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The result of last lecture on the nearest-neighbor classifier

A1. Y = {0, 1}.
A2. X = [0, 1[d .

A3. η is c-Lipschitz continuous:

∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c
∥∥x − x ′‖ .

.

Theorem

Under the previous assumptions, for all distributions D and all m ≥ 1

Rm

(
ĥNNm

)
≤ 2L∗D +

3c
√
d

m1/(d+1)
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Numerically
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What does the analysis say?

• Where is the analysis loose? (sanity check: uniform DX )

• finite sample bound: explicit, non-asympototic

• The second term 3c
√
d

m1/(d+1) is distribution-free

• Does not give the trajectorial decreasing rate of the risk

• Exponential bound d (cannot be avoided...)

=⇒ curse of dimensionality

• Is is better than a simple grid approach?

=⇒ adaptivity to the dimension of manifold supporting data

• How to improve the classifier?

=⇒ k-nearest neighbors
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More neighbors are better?

In general, yes in the sense that for m large enough, larger k is better.

But one can find counterexamples: ∀k ≥ 3,∀m ≥ k ,

Rm

(
ĥkNNm

)
≥ Rm

(
ĥNNm

)
.
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In general, yes in the sense that for m large enough, larger k is better.
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Rm
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≥ Rm
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ĥNNm

)
.

5



Deviation Bound for Bernoulli

Variables



Remember: Jensen’s Inequality

Let X be a convex set and φ : x → R be a convex function.

Basic: For all x , x ′ ∈ X , φ(tx + (1− t)x ′) ≤ tφ(x) + (1− t)φ(x ′).

Probabilistic version: If φ : X → R is convex and if X is a random

variable with range in X , then φ
(
E[X ]

)
≤ E

[
φ(X )

]
.

Conditional version: If X and Y are random variables and the range of

X in included in X , if φ(X ) is integrable then φ
(
E[X |Y ]

)
≤ E

[
φ(X )|Y

]
.

Example: For a real-valued random variable X with finite expectation,

E[X 2] ≥ E[X ]2 and thus Var [X ] = E[X 2]− E[X ]2 ≥ 0.

Make a picture. Think about equality case.
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Chernoff’s Bound

Theorem (Chernoff-Hoeffding Deviation Bound)

Let µ ∈ (0, 1). X1, . . . ,Xn
iid∼ B(µ), and let x ∈ (µ, 1].

(i) Chernoffs’ bound for Bernoulli variables:

P(X̄n ≥ x) ≤ exp
(
− n kl(x, µ)

)
, (1)

where kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
. Same for left deviations.

(ii) If φ(x) = kl(x, µ), then φ′′(x) = 1/[x(1− x)] and

kl(x, µ) =
(x − µ)2

2

∫ 1

0

φ
′′(
µ + s(x − µ)

)
2(1− s)ds

≥
(x − µ)2

2x̃(1− x̃)
with x̃ =

2µ + x

3
by Jensen, since φ′′ is convex and

∫ 1

0

s 2(1− s)ds =
1

3

≥
1

2 maxx≤u≤p u(1− u)

(
x − µ)2 ≥ 2(x − µ)2

.

(iii) Hoeffding’s bound for Bernoulli variables:

P(X̄n ≥ x) ≤ exp
(
− 2n(x − µ)2 )

. (2)

(iv) Inequalities (1) and (2) hold for arbitrary independent random variables with range [0, 1]

and expectation µ.

Reason: exp(λx) ≤ (1− x) exp(0) + x exp(λ).
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Examples

• If µ < 1/2,

P
(
X̄k >

1

2

)
≤ exp

(
−k

2
(1− 2µ)2

)
.

(Consequence of Chernoff or direct computation with (1− u)k ≤ exp(−k u), or of

Hoeffding).

