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Clustering

Goal

Goal: automatically discover clusters in the data

• Model-based clustering:

• assume that the data was generated by a model

• try to recover the original model from the data

• Model-free clustering:

• no assumption on the mechanism producing data

• vector quantization

• cluster should be homogeneous and different from one another

• data-driven loss function to minimize
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Model-based clustering: choice of distance

• Data often in Rp (or projected to)

• Distance sometimes natural, sometimes not

• Often: need to normalize first

• Default choice: Euclidian distance d(x , x ′) =
√∑

(xi − x ′i )
2

• Other possible norms: L1, L∞, etc.

• Mahalanobis distance: d(x , x ′) =
√

(x − x ′)Σ−1(x − x ′)

• Categorial data: typically χ2 distance
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Ressources

• The Elements of Statistical Learning, T. Hastie, R. Friedman, J.

Tibshirani, Springer

• Data Mining , S. Tuffry, Technip

• P. Besse et al. http://wikistat.fr/

• Interesting overview at

http://scikit-learn.org/stable/modules/clustering.html

• Interesting demos on https:

//www.toptal.com/machine-learning/clustering-algorithms
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Principal Component Analysis

• Observation x1, . . . , xn in Rp, centered

• Dimensionality reduction: replace xi with yi = Wxi , where

W ∈Md,p(R), d � p.

• Hopefully, we do not loose too much by replacing xi by the yi .

Quasi-invertibility: there exists a recovering matrix U ∈Mp,d(R)

such that for all i ∈ {1, . . . , n}, x̃i = Uyi ≈ xi .

• PCA = Data-driven dimensionality reduction tool (for visual

clustering)

• PCA aims at finding the compression matrix W and the recovering

matrix U such that the total squared distance between the original

and the recovered vectors is minimal:

arg min
W∈Md,p(R),U∈U∈Mp,d (R)

n∑
i=1

∥∥xi − UWxi
∥∥2
.
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Towards the PCA solution

Property. A solution (W ,U) is such that UTU = Id and W = UT .

Proof. Let W ∈ Mn,p(R),U ∈ U ∈ Mp,d (R), and let R =
{
UWx : x ∈ Rp

}
. dim(R) ≤ d , and

we can assume that dim(R) = d . Let V =
(

v1 . . . vd
)
∈ Mp,d (R) be an orthogonal

basis of R, hence V TV = Id and for every x̃ ∈ Rp there exists y ∈ Rd such that x̃ = Vy . But for

every x ∈ Rp ,

arg min
x̃∈R

‖x − x̃‖2 = V . arg min
y∈Rd

‖x − Vy‖2 = V . arg min
y∈Rd

‖x‖ + ‖y‖2 − 2yT (V T x
)

= VV T x

(as can be seen easily by differentiation in y), and hence

n∑
i=1

∥∥xi − UWxi
∥∥2 ≥

n∑
i=1

∥∥xi − VV T xi
∥∥2
.
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The PCA solution

Corollary: the optimization problem can be rewritten

arg min
U∈U∈Mp,d (R):UTU=Id

n∑
i=1

∥∥xi − UUT xi
∥∥2
.

Since
∥∥xi − UUT xi

∥∥2
= ‖xi‖2 − Tr

(
UT xxTU

)
, this is equivalent to

arg max
U∈U∈Mp,d (R):UTU=Id

Tr

(
UT

n∑
i=1

xix
T
i U

)
.

Let A =
∑n

i=1 xix
T
i , and let A = VDV T be its spectral decomposition: D

is diagonal, with D1,1 ≥ · · · ≥ Dp,p ≥ 0 and V TV = VV T = Ip.
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Solving PCA by SVD

Theorem Let A =
∑n

i=1 xix
T
i , and let u1, . . . , ud be the eigenvectors of

A corresponding to the d largest eigenvalues of A. Then the solution to

the PCA optimization problem is U =
(

u1 . . . ud

)
, and W = UT .

Proof. Let U ∈ Mp,d (R) be such that UTU = Id , and let B = V TU. Then VB = U, and

UTAU = BTV TVDV TVB = BTDB, hence

Tr
(
UTAU) =

p∑
j=1

Dj,j

d∑
i=1

B2
j,i .

Since BTB = UTVV TU = Id , the colums of B are orthonormal and
∑p

j=1

∑d
i=1 B

2
j,i = d .

In addition, completing the columns of B to an orthonormal basis of Rp one gets B̃ such that

B̃T B̃ = Ip , and for every j one has
∑p

i=1 B̃
2
j,i = 1, hence

∑d
i=1 B

2
j,i ≤ 1.

