p) \log \frac{1 - p}{1 - q}$. Same for left deviations.
ii) If $\phi(x) = kl(x, \mu)$, then $\phi''(x) = 1/[x(1 - x)]$ and

$$\begin{aligned} \mathsf{kl}(x,\mu) &= \frac{(x-\mu)^2}{2} \int_0^1 \phi''(\mu + \mathfrak{s}(x-\mu)) \ 2(1-\mathfrak{s}) d\mathfrak{s} \\ &\geq \frac{(x-\mu)^2}{2\tilde{x}(1-\tilde{x})} \quad \text{with } \tilde{x} = \frac{2\mu + x}{3} \ \text{by Jensen, since } \phi'' \text{ is convex and } \int_0^1 \mathfrak{s} \ 2(1-\mathfrak{s}) d\mathfrak{s} = \frac{1}{3} \\ &\geq \frac{1}{2\max_{x \leq u \leq p} u(1-u)} (x-\mu)^2 \quad \geq 2(x-\mu)^2 \ . \end{aligned}$$

(iii) Hoeffding's bound for Bernoulli variables:

$$\mathbb{P}(\bar{X}_n \ge x) \le \exp\left(-2n(x-\mu)^2\right) \,. \tag{2}$$

7

(iv) Inequalities (1) and (2) hold for arbitrary independent random variables with range [0, 1]and expectation μ .

Examples

• If $\mu < 1/2$,

$$\mathbb{P}\left(ar{X}_k > rac{1}{2}
ight) \leq \exp\left(-rac{k}{2}(1-2\mu)^2
ight) \;.$$

(Consequence of Chernoff or direct computation with $(1 - u)^k \leq exp(-k u)$, or of Hoeffding).

• For all $\mu \in [0,1]$, Chernoff's bound with $\log(u) \geq (u-1)/u$ yields

$$\mathbb{P}\left(\bar{X}_k < \frac{\mu}{2}\right) \le \exp\left(-\frac{1 - \log(2)}{2} k\mu\right) \approx \exp\left(-0.153 k\mu\right) \le \exp\left(-\frac{k\mu}{7}\right)$$

Hoeffding yields a very poor result, but (ii) gives:

$$\mathbb{P}\left(ar{X}_k < rac{\mu}{2}
ight) \leq \exp\left(-rac{3}{20}k\mu
ight) = \exp\left(-0.15\,k\mu
ight) \leq \exp\left(-rac{k\mu}{8}
ight) \;.$$

Bennett's and Bernstein's inequalities

Let $(X_i)_{1 \le i \le n}$ be independent random variables upper-bounded by 1, let $\bar{\mu} = (\mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n])/n$, let σ^2 be such that $\mathbb{E}[X_i^2] \le \sigma^2$ for all i and let $\phi(u) = (1+u)\log(1+u) - u$. Then, for all x > 0,

$$\mathbb{P}(\bar{X} \ge \bar{\mu} + x) \le \exp\left(-n\,\sigma^2\phi\left(\frac{x}{\sigma^2}\right)\right) \le \exp\left(-\frac{n\,x^2/2}{1+x/3}\right)$$

Bernstein from Bennett: $\phi(x) \ge \frac{x^2}{2\left(1+\frac{x}{3}\right)}$ since $\psi(x) = 2\left(1+\frac{x}{3}\right)\phi(x) - x^2 \ge 0$.

