# Apprentissage statistique

Apprentissage non supervisé, clustering

Cours pour non-spécialistes

Aurélien Garivier

# Outline

#### Introduction

Principal Component Analysis

Model-based clustering: EM algorithm for Gaussian Mixtures

k-means, k-medoids and variants

(Agglomerative) Hierarchical Cluster Analysis

Other methods

#### Goal

Goal: automatically discover clusters in the data

- Model-based clustering:
  - assume that the data was generated by a model
  - try to recover the original model from the data
- Model-free clustering:
  - no assumption on the mechanism producing data
  - vector quantization
  - cluster should be homogeneous and different from one another
  - data-driven loss function to minimize

- Data often in  $\mathbb{R}^p$  (or projected to)
- Distance sometimes natural, sometimes not
- Often: need to normalize first
- Default choice: Euclidian distance  $d(x, x') = \sqrt{\sum (x_i x'_i)^2}$
- Other possible norms:  $L^1, L^\infty$ , etc.
- Mahalanobis distance:  $d(x, x') = \sqrt{(x x')\Sigma^{-1}(x x')}$
- Categorial data: typically  $\chi^2$  distance

- The Elements of Statistical Learning, *T. Hastie, R. Friedman, J. Tibshirani*, Springer
- Data Mining , S. Tuffry, Technip
- WikiStat P. Besse et al. http://wikistat.fr/
- Interesting overview at http://scikit-learn.org/stable/modules/clustering.html
- Interesting demos on https: //www.toptal.com/machine-learning/clustering-algorithms

#### Introduction

# Principal Component Analysis

Model-based clustering: EM algorithm for Gaussian Mixtures

k-means, k-medoids and variants

(Agglomerative) Hierarchical Cluster Analysis

Other methods

# **Principal Component Analysis**

- Observation  $x_1, \ldots, x_n$  in  $\mathbb{R}^p$ , centered
- Dimensionality reduction: replace x<sub>i</sub> with y<sub>i</sub> = Wx<sub>i</sub>, where W ∈ M<sub>d,p</sub>(ℝ), d ≪ p.
- Hopefully, we do not loose too much by replacing x<sub>i</sub> by the y<sub>i</sub>. Quasi-invertibility: there exists a recovering matrix U ∈ M<sub>p,d</sub>(ℝ) such that for all i ∈ {1,...,n}, x̃<sub>i</sub> = Uy<sub>i</sub> ≈ x<sub>i</sub>.
- PCA = Data-driven dimensionality reduction tool (for visual clustering)
- PCA aims at finding the compression matrix *W* and the recovering matrix *U* such that the total squared distance between the original and the recovered vectors is minimal:

$$\underset{W \in \mathcal{M}_{d,p}(\mathbb{R}), U \in U \in \mathcal{M}_{p,d}(\mathbb{R})}{\arg \min} \sum_{i=1}^{n} \left\| x_{i} - UWx_{i} \right\|^{2}$$

#### **Property.** A solution (W, U) is such that $U^T U = I_d$ and $W = U^T$ .

**Proof.** Let  $W \in \mathcal{M}_{n,p}(\mathbb{R})$ ,  $U \in U \in \mathcal{M}_{p,d}(\mathbb{R})$ , and let  $R = \{UWx : x \in \mathbb{R}^p\}$ . dim $(R) \leq d$ , and we can assume that dim(R) = d. Let  $V = (v_1 \mid \dots \mid v_d \mid) \in \mathcal{M}_{p,d}(\mathbb{R})$  be an orthogonal basis of R, hence  $V^T V = I_d$  and for every  $\tilde{x} \in R^p$  there exists  $y \in \mathbb{R}^d$  such that  $\tilde{x} = Vy$ . But for every  $x \in \mathbb{R}^p$ ,

$$\underset{\tilde{x} \in R}{\arg\min} \|x - \tilde{x}\|^2 = V. \underset{y \in \mathbb{R}^d}{\arg\min} \|x - Vy\|^2 = V. \underset{y \in \mathbb{R}^d}{\arg\min} \|x\| + \|y\|^2 - 2y^T (V^T x) = VV^T x$$