• For all µ ∈ [0, 1], Chernoff’s bound with log(u) ≥ (u − 1)/u yields

P
(
X̄m <

µ

2

)
≤ exp

(
−1− log(2)

2
mµ

)
≈ exp (−0.153mµ) ≤ exp

(
−mµ

7

)
.

Hoeffding yields a very poor result, but (ii) gives:

P
(
X̄m <

µ

2

)
≤ exp

(
− 3

20
mµ

)
= exp (−0.15mµ) ≤ exp

(
−mµ

8

)
.
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Sub-Gaussian inequalities

Bennett’s and Bernstein’s inequalities

Let (Xi )1≤i≤n be independent random variables upper-bounded by 1, let

µ̄ = (E[X1] + · · ·+ E[Xn])/n, let σ2 be such that E[X 2
i ] ≤ σ2 for all i

and let φ(u) = (1 + u) log(1 + u)− u. Then, for all x > 0,

P
(
X̄ ≥ µ̄+ x

)
≤ exp

(
−n σ2φ

( x

σ2

))
≤ exp

(
− n x2/2

σ2 + x/3

)
.

Bernstein from Bennett: φ(x) ≥
x2

2
(

1 + x
3

) since ψ(x) = 2
(

1 + x
3

)
φ(x)− x2 ≥ 0.

Extension: if Xi ≤ b with b > 0,

P
(
X̄n ≥ µ̄+ x

)
≤ exp

(
−nσ2

b2
φ

(
bx

σ2

))
≤ exp

(
− n x2/2

σ2 + bx/3

)
.

Example: for X with range in [0, 1],

P
(
X̄m <

µ

2

)
≤ exp

(
−m

(
3

2
log

3

2
− 1

2

)
µ

)
≤ exp

(
−3mµ

28

)
.
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Parenthesis: a nice proof for the technicalities of Bernstein

From [Pollard, MiniEmpirical ex.14, http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf]

For any sufficiently smooth real-valued function g defined at least in a neighborhood of 0 let

G(x) =
g(x)− g(0)− xg ′(0)

x2/2
if x 6= 0, and G(0) = g ′′(0) .

By Taylor’s integral formula

g(x)− g(0)− xg ′(0) =

∫ x

0

g ′′(u)(x − u)du = x2
∫ 1

0

g ′′(sx)(1− s)ds .

Thus, G(x) =
∫
g ′′(sx)dν(s), where dν(s) = 2(1− s)1{0 ≤ s ≤ 1}ds.

Hence, if g is convex then g ′′ ≥ 0 and G ≥ 0. Moreover, if g ′′ is increasing then the functions

x 7→ g ′′(sx) for s ∈ [0, 1] are all increasing and G is also increasing as an average of increasing

functions. For g(u) = exp(u), this yields that (exp(u)− u − 1)/u2 is increasing, as required for

the proof of Bernstein’s inequality.

Similarly, if g ′′ is convex then G is also convex as an average of convex functions
(
x 7→ g ′′(sx)

)
s
.

Moreover, by Jensen’s inequality applied to convex function ψ(s) = g ′′(xs) with the probability

measure dν(s) = 2(1− s)1{0 ≤ s ≤ 1}ds

G(x) =

∫ 1

0

g ′′(xs) 2(1− s)ds ≥ g ′′
(
x

∫ 1

0

s × 2(1− s)ds

)
= g ′′

(
x

3

)
.

For g(u) = (1 + u) log(1 + u)− u, g ′′(u) = 1/(1 + u) and this yields:

g(u)

u2/2
≥ g ′′

(
u

3

)
=

1

1 + u/3
. 10
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Exercise: for Xi
iid∼ B(µ), P(X̄m ≥ 2µ) ≤ exp(−m×?)

Chernoff + Taylor: since log(u) ≥ (u − 1)/u,

kl(2µ, µ) = 2µ log(2) + (1− 2µ) log
1− 2µ

1− 2µ
≥ 2µ log(2)− µ = µ(2 log(2)− 1) ≈ 0.386µ .

