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Introduction



Clustering

Goal
Goal: automatically discover clusters in the data

e Model-based clustering:

e assume that the data was generated by a model
e try to recover the original model from the data

e Model-free clustering:
e no assumption on the mechanism producing data
e vector quantization

e cluster should be homogeneous and different from one another
e data-driven loss function to minimize



Model-based clustering: choice of distance

e Data often in RP (or projected to)

e Distance sometimes natural, sometimes not

e Often: need to normalize first

e Default choice: Euclidian distance d(x,x") = Z(x; — x!)?
e Other possible norms: L1, [ etc.

e Mahalanobis distance: d(x,x") = /(x — x')Z=1(x — x')

o Categorial data: typically x? distance




Ressources

e The Elements of Statistical Learning, T. Hastie, R. Friedman, J.
Tibshirani, Springer

e Data Mining , S. Tuffry, Technip
o WikiStat P Besse et al. http://wikistat.fr/

e Interesting overview at
http://scikit-learn.org/stable/modules/clustering.html

e Interesting demos on https:
//www.toptal.com/machine-learning/clustering-algorithms


http://wikistat.fr/
http://scikit-learn.org/stable/modules/clustering.html
https://www.toptal.com/machine-learning/clustering-algorithms
https://www.toptal.com/machine-learning/clustering-algorithms

Principal Component Analysis



Principal Component Analysis

e Observation xi,...,x, in RP, centered

e Dimensionality reduction: replace x; with y; = Wkx;, where
W e My ,(R), d < p.

e Hopefully, we do not loose too much by replacing x; by the y;.
Quasi-invertibility: there exists a recovering matrix U € M,, 4(R)
such that for all i € {1,...,n}, X; = Uy; = x;.

e PCA = Data-driven dimensionality reduction tool (for visual
clustering)

e PCA aims at finding the compression matrix W and the recovering
matrix U such that the total squared distance between the original
and the recovered vectors is minimal:

arg min xj — UWx; ‘.
weMd,p(R)g,UE UEM, 4(R) ; H H



Towards the PCA solution

Property. A solution (W, U) is such that UTU = Iy and W = U".

Proof. Let W € M, ,(R), U € U € M, 4(R), and let R = {UWx : x € R” }. dim(R) < d, and
we can assume that dim(R) = d. Let V = (v ‘ S ‘ Va ) € M, 4(R) be an orthogonal
basis of R, hence VTV = I, and for every X € RP there exists y € RY such that & = V. But for

every x € RP,

argmin ||x — %||> = V.argmin ||x — Vy|> = V.argmin ||x|| + ||y||* — 2yT(VTx) =w'x
b yerd yerd

(as can be seen easily by differentiation in y), and hence

n n
3l — WP 2 3 s — vV
i=1 i=1



The PCA solution

Corollary: the optimization problem can be rewritten

arg min ZHX, UUTX,'H2
velUeM, ¢(R):UTU=14 ;—

Since ||x; — UUTX,-H2 = |[xi]|? = Tr (UTxx" U), this is equivalent to

arg max Tr <UT ZX,'X,-T U) .
i=1

UeUeEM, 4(R):UT U=1y

Let A= 27:1 x,-x,.T, and let A= VDV be its spectral decomposition: D
is diagonal, with D11 > -+ > D, ,>0and VIV =WT =,



Solving PCA by SVD

Theorem Let A = 27:1 x,-x,-T, and let uy, ..., uy be the eigenvectors of
A corresponding to the d largest eigenvalues of A. Then the solution to
the PCA optimization problem is U = ( Uy ‘ ‘ Uy ) and W= UT.

Proof. Let U € M, 4(R) be such that U U = Iy, and let B = VT U. Then VB = U, and
UTAU = BTVTVDVTVB = BT DB, hence

UAUZp:zi:

j=1

Since BTB=UTWwWTU = Iy, the colums of B are orthonormal and Z}‘.’:l 7:1 Bﬁ/. =d.

In addition, completing the columns of B to an orthonormal basis of R” one gets B such that
BTB = I,, and for every j one has > éﬁf =1, hence 27:1 Bj2,i <1

Thus,
p

Tr (UTAU) < D;; ,
r( )*ﬁe[o.,l?f?e\]\);ﬂhgd; )i = Z 9

which can be reached if U is made of the d leading eigenvectors of A.

