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Deviation bounds and kNN



Parenthesis: a nice proof for the technicalities of Bernstein

From [Pollard, MiniEmpirical ex.14, http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf]

For any sufficiently smooth real-valued function φ defined at least in a neighborhood of 0 let

G(x) =
φ(x)− φ(0)− xφ′(0)

x2/2
if x 6= 0, and G(0) = φ

′′(0) .

By Taylor’s integral formula

φ(x)− φ(0)− xφ′(0) =

∫ x

0

φ
′′(u)(x − u)du = x2

∫ 1

0

φ
′′(sx)(1− s)ds .

Thus, G(x) =
∫
φ′′(sx)dν(s), where dν(s) = 2(1− s)1{0 ≤ s ≤ 1}ds.

Hence, if φ is convex then φ′′ ≥ 0 and G ≥ 0. Moreover, if φ′′ is increasing then the functions

x 7→ φ′′(sx) for s ∈ [0, 1] are all increasing and G is also increasing as an average of increasing

functions. For φ(u) = exp(u), this yields that (exp(u)− u − 1)/u2 is increasing, as required for

the proof of Bernstein’s inequality.

Similarly, if φ′′ is convex then G is also convex as an average of convex functions(
x 7→ φ′′(sx)

)
s
. Moreover, by Jensen’s inequality applied to convex function ψ(s) = φ′′(xs) with

the probability measure dν(s) = 2(1− s)1{0 ≤ s ≤ 1}ds

G(x) =

∫ 1

0

φ
′′(xs) 2(1− s)ds ≥ φ′′

(
x

∫ 1

0

s × 2(1− s)ds

)
= φ
′′
(

x

3

)
.

For φ(u) = (1 + u) log(1 + u)− u, φ′′(u) = 1/(1 + u) and this yields:

φ(u)

u2/2
≥ φ′′

(
u

3

)
=

1

1 + u/3
. 2
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Exercise: for Xi
iid∼ B(µ), P(X̄n ≥ 2µ) ≤ exp(−n×?)

Chernoff + Taylor: since log(u) ≥ (u − 1)/u,

kl(2µ, µ) = 2µ log(2) + (1− 2µ) log
1− 2µ

1− 2µ
≥ 2µ log(2)− µ = µ(2 log(2)− 1) ≈ 0.386µ .

Chernoff with convexity:

kl(2µ, µ) ≥
(2µ− µ)2/2

4/3µ
=

3

8
µ = 0.375µ .

Improved Hoeffding:

kl(2µ, µ) ≥
(2µ− µ)2/2

maxµ≤u≤2µ u(1− u)
≥
µ2/2

2µ
=

1

4
µ = 0.25µ .

Bennett:

2µ log
2µ

µ
− (2µ− µ) = µ(2 log(2)− 1) ≈ 0.386µ .

Bernstein:
(2µ− µ)2/2

µ(1− µ) + (2µ− µ)/3
≥

µ2/2

µ + µ/3

3

8
µ = 0.375µ .

Hoeffding: 2(2µ− µ)2 = 2µ2, very poor (as expected) when µ is small.
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Recall: risk bound for k-nearest neighbours

Let Cε be an ε-covering of X :

∀x ∈ X ,∃x ′ ∈ Cε : d(x , x ′) ≤ ε .

Excess risk for k-nearest-neighbours

If η is c-Lipschitz continuous: ∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c d
(
x , x ′

)
,

then for all k ≥ 2 and all m ≥ 1:

L
(
ĥkNN

)
− L
(
h∗
)
≤ 1√

k e
+

2k |Cε|
m

+ 4cε

≤ 1√
k e

+ (2 + 4c)

(
αk

m

) 1
d+1

for ε =
(
αk
m

) 1
d+1 ,

if |Cε| ≤ αε−d

≤ (3 + 4c)
( α
m

) 1
d+3

for k =
(m
α

) 2
d+3

.

Bias-variance decomposition of the risk.
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Room for improvement

• Lower bound? in m−
1
d .

• Margin conditions

=⇒ fast rates

• More regularity?

=⇒ weighted nearest neighbors

• Is regularity required everywhere?

=⇒ What matters are the balls of mass ≈ k/m near the

decision boundary.
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Research Article 1

Classification in general finite

dimensional spaces with the k-

nearest neighbor rule

by Sébastien Gadat, Thierry Klein,

and Clément Marteau

Annals of Statistics Volume 44,

Number 3 (2016), 982-1009.
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Research Article 2

Rates of convergence for near-

est neighbor classification

by Kamalika Chaudhuri and San-

joy Dasgupta

Advances in Neural Information

Processing Systems 27 (NIPS

2014)

https://papers.nips.cc/paper/5439-rates-of-

convergence-for-nearest-neighbor-classification
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Kullback-Leibler divergence



Kullback-Leibler divergence

Definition

Let P and Q be two probability distributions on a measurable set Ω.

