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Kullback-Leibler divergence



Kullback-Leibler divergence

Let P and @ be two probability distributions on a measurable set Q.
The Kullback-Leibler divergence from Q to P is defined as follows:

if P is not absolutely continuous with respect to Q, then
KL(P, Q) =

otherwise, Iet be the Radon-Nikodym derivative of P with
respect to Q. Then

KL(P,Q):/Iogde /ZQIogwdQ

Property: 0 < KL(P, Q) < 400, KL(P, Q) =0 iff P = Q.
IfP < Qand f = gg Jo flog(f) d@ = [q [flog(f)], dQ@ — [q [flog(f)] _ dQ, the later is finite since [f log(f)] _ < 1/e.

Examples:
KL (B(p). B()) = KI(p. q), KL (N (11,0°), N (2, 0%)) = L)




|fP:P1®P2 and Q:Ql®Q2,then

KL(P, Q) = KL(Py, Q1) + KL(P2, @) .

Let (€2,.A) be a measurable space, and let P and @ be two probability
measures on (2,.4). Let X : Q — (X, B) be a random variable, and let
PX (resp. QX) be the push-forward measures, ie the laws of X wrt P
(resp. Q). Then

KL (PX, Q%) < KL(P, Q).

Let P, Q@ € M1(Q2, A). Then

1P~ Qv sup [P(A) — Q(a) < /D
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Proof: contraction

Contraction if KL(P, Q) = +o0, the result is obvious. Otherwise, P << Q@ and there exists
: Q — R such that for all measurable f : Q — R, fﬂ fdP = fn f dQ

e We first prove that PX < Q% and, if v(x ) 7EQ ‘X = x] is the Q-a.s. unique function
such that Eq [ 95| X] = v(X), then 'y— 9B . Indeed, for all B € B,
dP
cg dQ
dP dP
=Eq |Eq | —=1{X € B}|X|| =Eq |1{X € B}Eg | —=|X
o [sa [ Fgrox e 1] = 2o [rox c mrze ]|

PX(B>:P(XeB):./X Q = Eq [:—QE{XEB}]

= Eq[1{X € B}(X)] = /X _,70de = / dQ*

52 5 apPX
and hence P* < Q" and T =
e Now,

L(PX.,QX) = /leogv dQ* = /S;V(X)log'v(x)do
dP .
=Eq [(i) (EQ [E ‘X] )} where ¢ := x — x log(x) is convex

dP
< Egq {IEQ [¢7 <%> ‘XH by (conditional) Jensen’s inequality

=Eq [(z; (%)} =KL(P, Q) .



Proof: Pinsker

Let A€ A, p= P(A) and g = Q(A). By contraction,

KL(P. @) > KL(P*A, @*4) = KL (B(P(A)). B(Q(4)) ) = kI (P(4), Q(4)) = 2(P(4)~Q(A))* .



Application: Lower bound

” Chernoff’s bound is asymptotically almost tight”

Let € (0,1). Xi,..., Y, g B(w), and let x € (41, 1]. Then

1 _
lim inf . log P(Y, > x) > —kl(x, 1) .

Proof: Let ¢ > 0 and on the same probability space let Xi, ..., X, < B(x + €) and
Yi, ..., Yo 2 B(u). Then
nkl(x + €, ) = KL (PX, PY) by tensorization
> KL (Pl{x”zx}, P“V"zx}) by contraction

=kl (P(X, > x),P(Y, > x))

> P(X, > x)| ! log(2)
n > x)log ——— — lo|
> 2 x)log o=y ~ o8
1
since kI(p, q) = —h(p) + plog — + (1 — p) log 7 . Hence, by Hoeffding's inequality,
q —q
1 _ —nkl , log(2
liminf 2 log P(V > x) > liminf —x e p) T108(2) oy
m n n n(1 — exp(—2ne?))

for all € > 0, and we conclude by the continuity of kI(-, p).
Note that one can also derive non-asymptotic lower bounds.



PAC learning




Learning framework

e Underlying distribution D on X x ).

e Sample S =y (otherwise: transductive learning).

e h: X — ), h € H hypothesis class.

e loss function /(y,y’) (regression, classification)

e generalization error (loss) Lp(h)

e training error Ls(h)

e Realizable assumption: there exists h* such that Ls(h*) = 0.

e Antonym: agnostic learning.



Empirical risk minimization with inductive bias

Definition

Any learning algorithm hm of the form

ERMjy,(S) € argmin Ls(h)
heH

is called a empirical risk minimizer.

Risk of overfitting



PAC learnability: “probably approximately correct”

Definition
A hypothesis class # is PAC learnable if there exists a function
my : (0,1)2 = N and a learning algorithm S — h,,, such that for every
€,0 € (0,1), for every distribution Dx on X and for every labelling
function 7 : X — {0,1}, if the realizable assumption holds with respect
to H, Dx, f then when S = ((Xl, f(X1)), .-y (Xims f(Xm)) with
(Xi)i<i<m % Dy,

P<L(Dx,f)(i7m) > 6) < )

for all m > my(e, 9).
The smallest possible function my is called the sample complexity of

learning H.

Remark: Valiant’s PAC requires also sample complexity and running time

polynomial in 1/¢ and 1/4.



ETNIES

o 1 ={h,:ac R} where hy(x) = 1{x < a} is PAC-learnable with
sample complexity
log 2
mH(e,é) S =24
€
Proof: let a* be such that Ly (h,+) = 0 and let ag = inf{a : Dx([a, a*]) < €} and a1 = sup{a : Dx([a*, a]) < e}.
An ERM is g (x) = 1< 1 where T € [By, By]. with By = max{x : (x, 1) € S} and By = min{x : (x,0) € S}. Then
P(L(hg) > €) < P(By < ag) +P(By > a1). As Dx(ag, a*) > e,
P(By < ag) < (1 — Dx([ag, a™])™ < exp(—me).
e Exercise: Learning axis-aligned rectangles: given real numbers
a1 < by and a> < by, let
1 ifa;<xx<byand ar <x < by;
h(217b1,327b2)(X1’X2) = .
0 otherwise .
2 : 2
Let H2.. = {P(ay.br,20.b) - @1 < b1 and az < by }. Show that HZ is
PAC-learnable, with sample complexity

4log§-‘

€

my(€,0) < [



Finite hypothese classes are PAC-learnable

The sample complexity of finite hypothese classes in the realizable case is
log 13
5 .

€

smaller than m >

Theorem

Let H be a finite hypothesis class. Let €, € (0,1) and let m be an
integer that satisfies

[#]
log -5 '

€

m >

Then, for any labeling function f and for any distribution Dx on X,
under the realizability assumption, with probability at least 1 — ¢ over
the choice of iid sample S of size m, any ERM hypothesis B is such
that

Lipy.ry(hm) < €.
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The realizability assumption implies that an ERM /A75 has empirical risk
Ls(lAvs) = 0. Hence,

P(L(hs) = ¢) = D™ ({S € X" : 3h € H, Ls(h) = 0 and Lp(h) > c})

=D" | |J Sw| whereS,={Secaxm:L(h)=0}

h:Lp(h)>e
< D DE™(Sh)
h:Lp(h)>e
= > HDX {x€X:h(x)="F(x)})
h:Lp(h)>e i=1 P Sy
m
< Z H(l—e ’7—[| (1—¢)7 ”H‘exp me) .

h:L(DX,f)(h)ZE i=1
[#H]
log =5
€ 12

This quantity is smaller than § for m >
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