Thus,

Tr
(
UTAU

)
≤ max
β∈[0,1]p :‖β‖1≤d

p∑
j=1

Dj,jβj =
d∑

j=1

Dj,j ,

which can be reached if U is made of the d leading eigenvectors of A.
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PCA: comments

Interpretation: PCA aims at max-

imizing the projected variance.

Project onto a subspace Rd ⊂ Rp

so as to save as much variance as

possible
[Src: wikipedia.org]

Outline: orthogonal linear transformation such that the first component has highest variance w1 = arg max
‖w‖=1

∑
i

(xi · w)2 is the

eigenvector of XT X corresponding to the highest eigenvalue. Similar reasonning for the next components in the orthogonal of w1.

Often, the quality of the result is measured by the proportion of the

variance explained by the d principal components:

∑d
i=1 Di,i∑p
i=1 Di,i

.

In practice: sometimes cheaper to compute svp of B = XTX ∈Mn(R),

since if u is such that Bu = λu then for v = XTu/‖XTu‖ one has

Av = λv . 11

wikipedia.org


PCA: visualization

Src: [https://techannouncer.com/global-pca-unit-market-2017-adelte-airmak-industries-amss-ltd-cavotec-airport-

division-ciat-effeti/]
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PCA algorithm

PCA

• Center all variables

• Compute the p × p empirical covariance matrix XTX .

• Compute the components Wd = the d first eigenvectors of XTX in

decreasing order of the eigenvalues

• Return the projection of X onto the d first components Td = X Wd .

Then:

• either vizualize clusters (2d or 3d plots)

• or use another clustering algorithm on the lower-dimensionnal data

Td (dimension reduction)
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Example: IRIS

[Src: https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering]
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PCA scree plot

Src: http://strata.uga.edu/8370/lecturenotes/principalComponents.html and

http://www.sthda.com/english/wiki/print.php?id=207
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Independent Component Analysis (ICA)

• similar idea, but search for independent (instead of uncorrelated)

components

• computationally more demanding, but iterative (entropy-based)

algorithm exists

• often used for blind source separation

• see also Non-negative Matrix Factorization (NMF)

• for vizualization, see also t-SNE: t-distributed Stochastic Neighbor

Embedding
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Commands

scikitlearn:

class sklearn.decomposition.PCA(n_components=None,

copy=True, whiten=False, svd_solver=?auto?, tol=0.0,

iterated_power=?auto?, random_state=None)

ICA: sklearn.decomposition.FastICA

R: package stats

prcomp() et princomp() [fonction de base, package stats],

PCA() [package FactoMineR],

dudi.pca() [package ade4],

epPCA() [package ExPosition]

ICA: ica
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Model-based approach: Gaussian Mixtures

• Observations X1, . . . ,Xn in Rp

• K cluster centers: µ1, . . . , µK

• Cluster k has probability pk

• Points in cluster k have law N (µk ,Σ)

• Given a sample (X1, . . . ,Xn), how to estimate the cluster centers

(µk)k and how identify the clusters?
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Expectation-Maximization Algorithm

• Likelihood: the parameter θ = (p, µ) has likelihood

L(θ) ∝
∑

z1,...,zn∈{1,...,K}n

n∏
i=1

pzi e
− 1

2 Σ−1(Xi−µzi
)Σ−1

=⇒ non-convex, very hard to maximize

• Approximate iterative optimization

• can also optimize on the covariance matrix Σ if unknown
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Expectation-Maximization Algorithm

Given an estimate θj = (pj , µj), compute

• membership weights

w j
i,k = Pθj (zi = k |Xi ) =

pjk e
− 1

2 Σ−1(Xi−µj
k )Σ−1∑K

`=1 p
j
` e
− 1

2 Σ−1(Xi−µj
`)Σ−1

• updated cluster weights:

pj+1
k =

∑n
i=1 w

j
i,k

n

• updated cluster means:

µj+1
k =

∑n
i=1 w

j
i,k Xi∑n

i=1 w
j
i,k
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Convergence of the Expectation-Maximization Algorithm

Theorem

The likelihood of the iterates are increasing:

L
(
θj+1

)
≥ L

(
θj
)

Good: converges

Bad: local optimum

EM Algorithm

• randomly initialize θ0

• compute EM iterations until convergence:

• membership weights (w j
i,k)i,k

• updated cluster weights (pj+1
k )k

• updated cluster means (µj+1
k )k

• start again (a few times) to look for a better local optimum
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Commands

scikitlearn:

class sklearn.mixture.GaussianMixture(n_components=1,

covariance_type=?full?, tol=0.001, reg_covar=1e-06,

max_iter=100, n_init=1, init_params=?kmeans?,

weights_init=None, means_init=None, precisions_init=None,

random_state=None, warm_start=False, verbose=0,

verbose_interval=10)

R:

MClust() [package MASS],

GuassianMixtures() [package sBIC]
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Model-free clustering

• Observations X1, . . . ,Xn in Rp;

• Objective function: for candidate cluster centers µ = (µ1, . . . , µK )

and cluster assignations z = (z1, . . . , zn):

L(µ, z) =
K∑

k=1

∑
i :zi=k

‖Xi − µk‖2 =
n∑

i=1

k∑
k=1

1{zi = k}‖Xi − µk‖2

• If Sk = {i : zi = k},

L(µ, z) =
K∑

k=1

|Sk |Var [Sk ]

• Minimizing L is equivalent to minimizing pairwise deviations in the

clusters:

arg min
µ,z

L(µ, z) = arg min
µ,z

K∑
k=1

1

|Sk |
∑
i,j∈Sk

‖Xi − Xj‖2
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Lloyd’s algorithm

• For a fixed µ, optimizing in z is easy: choose zi = arg mink ‖Xi −µk‖
• BUT optimizing in µ is NP-hard!

k-means

• randomly initialize θ0

• compute Lloyd’s iterations until convergence:

• membership variables z ji = arg min
k
‖Xi − µj

k‖

• updated cluster weights N j
k =

n∑
i=1

1{z ji = k}

• updated cluster means µj+1
k =

∑
i :z

j
i =k

Xi

N j
k

• start again (a few times) to look for a better local optimum
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Comments on k-means

• k-means is a ”hard” version of EM for mixtures! (when variances

tends to 0)

• Complexity: linear in n and k (fast)

• Requires only a dissimilarity measure (not necessarily a distance)

• Quality of solution found depends on (random) initialization

• Not robust to outliers

• Problem: how to choose k?

[Src: http://www.sthda.com/english/articles/29-cluster-

validation-essentials/]
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Improved Initialization: k-means++

Idea: enforce distant cluster centers from the start

k-means++

• Choose first center µ1
1 at random

• for j = 2 to K , repeat:

• compute D j
i = min

`<j
‖Xi − µ1

`‖

• choose µ1
j = Xi with probability proportionnal to D j

i

• theoretical guarantee of O(log k) approximation from the start

• still linear complexity

• often a dramatic improvement in practice
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k-medoids: robustness vs computation time

k-medoids

• randomly initialize θ0 with K points of the dataset

• iterate until convergence:

• membership variables z ji = arg min
k
‖Xi − µj

k‖

• updated cluster medoids µj+1
k = arg min

i∈Sk

∑
`∈Sk

‖X` − Xi‖

• start again (a few times) to look for a better local optimum

• Robust to outliers (cf median versus mean)

• BUT computation time is quadratic in n

• k-means is k-medoids with ‖X` − Xi‖2 instead of ‖X` − Xi‖
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Commands

scikitlearn:

class sklearn.cluster.KMeans(

n_clusters=8, init=?k-means++?, n_init=10, max_iter=300,

tol=0.0001, precompute_distances=’auto’, verbose=0,

random_state=None, copy_x=True, n_jobs=1, algorithm=’auto’

R: package stats

kmeans(x, centers, iter.max = 10, nstart = 1,

algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",

"MacQueen"), trace=FALSE)

Variants to be found in various packages: ClusterR, kmed, etc.
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Agglomerative clustering

• greedy bottom-up algorithm

• requires a distance (idssimilarity) between observations ‖x − x ′‖
• choice of distance between clusters:

• complete linkage: d(A,B) = max
{
‖x − x ′‖ : x ∈ A, x ′ ∈ B

}
• single linkage: d(A,B) = min

{
‖x − x ′‖ : x ∈ A, x ′ ∈ B

}
• average linkage distance: d(A,B) =

1

|A| |B|
∑
x∈A

∑
x′∈B

‖x − x ′‖

• Ward distance for Euclidian mean: d(A,B) =
|A| |B|

n
(
|A|+ |B|

) ∥∥Ā− B̄
∥∥

• sum of intra-cluster variance

• etc.
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HCA algorithm

HCA

• Initialization: all observations are clusters {X1}, . . . , {Xn}
• As long as there are at least two clusters:

• add a link between two clusters with smallest distance

• merge them for the next iterations

• Return the dendrogram = hierarchy of clusters

Property of Ward for Euclidian distance: interclass variance decreasing

with the number of classes
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Dendrogram

Author: Talgalili

https://commons.wikimedia.org/wiki/File:

Iris dendrogram.png
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Pros and Cons

• No need to specify the number of clusters in advance

• A relevant choice can be deduced from the observation of the

dendrogram (and practical needs)

• Computational complexity in O
(
n2
)

• Does not find an optimal solution
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Commands

scikitlearn:

class sklearn.cluster.AgglomerativeClustering(n_clusters=2,

affinity=?euclidean?, memory=None, connectivity=None,

compute_full_tree=?auto?, linkage=?ward?,

pooling_func=<function mean>)

R:

hclust(d, method = "complete", members = NULL)
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Affinity Propagation

• Message-passing algorithm

• affinity function s(x , x ′), for example s(x , x ′) = −‖x − x ′‖2

• s(x , x) = input preference : the lower, the higher the chances to be

an exemplar

• responsibility matrix R: r(i , k) = how well-suited Xk can serve as an

exemplar for Xi (wrt other candidate exemplars)

• availability matrix A: a(i , k) = how appropriate it is for Xi to pick

Xk as an examplar, taking into account other points preferences for

Xk as an exemplar
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Affinity Propagation

Affinity Propagation

• Initialize R and A with 0

• Repeat until convergence:

• update responsibilities: r(i , k)← s(i , k)−max
k′ 6=k

a(i , k ′) + s(i , k ′)

• update availabilities:

a(i , k)← min

0, r(k, k) +
∑

i′ /∈{i,k}

max(0, r(i ′, k))

 for i 6= k and

a(k, k)←
∑
i′ 6=k

max
(
0, r(i ′, k)

)
• Pick exemplars as maximizers of r(i , i) + a(i , i)
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Affinity Propagation: pros/cons

• No need to specify the number of clusters

• ... but a parameter plays the same role

• quadratic time complexity

• some improvement over k-means in some cases
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Commands

scikitlearn:

class sklearn.cluster.AffinityPropagation(damping=0.5,

max_iter=200, convergence_iter=15, copy=True,

preference=None, affinity=?euclidean?, verbose=False)

R: package APCluster

apcluster(s, x, p=NA, q=NA, maxits=1000,

convits=100, lam=0.9, includeSim=FALSE, details=FALSE,

nonoise=FALSE, seed=NA)
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Spectral Clustering

• Similarity matrix Si,j , for example Si,j = −‖Xi − Xj‖2

• Idea: use standard clustering method on eigenvectors of the

(normalized) Laplacian matrix

L = Id − D−1/2 S D−1/2

where D is diagonal with Di,i =
∑

j Si,j

• Intuition: if S is diagonal by blocks, the eigenvectors are the

indicators of the blocks
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Commands

scikitlearn:

class sklearn.cluster.SpectralClustering(n_clusters=8,

eigen_solver=None, random_state=None, n_init=10, gamma=1.0,

affinity=?rbf?, n_neighbors=10, eigen_tol=0.0,

assign_labels=?kmeans?, degree=3, coef0=1,

kernel_params=None, n_jobs=1)

R: package kernlab

specc(x, data = NULL, na.action = na.omit, ...)
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DBscan

• DBscan = density-based spatial clustering of applications with noise

• parameters: radius ε and minimal cluster size minSize

DBscan

Repeat as long as at least one point has not been visited:

• pick an unvisited point Xi at random

• if it has less than minSize ε-neighbors, mark it as outlier

• other, form the cluster of all points that can be reached by jumps of

at most ε starting from Xi
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DBscan: comments

• simple and fast

• no need to specify number of clusters

• Problem: sensitive to the choice of parameters

• choosing the right parameters ε and minSize propertly is hard

• choice of ε: such that the proportion of outliers is at most 10% (say)

• choice of minSize: such that at least 90% have at least minSize

neighbors

• unable to handle clusters with very different densities
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Commands

scikitlearn:

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5,

metric=’euclidean’, metric_params=None, algorithm=’auto’,

leaf_size=30, p=None, n_jobs=1)

R: package dbscan

dbscan(x, eps, minPts = 5, weights = NULL,

borderPoints = TRUE, ...)
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Which algorithm to choose?

Src: [http://scikit-learn.org/stable/auto examples/cluster/plot cluster comparison.html]
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Clustering time series

Features:

• mean

• trend

• auto-correlation coefficients

• inter-series correlation

• etc.

=⇒ it depends on the nature of the problem and on the goal of the

clustering!
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