The Kullback-Leibler divergence from Q to P is defined as follows:

• if P is not absolutely continuous with respect to Q, then

KL(P,Q) = +∞;

• otherwise, let dP
dQ be the Radon-Nikodym derivative of P with

respect to Q. Then

KL(P,Q) =

∫
Ω

log
dP

dQ
dP =

∫
Ω

dP

dQ
log

dP

dQ
dQ .

Property: 0 ≤ KL(P,Q) ≤ +∞, KL(P,Q) = 0 iff P = Q.

If P � Q and f = dP
dQ

,
∫

Ω f log(f ) dQ =
∫

Ω
[
f log(f )

]
+ dQ −

∫
Ω
[
f log(f )

]
− dQ, the later is finite since

[
f log(f )

]
− ≤ 1/e.

Examples:

KL
(
B(p),B(q)

)
= kl(p, q), KL

(
N (µ1, σ

2), N (µ2, σ
2)
)

= (µ1−µ2)2

2σ2 .
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Properties

Tensorization of entropy:

If P = P1 ⊗ P2 and Q = Q1 ⊗ Q2, then

KL(P,Q) = KL(P1,Q1) + KL(P2,Q2) .

Contraction of entropy data-processing inequality:

Let (Ω,A) be a measurable space, and let P and Q be two probability

measures on (Ω,A). Let X : Ω→ (X ,B) be a random variable, and let

PX (resp. QX ) be the push-forward measures, ie the laws of X wrt P

(resp. Q). Then

KL
(
PX ,QX

)
≤ KL(P,Q) .

Pinsker’s inequality:

Let P,Q ∈M1(Ω,A). Then

‖P − Q‖TV
def
= sup

A∈A
|P(A)− Q(A)| ≤

√
KL(P,Q)

2
.
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Proof: contraction

Contraction: if KL(P,Q) = +∞, the result is obvious. Otherwise, P � Q and there exists
dP
dQ : Ω→ R such that for all measurable f : Ω→ R,

∫
Ω
f dP =

∫
Ω
f dP

dQ dQ.

• We first prove that PX � QX and, if γ(x) := EQ

[
dP
dQ

∣∣X = x
]

is the Q-a.s. unique function

such that EQ

[
dP
dQ

∣∣X] = γ(X ), then γ = dPX

dQX . Indeed, for all B ∈ B,

PX (B) = P(X ∈ B) =

∫
X∈B

dP

dQ
dQ = EQ

[
dP

dQ
1{X ∈ B}

]
= EQ

[
EQ

[
dP

dQ
1{X ∈ B}

∣∣∣X]] = EQ

[
1{X ∈ B}EQ

[
dP

dQ

∣∣∣X]]
= EQ

[
1{X ∈ B}γ(X )

]
=

∫
X∈B

γ(X )dQ =

∫
B

γdQX

and hence PX � QX and dPX

dQX = γ.

• Now,

KL
(
PX
,QX

)
=

∫
X
γ log γ dQX =

∫
Ω

γ(X ) log γ(X ) dQ

= EQ

[
φ

(
EQ

[
dP

dQ

∣∣∣X])] where φ := x 7→ x log(x) is convex

≤ EQ

[
EQ

[
φ

(
dP

dQ

) ∣∣∣X]] by (conditional) Jensen’s inequality

= EQ

[
φ

(
dP

dQ

)]
= KL(P,Q) .
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Proof: Pinsker

Let A ∈ A, p = P(A) and q = Q(A). By contraction,

KL(P,Q) ≥ KL(P1A ,Q1A ) = KL
(
B
(
P(A)

)
,B
(
Q(A)

))
= kl

(
P(A),Q(A)

)
≥ 2
(
P(A)−Q(A)

)2
.
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Application: Lower bound

”Chernoff’s bound is asymptotically almost tight”

Let µ ∈ (0, 1). X1, . . . ,Yn
iid∼ B(µ), and let x ∈ (µ, 1]. Then

lim inf
n

1

n
logP(Ȳn > x) ≥ − kl(x , µ) .

Proof: Let ε > 0 and on the same probability space let X1, . . . ,Xn
iid∼ B(x + ε) and

Y1, . . . ,Yn
iid∼ B(µ). Then

n kl(x + ε, µ) = KL
(
PX
,PY) by tensorization

≥ KL
(
P1{X̄n≥x}

,P1{Ȳn≥x}
)

by contraction

= kl
(
P(X̄n ≥ x), P(Ȳn ≥ x)

)
≥ P(X̄n ≥ x) log

1

P(Ȳn ≥ x)
− log(2)

since kl(p, q) = −h(p) + p log
1

q
+ (1− p) log

1

1− q
. Hence, by Hoeffding’s inequality,

lim inf
m

1

n
log P(Ȳn > x) ≥ lim inf

n

−n kl(x + ε, µ) + log(2)

n
(

1− exp(−2nε2)
) = − kl(x + ε, µ)

for all ε > 0, and we conclude by the continuity of kl(·, µ).