Extension: if $X_i \leq b$ with b > 0,

$$\mathbb{P}\big(\bar{X} \ge \bar{\mu} + x\big) \le \exp\left(-\frac{n\sigma^2}{b^2}\phi\left(\frac{bx}{\sigma^2}\right)\right) \le \exp\left(-\frac{n\,x^2/2}{\sigma^2 + bx/3}\right) \ .$$

Example: for X with range in [0, 1],

$$\mathbb{P}\left(\bar{X}_k < \frac{\mu}{2}\right) \le \exp\left(-k\left(\frac{3}{2}\log\frac{3}{2} - \frac{1}{2}\right)\mu\right) \le \exp\left(-\frac{3k\mu}{28}\right)$$

k-nearest neighbours

Let \mathcal{X} be a (pre-compact) metric space with distance d.

k-NN classifier

 $h^{kNN}: x\mapsto \mathbbm{1}ig\{\hat{\eta}(x)\geq 1/2ig\}=$ plugin for Bayes classifier with estimator

$$\hat{\eta}(x) = \frac{1}{k} \sum_{j=1}^{k} Y_{(j)}(X)$$

where

$$dig(X_{(1)}(X),Xig) \leq dig(X_{(2)}(X),Xig) \leq \cdots \leq dig(X_{(m)}(X),Xig) \;.$$

Risk bound

Let C_{ϵ} be an ϵ -covering of \mathcal{X} :

$$\forall x \in X, \exists x' \in C_{\epsilon} : d(x, x') \leq \epsilon$$
.

Excess risk for k-nearest-neighbours

If η is c-Lipschitz continuous: $\forall x, x' \in \mathcal{X}, |\eta(x) - \eta(x')| \leq c d(x, x')$, then for all $k \geq 2$ and all $m \geq 1$:

$$\begin{split} L(\hat{h}^{kNN}) - L(h^*) &\leq \frac{1}{\sqrt{k \, e}} + \frac{2k|\mathcal{C}_{\epsilon}|}{m} + 4c\epsilon \\ &\leq \frac{1}{\sqrt{k \, e}} + (2+4c) \left(\frac{\alpha k}{m}\right)^{\frac{1}{d+1}} \quad \begin{cases} \text{for } \epsilon = \left(\frac{\alpha k}{m}\right)^{\frac{1}{d+1}} \\ \text{if } |\mathcal{C}_{\epsilon}| \leq \alpha \epsilon^{-d} \end{cases} \\ &\leq (3+4c) \left(\frac{\alpha}{m}\right)^{\frac{1}{d+3}} \quad \text{for } k = \left(\frac{m}{\alpha}\right)^{\frac{2}{d+3}} . \end{split}$$

Sketch of the analysis

$$\begin{split} L(\hat{h}_m^{kNN}) - L(h^*) &= \mathbb{E}\left[\left| 2\eta(X) - 1 \right| \mathbb{1}\left\{ \hat{h}_m^{kNN} \neq h^*(x) \right\} \right] \\ &\leq \mathbb{P}\left(d(X, X_{(k)}) > 2\epsilon \right) + \mathbb{E}\left[\left| 2\eta(X) - 1 \right| \mathbb{1}\left\{ \hat{h}_m^{kNN} \neq h^*(x) \right\} \mathbb{1}\left\{ d(X, X_{(k)}) \le 2\epsilon \right\} \right] \end{split}$$

•
$$\mathbb{P}\left(d(X, X_{(k)}) > 2\epsilon\right) \leq \sum_{c \in C_{\epsilon}} \mathbb{P}(X \in c, N_{c} < k) \leq \frac{2k|C_{\epsilon}|}{m}$$

$$P(\hat{h}_m^{kNN}(x) = 1 | X = x, d(X, X_{(k)}) \le 2\epsilon) \le \exp\left(-\frac{k}{2}(2\eta(x) + 4c\epsilon - 1)^2\right) .$$

Same for $\eta(x) \ge 1/2 + 2c\epsilon$. And for $1/2 - 2c\epsilon \le \eta(x) \le 1/2 + 2c\epsilon$ the probability is upper-bounded by 1. In all cases, on $\{d(X, X_{(k)}) \le 2\epsilon\}$:

$$|2\eta(X) - 1| P(\hat{h}_m^{kNN}(X) \neq h^*(X)) \le 4c\epsilon + \sup_{u \ge 0} u \exp(-ku^2/2) = 4c\epsilon + \frac{1}{\sqrt{ke}}.$$