Chernoff with convexity:

kl(2µ, µ) ≥
(2µ− µ)2/2

4/3µ
=

3

8
µ = 0.375µ .

Improved Hoeffding:

kl(2µ, µ) ≥
(2µ− µ)2/2

maxµ≤u≤2µ u(1− u)
≥
µ2/2

2µ
=

1

4
µ = 0.25µ .

Bennett:

2µ log
2µ

µ
− (2µ− µ) = µ(2 log(2)− 1) ≈ 0.386µ .

Bernstein:
(2µ− µ)2/2

µ(1− µ) + (2µ− µ)/3
≥

µ2/2

µ + µ/3

3

8
µ = 0.375µ .

Hoeffding: 2(2µ− µ)2 = 2µ2, very poor (as expected) when µ is small.
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k-nearest neighbours



Definition

Let X be a (pre-compact) metric space with distance d .

k-NN classifier

hkNN : x 7→ 1
{
η̂(x) ≥ 1/2

}
= plugin for Bayes classifier with estimator

η̂(x) =
1

k

k∑
j=1

YΣx (j)

where Σx is a random permutation defined by:

d
(
XΣx (1), x

)
≤ d

(
XΣx (2), x

)
≤ · · · ≤ d

(
XΣx (m), x

)
.
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Risk bound

Let Cε be an ε-covering of X :

∀x ∈ X ,∃x ′ ∈ Cε : d(x , x ′) ≤ ε .

Excess risk for k-nearest-neighbours

If η is c-Lipschitz continuous: ∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c d
(
x , x ′

)
,

then for all k ≥ 2 and all m ≥ 1:

Rm

(
ĥkNN

)
− L
(
h∗
)
≤ 1√

k e
+

2k |Cε|
m

+ 4cε

≤ 1√
k e

+ (2 + 4c)

(
αk

m

) 1
d+1

for ε =
(
αk
m

) 1
d+1 ,

if |Cε| ≤ αε−d

≤ (3 + 4c)
( α
m

) 1
d+3

for k =
(m
α

) 2
d+3

.

Bias-variance decomposition of the risk.
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Sketch of the analysis

Rm

(
ĥkNNm

)
− L
(
h∗
)

= E
[∣∣2η(X )− 1

∣∣1{ĥkNN
m 6= h∗(X )

}]
≤ P

(
d
(
X ,XΣX (k)

)
> 2ε

)
+ E

[∣∣2η(X )− 1
∣∣1{ĥkNN

m 6= h∗(X )
}
1
{
d
(
X ,XΣx (k)

)
≤ 2ε

}]

• P
(
d
(
X ,XSigmaX (k)

)
> 2ε

)
≤
∑
c∈Cε

P(X ∈ c,Nc < k) ≤
2k
∣∣Cε∣∣
m

• For x such that η(x) ≤ 1/2− 2cε,

P
(
ĥkNN
m (x) = 1

∣∣X = x, d
(
X ,XΣX (k)

)
≤ 2ε

)
≤ exp

(
−

k

2

(
2η(x) + 4cε− 1

)2
)
.

Same for η(x) ≥ 1/2 + 2cε. And for 1/2− 2cε ≤ η(x) ≤ 1/2 + 2cε the probability is

upper-bounded by 1. In all cases, on
{
d
(
X ,XΣX (k)

)
≤ 2ε

}
:

∣∣2η(X )− 1
∣∣P(ĥkNN

m (X ) 6= h∗(X )
)
≤ 4cε + sup

u≥0
u exp(−ku2

/2) = 4cε +
1
√
ke

.
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Room for improvement

• Lower bound? in m−
1
d .

• Margin conditions

=⇒ fast rates

• More regularity?

=⇒ weighted nearest neighbors

• Is regularity required everywhere?

=⇒ What matters are the balls of mass ≈ k/m near the

decision boundary.
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