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The result of last lecture on the nearest-neighbor classifier

A1. Y = {0, 1}.
A2. X = [0, 1[d .

A3. η is c-Lipschitz continuous:

∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c
∥∥x − x ′‖ .

.

Theorem

Under the previous assumptions, for all distributions D and all m ≥ 1

LD
(
ĥNNm

)
≤ 2L∗D +

3c
√
d

m1/(d+1)

2



Numerically
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What does the analysis say?

• Where is the analysis loose? (sanity check: uniform DX )

• finite sample bound: explicit, non-asympototic

• The second term 3c
√
d

m1/(d+1) is distribution-free

• Does not give the trajectorial decreasing rate of the risk

• Exponential bound d (cannot be avoided...)

=⇒ curse of dimensionality

• Is is better than a simple grid approach?

=⇒ adaptivity to the dimension of manifold supporting data

• How to improve the classifier?

=⇒ k-nearest neighbors
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More neighbors are better?

In general, yes in the sense that for m large enough, larger k is better.

But one can find counter-examples: ∀k ≥ 3,∀m ≥ k , L
(
ĥkNNm

)
≥
(
ĥNNm

)
.
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ĥkNNm

)
≥
(
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Deviation Bound for Bernoulli

Variables



Remember: Jensen’s Inequality

Let X be a convex set and φ : x → R be a convex function.

Basic: For all x , x ′ ∈ X , φ(tx + (1− t)x ′) ≤ tφ(x) + (1− t)φ(x ′).

Probabilistic version: If φ : X → R is convex and if X is a random

variable with range in X , then φ
(
E[X ]

)
≤ E

[
φ(X )

]
.

Conditional version: If X and Y are random variables and the range of

X in included in X , if φ(X ) is integrable then φ
(
E[X |Y ]

)
≤ E

[
φ(X )|Y

]
.

Example: For a real-valued random variable X with finite expectation,

E[X 2] ≥ E[X ]2 and thus Var [X ] = E[X 2]− E[X ]2 ≥ 0.

Make a picture. Think about equality case.
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Chernoff’s Bound

Theorem (Chernoff-Hoeffding Deviation Bound)

Let µ ∈ (0, 1). X1, . . . ,Xn
iid∼ B(µ), and let x ∈ (µ, 1].

(i) Chernoffs’ bound for Bernoulli variables:

P(X̄n ≥ x) ≤ exp
(
− n kl(x, µ)

)
, (1)

where kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
. Same for left deviations.

(ii) If φ(x) = kl(x, µ), then φ′′(x) = 1/[x(1− x)] and

kl(x, µ) =
(x − µ)2

2

∫ 1

0

φ
′′(
µ + s(x − µ)

)
2(1− s)ds

≥
(x − µ)2

2x̃(1− x̃)
with x̃ =

2µ + x

3
by Jensen, since φ′′ is convex and

∫ 1

0

s 2(1− s)ds =
1

3

≥
1

2 maxx≤u≤p u(1− u)

(
x − µ)2 ≥ 2(x − µ)2

.

(iii) Hoeffding’s bound for Bernoulli variables:

P(X̄n ≥ x) ≤ exp
(
− 2n(x − µ)2 )

. (2)

(iv) Inequalities (1) and (2) hold for arbitrary independent random variables with range [0, 1]

and expectation µ.

Reason: exp(λx) ≤ (1− x) exp(0) + x exp(λ).
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Examples

• If µ < 1/2,

P
(
X̄k >

1

2

)
≤ exp

(
−k

2
(1− 2µ)2

)
.

(Consequence of Chernoff or direct computation with (1− u)k ≤ exp(−k u), or of

Hoeffding).

• For all µ ∈ [0, 1], Chernoff’s bound with log(u) ≥ (u − 1)/u yields

P
(
X̄k <

µ

2

)
≤ exp

(
−1− log(2)

2
kµ

)
≈ exp (−0.153 kµ) ≤ exp

(
−kµ

7

)
.