(as can be seen easily by differentiation in y), and hence

$$\sum_{i=1}^{n} \|x_i - UWx_i\|^2 \ge \sum_{i=1}^{n} \|x_i - VV^{T}x_i\|^2 .$$

Corollary: the optimization problem can be rewritten

$$\underset{U \in U \in \mathcal{M}_{p,d}(\mathbb{R}): U^{T}U = I_{d}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left\| x_{i} - UU^{T}x_{i} \right\|^{2}.$$

Since  $||x_i - UU^T x_i||^2 = ||x_i||^2 - \text{Tr}(U^T x x^T U)$ , this is equivalent to

$$\underset{U \in U \in \mathcal{M}_{p,d}(\mathbb{R}): U^{T} U = I_{d}}{\operatorname{Tr}}\left(U^{T}\sum_{i=1}^{n} x_{i}x_{i}^{T}U\right)$$

Let  $A = \sum_{i=1}^{n} x_i x_i^T$ , and let  $A = VDV^T$  be its spectral decomposition: D is diagonal, with  $D_{1,1} \ge \cdots \ge D_{p,p} \ge 0$  and  $V^T V = VV^T = I_p$ .

### Solving PCA by SVD

**Theorem** Let  $A = \sum_{i=1}^{n} x_i x_i^T$ , and let  $u_1, \ldots, u_d$  be the eigenvectors of A corresponding to the d largest eigenvalues of A. Then the solution to the PCA optimization problem is  $U = \begin{pmatrix} u_1 & \dots & u_d \end{pmatrix}$ , and  $W = U^T$ .

**Proof.** Let  $U \in \mathcal{M}_{p,d}(\mathbb{R})$  be such that  $U^T U = I_d$ , and let  $B = V^T U$ . Then VB = U, and  $U^T A U = B^T V^T V D V^T V B = B^T D B$ , hence

$$\operatorname{Tr}(U^{T}AU) = \sum_{j=1}^{p} D_{j,j} \sum_{i=1}^{d} B_{j,i}^{2}$$
.

Since  $B^T B = U^T V V^T U = I_d$ , the colums of B are orthonormal and  $\sum_{j=1}^p \sum_{i=1}^d B_{j,i}^2 = d$ .

In addition, completing the columns of B to an orthonormal basis of  $\mathbb{R}^{\rho}$  one gets  $\tilde{B}$  such that  $\tilde{B}^{T}\tilde{B} = I_{\rho}$ , and for every j one has  $\sum_{i=1}^{\rho} \tilde{B}_{j,i}^{2} = 1$ , hence  $\sum_{i=1}^{d} B_{j,i}^{2} \leq 1$ .

Thus,

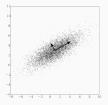
$$\operatorname{Tr}(U^{T}AU) \leq \max_{\beta \in [0,1]^{p}: \|\beta\|_{1} \leq d} \sum_{j=1}^{p} D_{j,j}\beta_{j} = \sum_{j=1}^{d} D_{j,j},$$

which can be reached if U is made of the d leading eigenvectors of A.

# **PCA:** comments

Interpretation: PCA aims at maximizing the projected variance.

Project onto a subspace  $R^d \subset \mathbb{R}^p$ so as to save as much variance as possible



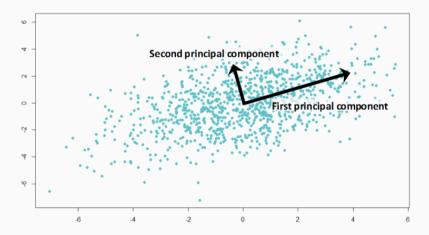
[Src: wikipedia.org]

Outline: orthogonal linear transformation such that the first component has highest variance  $w_1 = \underset{i}{\arg \max} \sum_{i} (x_i \cdot w)^2$  is the eigenvector of  $X^T X$  corresponding to the highest eigenvalue. Similar reasonning for the next components in the orthogonal of  $w_1$ .

Often, the quality of the result is measured by the proportion of the variance explained by the *d* principal components:  $\frac{\sum_{i=1}^{d} D_{i,i}}{\sum_{i=1}^{p} D_{i,i}}.$ 

In practice: sometimes cheaper to compute svp of  $B = X^T X \in \mathcal{M}_n(\mathbb{R})$ , since if u is such that  $Bu = \lambda u$  then for  $v = X^T u / ||X^T u||$  one has  $Av = \lambda v$ .