10



PCA: comments

Interpretation: PCA aims at max- N
imizing the projected variance.

Project onto a subspace RY C RP

so as to save as much variance as B

possible

[Src: wikipedia.org]
Outline: orthogonal linear transformation such that the first component has highest variance wy = arg max Z(x,- . w)2 is the

[Iwil=1"7

eigenvector of X T X corresponding to the highest eigenvalue. Similar reasonning for the next components in the orthogonal of wy .

Often, the quality of the result is measured by the proportion of the
d
o D
variance explained by the d principal components: %.
i=1 Mi,i
In practice: sometimes cheaper to compute svp of B = X™X € M,(R),
since if u is such that Bu = A\u then for v = XTu/|| X" u|| one has

Av = Av. 1


wikipedia.org

PCA: visualization

° Second principal component
First principal component
bl
T T T T T T T
8 4 2 0 2 4 5]

Src: [https://techannouncer.com/global-pca-unit-market-2017-adelte-airmak- industries-amss-1ltd-cavotec-airport-

division-ciat-effeti/]
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PCA algorithm

PCA

o Center all variables
o Compute the p x p empirical covariance matrix X X.

o Compute the components Wy = the d first eigenvectors of X7 X in
decreasing order of the eigenvalues

e Return the projection of X onto the d first components Ty = X Wy.

Then:

e either vizualize clusters (2d or 3d plots)

e or use another clustering algorithm on the lower-dimensionnal data
T4 (dimension reduction)
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Example: IRIS

[Src: https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering]
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Principal Components Analysis (PCA) of Iris Dataset
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PCA scree plot
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Src: http://strata.uga.edu/8370/lecturenotes/principalComponents.html and

http://www.sthda.con/english/wiki/print.php?id=207
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Independent Component Analysis (ICA)

e similar idea, but search for independent (instead of uncorrelated)
components

e computationally more demanding, but iterative (entropy-based)
algorithm exists

e often used for blind source separation
e see also Non-negative Matrix Factorization (NMF)

e for vizualization, see also t-SNE: t-distributed Stochastic Neighbor
Embedding
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Commands

scikitlearn:

class sklearn.decomposition.PCA(n_components=None,
copy=True, whiten=False, svd_solver=7auto?, tol=0.0,
iterated_power=7auto?, random_state=None)

ICA: sklearn.decomposition.FastICA
R: package stats

prcomp() et princomp() [fonction de base, package stats],
PCA() [package FactoMineR],

dudi.pca() [package ade4],

epPCA() [package ExPosition]

ICA: ica
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Model-based clustering: EM algorithm for Gaussian Mixtures
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Model-based approach: Gaussian Mixtures

Observations Xi,..., X, in R

K cluster centers: p1, ..., ik

Cluster k has probability px

Points in cluster k have law N (jux, X)

Given a sample (Xi,..., X,), how to estimate the cluster centers
(k) and how identify the clusters?
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Expectation-Maximization Algorithm

e Likelihood: the parameter 6 = (p, i) has likelihood

TOESEDY r”[pzfe_%z,l(xi_mrl

21,0,z0€{1,. K} i=1

= non-convex, very hard to maximize
e Approximate iterative optimization

e can also optimize on the covariance matrix X if unknown
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Expectation-Maximization Algorithm

Given an estimate ¢/ = (p/, 1/), compute
e membership weights

_l): Jyy—1
pi Xi I’«k)

Z*l P, e*%z (X T

Mk = ng(Z,' = k|X,) =

I7

e updated cluster weights:

n
pj+1 dic1 ij
s n
e updated cluster means:
, )
j+1 dic1 Wil,k Xi
my = n
Do Wik
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Convergence of the Expectation-Maximization Algorithm

Theorem
The likelihood of the iterates are increasing:

L) = L(¥)

Good: converges
Bad: local optimum

EM Algorithm

e randomly initialize 6y

e compute EM iterations until convergence:
e membership weights (W,-’;k)/,k
o updated cluster weights (p}™ )«
e updated cluster means (1 ")«

o start again (a few times) to look for a better local optimum
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Commands

scikitlearn:

class sklearn.mixture.GaussianMixture(n_components=1,
covariance_type=7full?, tol=0.001, reg_covar=1e-06,
max_iter=100, n_init=1, init_params=7kmeans?,
weights_init=None, means_init=None, precisions_init=None,
random_state=None, warm_start=False, verbose=0,

verbose_interval=10)