Note that one can also derive non-asymptotic lower bounds.
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PAC learning



Learning framework

• Underlying distribution D on X × Y.

• Sample S
iid∼ D (otherwise: transductive learning).

• h : X → Y, h ∈ H hypothesis class.

• loss function l(y , y ′) (regression, classification)

• generalization error (loss) LD(h)

• training error LS(h)

• Realizable assumption: there exists h∗ such that LS(h∗) = 0.

• Antonym: agnostic learning.
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Empirical risk minimization with inductive bias

Definition

Any learning algorithm ĥm of the form

ERMH(S) ∈ arg min
h∈H

LS(h)

is called a empirical risk minimizer.

Risk of overfitting
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PAC learnability: “probably approximately correct”

Definition

A hypothesis class H is PAC learnable if there exists a function

mH : (0, 1)2 → N and a learning algorithm S 7→ ĥm such that for every

ε, δ ∈ (0, 1), for every distribution DX on X and for every labelling

function f : X → {0, 1}, if the realizable assumption holds with respect

to H,DX , f then when S =
(
(X1, f (X1)), . . . , (Xm, f (Xm)

)
with

(Xi )1≤i≤m
iid∼ DX ,

P
(
L(DX ,f )

(
ĥm
)
≥ ε
)
≤ 1− δ

for all m ≥ mH(ε, δ).

The smallest possible function mH is called the sample complexity of

learning H.

Remark: Valiant’s PAC requires also sample complexity and running time

polynomial in 1/ε and 1/δ.
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Examples

• H =
{
ha : a ∈ R} where ha(x) = 1{x ≤ a} is PAC-learnable with

sample complexity

mH(ε, δ) ≤

⌈
log 2

δ

ε

⌉
.

Proof: let a∗ be such that LD (ha∗ ) = 0 and let a0 = inf{a : DX ([a, a∗ ]) ≤ ε} and a1 = sup{a : DX ([a∗, a]) ≤ ε}.

An ERM is ĥS (x) = 1x≤T where T ∈ [B0, B1], with B0 = max{x : (x, 1)i nS} and B1 = min{x : (x, 0)i nS}. Then

P(L(ĥS ) ≥ ε) ≤= P(B0 < a0) + P(B1 > a1). Since DX (a0, a
∗) ≥ ε and

P(B0 < a0) ≤
(

1 − DX ([a0, a
∗ ]
)m ≤ exp(−mε).

• Exercise: Learning axis-aligned rectangles: given real numbers

a1 ≤ b1 and a2 ≤ b2, let

h(a1,b1,a2,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2 ;

0 otherwise .

Let H2
rec =

{
h(a1,b1,a2,b2) : a1 ≤ b1 and a2 ≤ b2

}
. Show that H2

rec is

PAC-learnable, with sample complexity

mH(ε, δ) ≤

⌈
4log 4

δ

ε

⌉
. 16



Finite hypothese classes are PAC-learnable

The sample complexity of finite hypothese classes in the realizable case is

smaller than m ≥
log |H|δ
ε

:

Theorem

Let H be a finite hypothesis class. Let ε, δ ∈ (0, 1) and let m be an

integer that satisfies

m ≥
log |H|δ
ε

.

Then, for any labeling function f and for any distribution DX on X ,

under the realizability assumption, with probability at least 1− δ over

the choice of iid sample S of size m, any ERM hypothesis ĥm is such

that

L(DX ,f )(ĥm) ≤ ε .
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Proof

The realizability assumption implies that an ERM ĥS has empirical risk

LS
(
ĥS
)

= 0. Hence,

P
(
L
(
ĥS
)
≥ ε
)

= D⊗mX

({
S ∈ Xm : ∃h ∈ H, LS(h) = 0 and LD(h) ≥ ε

})
= D⊗mX

 ⋃
h:LD (h)≥ε

Sh

 where Sh =
{
S ∈ Xm : Ls(h) = 0

}
≤

∑
h:LD (h)≥ε

D⊗mX

(
Sh
)

=
∑

h:LD (h)≥ε

m∏
i=1

DX

({
x ∈ X : h(x) = f (x)

})︸ ︷︷ ︸
=1−LD (h)≤1−ε

≤
∑

h:L(DX ,f )(h)≥ε

m∏
i=1

(1− ε) ≤
∣∣H∣∣(1− ε)m ≤

∣∣H∣∣ exp(−mε) .

This quantity is smaller than δ for m ≥
log |H|δ
ε

.
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