# **PCA:** visualization



Src: [https://techannouncer.com/global-pca-unit-market-2017-adelte-airmak-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-amss-ltd-cavotec-airport-industries-ams-ltd-cavotec-airport-industries-ams-ltd-cavotec-airport-industries-ams-ltd-cavotec-airport-industries-ams-ltd-cavotec-airport-industries-ams-ltd-cavotec-air

division-ciat-effeti/]

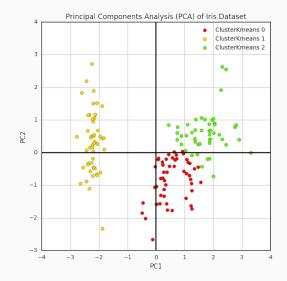
# PCA

- Center all variables
- Compute the  $p \times p$  empirical covariance matrix  $X^T X$ .
- Compute the components  $W_d$  = the *d* first eigenvectors of  $X^T X$  in decreasing order of the eigenvalues
- Return the projection of X onto the d first components  $T_d = X W_d$ .

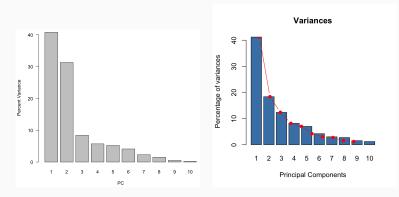
Then:

- either vizualize clusters (2d or 3d plots)
- or use another clustering algorithm on the lower-dimensionnal data  $T_d$  (dimension reduction)

# Example: IRIS



 $[{\tt Src: https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering}]$ 



Src: http://strata.uga.edu/8370/lecturenotes/principalComponents.html and

http://www.sthda.com/english/wiki/print.php?id=207

- similar idea, but search for *independent* (instead of uncorrelated) components
- computationally more demanding, but iterative (entropy-based) algorithm exists
- often used for blind source separation
- see also Non-negative Matrix Factorization (NMF)
- for vizualization, see also t-SNE: *t*-distributed Stochastic Neighbor Embedding

#### scikitlearn:

```
class sklearn.decomposition.PCA(n_components=None,
  copy=True, whiten=False, svd_solver=?auto?, tol=0.0,
  iterated_power=?auto?, random_state=None)
```

ICA: sklearn.decomposition.FastICA

R: package stats

```
prcomp() et princomp() [fonction de base, package stats],
PCA() [package FactoMineR],
dudi.pca() [package ade4],
epPCA() [package ExPosition]
```

```
ICA: ica
```

Introduction

Principal Component Analysis

#### Model-based clustering: EM algorithm for Gaussian Mixtures

k-means, k-medoids and variants

(Agglomerative) Hierarchical Cluster Analysis

Other methods

- Observations  $X_1, \ldots, X_n$  in  $\mathbb{R}^p$
- *K* cluster centers:  $\mu_1, \ldots, \mu_K$
- Cluster k has probability  $p_k$
- Points in cluster k have law  $\mathcal{N}(\mu_k, \Sigma)$
- Given a sample  $(X_1, \ldots, X_n)$ , how to estimate the cluster centers  $(\mu_k)_k$  and how identify the clusters?

• Likelihood: the parameter  $\theta = (p, \mu)$  has likelihood

$$L(\theta) \propto \sum_{z_1,...,z_n \in \{1,...,K\}^n} \prod_{i=1}^n p_{z_i} e^{-\frac{1}{2}\Sigma^{-1}(X_i - \mu_{z_i})\Sigma^{-1}}$$

 $\implies$  non-convex, very hard to maximize

- Approximate iterative optimization
- can also optimize on the covariance matrix  $\boldsymbol{\Sigma}$  if unknown

### **Expectation-Maximization Algorithm**

Given an estimate  $\theta^j = (p^j, \mu^j)$ , compute

• membership weights

$$w_{i,k}^{j} = P_{\theta i}(z_{i} = k | X_{i}) = \frac{p_{k}^{j} e^{-\frac{1}{2} \Sigma^{-1} (X_{i} - \mu_{k}^{j}) \Sigma^{-1}}}{\sum_{\ell=1}^{K} p_{\ell}^{j} e^{-\frac{1}{2} \Sigma^{-1} (X_{i} - \mu_{\ell}^{j}) \Sigma^{-1}}}$$