R:

MClust() [package MASS],
GuassianMixtures() [package sBIC]
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k-means, k-medoids and variants
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Model-free clustering

e Observations Xi,..., X, in RP;

e Objective function: for candidate cluster centers = (1, ..., fik)
and cluster assignations z = (z1, ..., z,):
Nk
_5 5 16— sl? = 33 14 = KHX = el
k=1iz= i=1 k=1

(] |f5k:{/22;:k},

K
z) = |Sk| Var[S]
k=1

e Minimizing L is equivalent to minimizing pairwise deviations in the
clusters:

arg min L(u, 2) —argmlnz Z 1X; — X2

e i,jESk
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Lloyd’s algorithm

e For a fixed p, optimizing in z is easy: choose z; = arg min, ||.X; — ||

e BUT optimizing in p is NP-hard!

k-means

e randomly initialize 6y
e compute Lloyd's iterations until convergence:

o membership variables z/ = arg min || X; — 1]

k

e updated cluster weights N = Z 1{z/ = k}
i=1
Zi:z{:k Xi

U

o start again (a few times) to look for a better local optimum

e updated cluster means ,ufl =
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Comments on k-means

e k-means is a "hard” version of EM for mixtures! (when variances
tends to 0)

e Complexity: linear in n and k (fast)

e Requires only a dissimilarity measure (not necessarily a distance)

e Quality of solution found depends on (random) initialization

e Not robust to outliers

Optimal number of clusters
Elbow method

@ 200

@

3

@
e Problem: how to choose k7 %5 1501

£

[Src: http://www.sthda.com/english/articles/29-cluster- a
< 100 1

validation-essentials/| g
S 501

°

[

12345678910
Number of clusters k
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Improved Initialization: k-means++4

Idea: enforce distant cluster centers from the start
k-means++

o Choose first center u} at random
e for j =2 to K, repeat:
o compute D/ = min || X; — ||
<

e choose ,u} = X; with probability proportionnal to D,/

theoretical guarantee of O(log k) approximation from the start

still linear complexity

often a dramatic improvement in practice
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k-medoids: robustness vs computation time

k-medoids

e randomly initialize 6y with K points of the dataset
e iterate until convergence:
o membership variables zl = arg min | X; — 12|
K
e updated cluster medoids 17" = arg min Z | Xe — Xi||
€Sk yes,

o start again (a few times) to look for a better local optimum

Robust to outliers (cf median versus mean)

BUT computation time is quadratic in n

e k-means is k-medoids with || X; — X;||? instead of || X; — X;]|
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Commands

scikitlearn:

class sklearn.cluster.KMeans(

n_clusters=8, init=7k-means++7, n_init=10, max_iter=300,
t0l1=0.0001, precompute_distances=’auto’, verbose=0,
random_state=None, copy_x=True, n_jobs=1, algorithm=’auto’

R: package stats
kmeans (x, centers, iter.max = 10, nstart = 1,

algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
"MacQueen"), trace=FALSE)

Variants to be found in various packages: ClusterR, kmed, etc.

30



(Agglomerative) Hierarchical Cluster Analysis
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Agglomerative clustering

e greedy bottom-up algorithm

e requires a distance (idssimilarity) between observations ||x — x/||

e choice of distance between clusters:

complete linkage: d(A, B) = max{|x — x| : x € A, x' € B}
single linkage: d(A, B) = min {||x — x| : x € A, X' € B}

1 /
average linkage distance: d(A, B) = TAIB] Z Z Ix — x|

xXEA X' €B
Ward distance for Euclidian mean: d(A, B) = _1AlBL |A- B
n(|Al +1BI)
sum of intra-cluster variance
etc.
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HCA algorithm

HCA

o Initialization: all observations are clusters {Xi},..., {X,}
e As long as there are at least two clusters:

e add a link between two clusters with smallest distance
e merge them for the next iterations

o Return the dendrogram = hierarchy of clusters

Property of Ward for Euclidian distance: interclass variance decreasing
with the number of classes
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Dendrogram

Clustered Iris data set
(the labels give the true flower species)