Hoeffding yields a very poor result, but (ii) gives:

P
(
X̄k <

µ

2

)
≤ exp

(
− 3

20
kµ

)
= exp (−0.15 kµ) ≤ exp

(
−kµ

8

)
.
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Bennett’s and Bernstein’s inequalities

Let (Xi )1≤i≤n be independent random variables upper-bounded by 1, let

µ̄ = (E[X1] + · · ·+ E[Xn])/n, let σ2 be such that E[X 2
i ] ≤ σ2 for all i and

let φ(u) = (1 + u) log(1 + u)− u. Then, for all x > 0,

P
(
X̄ ≥ µ̄+ x

)
≤ exp

(
−n σ2φ

( x

σ2

))
≤ exp

(
− n x2/2

1 + x/3

)
.

Bernstein from Bennett: φ(x) ≥
x2

2
(

1 + x
3

) since ψ(x) = 2
(

1 + x
3

)
φ(x)− x2 ≥ 0.

Extension: if Xi ≤ b with b > 0,

P
(
X̄ ≥ µ̄+ x

)
≤ exp

(
−nσ2

b2
φ

(
bx

σ2

))
≤ exp

(
− n x2/2

σ2 + bx/3

)
.

Example: for X with range in [0, 1],

P
(
X̄k <

µ

2

)
≤ exp

(
−k
(

3

2
log

3

2
− 1

2

)
µ

)
≤ exp

(
−3kµ

28

)
.
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k-nearest neighbours



Definition

Let X be a (pre-compact) metric space with distance d .

k-NN classifier

hkNN : x 7→ 1
{
η̂(x) ≥ 1/2

}
= plugin for Bayes classifier with estimator

η̂(x) =
1

k

k∑
j=1

Y(j)(X )

where

d
(
X(1)(X ),X

)
≤ d

(
X(2)(X ),X

)
≤ · · · ≤ d

(
X(m)(X ),X

)
.
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Risk bound

Let Cε be an ε-covering of X :

∀x ∈ X ,∃x ′ ∈ Cε : d(x , x ′) ≤ ε .

Excess risk for k-nearest-neighbours

If η is c-Lipschitz continuous: ∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c d
(
x , x ′

)
,

then for all k ≥ 2 and all m ≥ 1:

L
(
ĥkNN

)
− L
(
h∗
)
≤ 1√

k e
+

2k |Cε|
m

+ 4cε

≤ 1√
k e

+ (2 + 4c)

(
αk

m

) 1
d+1

for ε =
(
αk
m

) 1
d+1 ,

if |Cε| ≤ αε−d

≤ (3 + 4c)
( α
m

) 1
d+3

for k =
(m
α

) 2
d+3

.
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Sketch of the analysis

L
(
ĥkNNm

)
− L
(
h∗
)

= E
[∣∣2η(X )− 1

∣∣1{ĥkNN
m 6= h∗(x)

}]
≤ P

(
d
(
X ,X(k)

)
> 2ε

)
+ E

[∣∣2η(X )− 1
∣∣1{ĥkNN

m 6= h∗(x)
}
1
{
d
(
X ,X(k)

)
≤ 2ε

}]

• P
(
d
(
X ,X(k)

)
> 2ε

)
≤
∑
c∈Cε

P(X ∈ c,Nc < k) ≤
2k
∣∣Cε∣∣
m

• For x such that η(x) ≤ 1/2− 2cε,

P
(
ĥkNN
m (x) = 1

∣∣X = x, d
(
X ,X(k)

)
≤ 2ε

)
≤ exp

(
−

k

2

(
2η(x) + 4cε− 1

)2
)
.

Same for η(x) ≥ 1/2 + 2cε. And for 1/2− 2cε ≤ η(x) ≤ 1/2 + 2cε the probability is

upper-bounded by 1. In all cases, on
{
d
(
X ,X(k)

)
≤ 2ε

}
:

∣∣2η(X )− 1
∣∣P(ĥkNN

m (X ) 6= h∗(X )
)
≤ 4cε + sup

u≥0
u exp(−ku2

/2) = 4cε +
1
√
ke

.
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