• updated cluster weights:

$$p_k^{j+1} = \frac{\sum_{i=1}^n w_{i,k}^j}{n}$$

• updated cluster means:

$$\mu_{k}^{j+1} = \frac{\sum_{i=1}^{n} w_{i,k}^{j} X_{i}}{\sum_{i=1}^{n} w_{i,k}^{j}}$$

#### Theorem

The likelihood of the iterates are increasing:

```
L\left(\theta^{j+1}\right) \geq L\left(\theta^{j}\right)
```

Good: converges Bad: local optimum

# **EM Algorithm**

- randomly initialize  $\theta_0$
- compute EM iterations until convergence:
  - membership weights (w<sup>j</sup><sub>i,k</sub>)<sub>i,k</sub>
  - updated cluster weights  $(p_k^{j+1})_k$
  - updated cluster means  $(\mu_k^{j+1})_k$
- start again (a few times) to look for a better local optimum

#### scikitlearn:

```
class sklearn.mixture.GaussianMixture(n_components=1,
covariance_type=?full?, tol=0.001, reg_covar=1e-06,
max_iter=100, n_init=1, init_params=?kmeans?,
weights_init=None, means_init=None, precisions_init=None,
random_state=None, warm_start=False, verbose=0,
verbose_interval=10)
```

#### R:

MClust() [package MASS], GuassianMixtures() [package sBIC] Introduction

Principal Component Analysis

Model-based clustering: EM algorithm for Gaussian Mixtures

k-means, k-medoids and variants

(Agglomerative) Hierarchical Cluster Analysis

Other methods

# Model-free clustering

- Observations  $X_1, \ldots, X_n$  in  $\mathbb{R}^p$ ;
- Objective function: for candidate cluster centers μ = (μ<sub>1</sub>,..., μ<sub>K</sub>) and cluster assignations z = (z<sub>1</sub>,..., z<sub>n</sub>):

$$L(\mu, z) = \sum_{k=1}^{K} \sum_{i: z_i = k} \|X_i - \mu_k\|^2 = \sum_{i=1}^{n} \sum_{k=1}^{k} \mathbb{1}\{z_i = k\} \|X_i - \mu_k\|^2$$

• If 
$$S_k = \{i : z_i = k\}$$
,

$$L(\mu, z) = \sum_{k=1}^{K} |S_k| \operatorname{Var}[S_k]$$

• Minimizing *L* is equivalent to minimizing pairwise deviations in the clusters:

$$\operatorname*{arg\,min}_{\mu,z} L(\mu,z) = \operatorname*{arg\,min}_{\mu,z} \sum_{k=1}^{K} \frac{1}{|\mathcal{S}_k|} \sum_{i,j \in \mathcal{S}_k} \|X_i - X_j\|^2$$

- For a fixed  $\mu$ , optimizing in z is easy: choose  $z_i = \arg \min_k ||X_i \mu_k||$
- BUT optimizing in  $\mu$  is NP-hard!

#### k-means

- randomly initialize  $\theta_0$
- compute Lloyd's iterations until convergence:
  - membership variables  $z_i^j = \arg \min \|X_i \mu_k^j\|$

• updated cluster weights 
$$N_k^j = \sum_{i=1}^n \mathbb{1}\{z_i^j = k\}$$
  
• updated cluster means  $\mu_k^{j+1} = \frac{\sum_{i:z_i^j = k}^j X_i}{N_k^j}$ 

• start again (a few times) to look for a better local optimum

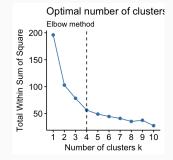
### Comments on k-means

- k-means is a "hard" version of EM for mixtures! (when variances tends to 0)
- Complexity: linear in *n* and *k* (fast)
- Requires only a dissimilarity measure (not necessarily a distance)
- Quality of solution found depends on (random) initialization
- Not robust to outliers