O virginica

@ versicolor

@ setosa 4‘}

e

Author: Talgalili
https://commons.wikimedia.org/wiki/File:
Iris_dendrogram.png

r T T T T T 1

7 6 5 4 3 2 1 0
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No need to specify the number of clusters in advance

e A relevant choice can be deduced from the observation of the
dendrogram (and practical needs)

e Computational complexity in O(n2)

Does not find an optimal solution
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Commands

scikitlearn:
class sklearn.cluster.AgglomerativeClustering(n_clusters=2,
affinity=7euclidean?, memory=None, connectivity=None,

compute_full_tree=7auto?, linkage=7ward?,

pooling_func=<function mean>)

R:

hclust(d, method = "complete", members = NULL)

36



Other methods
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Affinity Propagation

e Message-passing algorithm

e affinity function s(x, x’), for example s(x, x') = —||x — x’||?

e s(x,x) = input preference : the lower, the higher the chances to be
an exemplar

e responsibility matrix R: r(i, k) = how well-suited X) can serve as an
exemplar for X; (wrt other candidate exemplars)

e availability matrix A: a(i, k) = how appropriate it is for X; to pick
Xy as an examplar, taking into account other points preferences for
Xy as an exemplar
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Affinity Propagation

Affinity Propagation

o Initialize R and A with 0

o Repeat until convergence:
o update responsibilities: r(i, k) < s(i, k) — max a(i, k') + s(i, k")
e update availabilities:

a(i, k) < min {07 r(k, k) + Z max(0, r(i’, k))} for i # k and
i ¢4k}
a(k, k) <> max (0, r(i", k))
i' £k
o Pick exemplars as maximizers of r(i, i)+ a(i, )
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Affinity Propagation: pros/cons

No need to specify the number of clusters

... but a parameter plays the same role

quadratic time complexity

e some improvement over k-means in some cases
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Commands

scikitlearn:
class sklearn.cluster.AffinityPropagation(damping=0.5,

max_iter=200, convergence_iter=15, copy=True,

preference=None, affinity=7euclidean?, verbose=False)

R: package APCluster
apcluster(s, x, p=NA, g=NA, maxits=1000,

convits=100, lam=0.9, includeSim=FALSE, details=FALSE,
nonoise=FALSE, seed=NA)
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Spectral Clustering

e Similarity matrix S;j, for example S;; = —||X; — X;||?

e Idea: use standard clustering method on eigenvectors of the
(normalized) Laplacian matrix

L=Id— D 12sp-1/2

where D is diagonal with D; ; = Zj Sk

e Intuition: if S is diagonal by blocks, the eigenvectors are the
indicators of the blocks
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Commands

scikitlearn:

class sklearn.cluster.SpectralClustering(n_clusters=8,
eigen_solver=None, random_state=None, n_init=10, gamma=1.0,
affinity=7rbf?, n_neighbors=10, eigen_t0l1=0.0,

assign_labels=7kmeans?, degree=3, coef0O=1,

kernel_params=None, n_jobs=1)

R: package kernlab

specc(x, data = NULL, na.action = na.omit, ...)
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e DBscan = density-based spatial clustering of applications with noise

e parameters: radius ¢ and minimal cluster size minSize

DBscan
Repeat as long as at least one point has not been visited:

e pick an unvisited point X; at random
e if it has less than minSize e-neighbors, mark it as outlier

e other, form the cluster of all points that can be reached by jumps of

at most € starting from X;

a4



DBscan: comments

e simple and fast

e no need to specify number of clusters

e Problem: sensitive to the choice of parameters

e choosing the right parameters € and minSize propertly is hard

e choice of e: such that the proportion of outliers is at most 10% (say)

e choice of minSize: such that at least 90% have at least minSize
neighbors

e unable to handle clusters with very different densities
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Commands

scikitlearn:

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5,
metric=’euclidean’, metric_params=None, algorithm=’auto’,
leaf_size=30, p=None, n_jobs=1)

R: package dbscan

dbscan(x, eps, minPts = 5, weights = NULL,
borderPoints = TRUE, ...)
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Which algorithm to choose?

! hKMeansAffinity i Meanshift pectralClusterin, Ward iveClustering DBSCAN Birch GaussianMixture

Src: [http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html]
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Clustering time series

Features:

e mean
e trend

e auto-correlation coefficients
e inter-series correlation

e etc.

= it depends on the nature of the problem and on the goal of the
clustering!
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