[Src: http://www.sthda.com/english/articles/29-cluster-

```
validation-essentials/]
```



Idea: enforce distant cluster centers from the start

k-means++

- Choose first center  $\mu_1^1$  at random
- for j = 2 to K, repeat:
  - compute  $D_i^j = \min_{\ell < j} \|X_i \mu_\ell^1\|$
  - choose  $\mu_j^1 = X_i$  with probability proportionnal to  $D_i^j$
- theoretical guarantee of  $O(\log k)$  approximation from the start
- still linear complexity
- often a dramatic improvement in practice

#### k-medoids

- randomly initialize  $\theta_0$  with K points of the dataset
- iterate until convergence:

• membership variables 
$$z_i^j = \arg\min \|X_i - \mu_k^j\|$$

• updated cluster medoids 
$$\mu_k^{j+1} = \arg\min_{i \in S_k} \sum_{\ell \in S_k} ||X_\ell - X_i||$$

- start again (a few times) to look for a better local optimum
- Robust to outliers (cf median versus mean)
- BUT computation time is quadratic in n
- k-means is k-medoids with  $\|X_\ell X_i\|^2$  instead of  $\|X_\ell X_i\|$

#### scikitlearn:

```
class sklearn.cluster.KMeans(
  n_clusters=8, init=?k-means++?, n_init=10, max_iter=300,
  tol=0.0001, precompute_distances='auto', verbose=0,
  random_state=None, copy_x=True, n_jobs=1, algorithm='auto'
```

R: package stats

```
kmeans(x, centers, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
"MacQueen"), trace=FALSE)
```

Variants to be found in various packages: ClusterR, kmed, etc.

Introduction

Principal Component Analysis

Model-based clustering: EM algorithm for Gaussian Mixtures

k-means, k-medoids and variants

### (Agglomerative) Hierarchical Cluster Analysis

Other methods

- greedy bottom-up algorithm
- requires a distance (idssimilarity) between observations ||x x'||
- choice of distance between clusters:
  - complete linkage:  $d(A,B) = \max \left\{ \|x x'\| : x \in A, x' \in B \right\}$
  - single linkage:  $d(A, B) = \min \{ ||x x'|| : x \in A, x' \in B \}$
  - average linkage distance:  $d(A,B) = \frac{1}{|A||B|} \sum_{x \in A} \sum_{x' \in B} ||x x'||$
  - Ward distance for Euclidian mean:  $d(A, B) = \frac{|A||B|}{n(|A|+|B|)} \|\bar{A}-\bar{B}\|$
  - sum of intra-cluster variance
  - etc.

### HCA

- Initialization: all observations are clusters {*X*<sub>1</sub>},...,{*X*<sub>n</sub>}
- As long as there are at least two clusters:
  - add a link between two clusters with smallest distance
  - merge them for the next iterations
- Return the *dendrogram* = hierarchy of clusters

Property of Ward for Euclidian distance: interclass variance decreasing with the number of classes

# Dendrogram

Clustered Iris data set (the labels give the true flower species) ginica riscolor



Author: Talgalili

https://commons.wikimedia.org/wiki/File:

Iris\_dendrogram.png

- No need to specify the number of clusters in advance
- A relevant choice can be deduced from the observation of the dendrogram (and practical needs)
- Computational complexity in  $O(n^2)$
- Does not find an optimal solution

#### scikitlearn:

```
class sklearn.cluster.AgglomerativeClustering(n_clusters=2,
affinity=?euclidean?, memory=None, connectivity=None,
compute_full_tree=?auto?, linkage=?ward?,
pooling_func=<function mean>)
```

#### R:

hclust(d, method = "complete", members = NULL)

Introduction

Principal Component Analysis

Model-based clustering: EM algorithm for Gaussian Mixtures

k-means, k-medoids and variants

(Agglomerative) Hierarchical Cluster Analysis

Other methods

- Message-passing algorithm
- affinity function s(x, x'), for example  $s(x, x') = -||x x'||^2$
- s(x, x) = input preference : the lower, the higher the chances to be an exemplar
- responsibility matrix R: r(i, k) = how well-suited X<sub>k</sub> can serve as an exemplar for X<sub>i</sub> (wrt other candidate exemplars)
- availability matrix A: a(i, k) = how appropriate it is for  $X_i$  to pick  $X_k$  as an examplar, taking into account other points preferences for  $X_k$  as an exemplar

## **Affinity Propagation**

- Initialize R and A with 0
- Repeat until convergence:
  - update responsibilities:  $r(i,k) \leftarrow s(i,k) \max_{\substack{k' \neq k}} a(i,k') + s(i,k')$
  - update availabilities:

$$a(i,k) \leftarrow \min\left\{0, r(k,k) + \sum_{\substack{i' \notin \{i,k\}}} \max(0, r(i',k))\right\} \text{ for } i \neq k \text{ and}$$
$$a(k,k) \leftarrow \sum_{\substack{i' \neq k}} \max(0, r(i',k))$$

• Pick exemplars as maximizers of r(i, i) + a(i, i)

- No need to specify the number of clusters
- ... but a parameter plays the same role
- quadratic time complexity
- some improvement over k-means in some cases

## scikitlearn:

class sklearn.cluster.AffinityPropagation(damping=0.5, max\_iter=200, convergence\_iter=15, copy=True, preference=None, affinity=?euclidean?, verbose=False)

R: package APCluster

```
apcluster(s, x, p=NA, q=NA, maxits=1000,
convits=100, lam=0.9, includeSim=FALSE, details=FALSE,
nonoise=FALSE, seed=NA)
```

- Similarity matrix  $S_{i,j}$ , for example  $S_{i,j} = -\|X_i X_j\|^2$
- Idea: use standard clustering method on eigenvectors of the (normalized) Laplacian matrix

$$L = Id - D^{-1/2} S D^{-1/2}$$

where *D* is diagonal with  $D_{i,i} = \sum_j S_{i,j}$ 

• Intuition: if *S* is diagonal by blocks, the eigenvectors are the indicators of the blocks

## scikitlearn:

```
class sklearn.cluster.SpectralClustering(n_clusters=8,
eigen_solver=None, random_state=None, n_init=10, gamma=1.0,
affinity=?rbf?, n_neighbors=10, eigen_tol=0.0,
assign_labels=?kmeans?, degree=3, coef0=1,
kernel_params=None, n_jobs=1)
```

R: package kernlab

```
specc(x, data = NULL, na.action = na.omit, ...)
```

- $\mathsf{DBscan} = \mathsf{density}\mathsf{-}\mathsf{based}$  spatial clustering of applications with noise
- parameters: radius  $\epsilon$  and minimal cluster size minSize

## DBscan

Repeat as long as at least one point has not been visited:

- pick an unvisited point X<sub>i</sub> at random
- if it has less than minSize  $\epsilon$ -neighbors, mark it as outlier
- other, form the cluster of all points that can be reached by jumps of at most 
   *e* starting from X<sub>i</sub>

- simple and fast
- no need to specify number of clusters
- Problem: sensitive to the choice of parameters
- choosing the right parameters  $\epsilon$  and minSize propertly is hard
- choice of  $\epsilon$ : such that the proportion of outliers is at most 10% (say)
- choice of *minSize*: such that at least 90% have at least *minSize* neighbors
- unable to handle clusters with very different densities

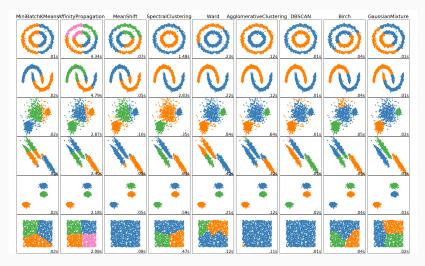
## scikitlearn:

```
class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5,
metric='euclidean', metric_params=None, algorithm='auto',
leaf_size=30, p=None, n_jobs=1)
```

R: package dbscan

```
dbscan(x, eps, minPts = 5, weights = NULL,
borderPoints = TRUE, ...)
```

# Which algorithm to choose?



Src: [http://scikit-learn.org/stable/auto\_examples/cluster/plot\_cluster.comparison.html]

#### Features:

- mean
- trend
- auto-correlation coefficients
- inter-series correlation
- etc.

 $\implies$  it depends on the nature of the problem and on the goal of the clustering!