Machine Learning 3: KL divergence and lower bounds for deviations, PAC learning in the realizable case

Master 2 Computer Science

Aurélien Garivier 2019-2020

- 1. Kullback-Leibler divergence
- 2. PAC learning

Kullback-Leibler divergence

Definition

Let *P* and *Q* be two probability distributions on a measurable set Ω . The Kullback-Leibler divergence from *Q* to *P* is defined as follows:

- if P is not absolutely continuous with respect to Q, then $KL(P, Q) = +\infty;$
- otherwise, let $\frac{dP}{dQ}$ be the Radon-Nikodym derivative of P with respect to Q. Then

$$\mathsf{KL}(P,Q) = \int_{\Omega} \log \frac{dP}{dQ} \, dP = \int_{\Omega} \frac{dP}{dQ} \log \frac{dP}{dQ} \, dQ$$

Property: $0 \leq KL(P, Q) \leq +\infty$, KL(P, Q) = 0 iff P = Q.

If $P \ll Q$ and $f = \frac{dP}{dQ}$, $\int_{\Omega} f \log(f) dQ = \int_{\Omega} \left[f \log(f) \right]_{+} dQ - \int_{\Omega} \left[f \log(f) \right]_{-} dQ$, the later is finite since $\left[f \log(f) \right]_{-} \leq 1/e$.

Examples:

 $\mathsf{KL}(\mathcal{B}(p),\mathcal{B}(q)) = \mathsf{kl}(p,q), \ \mathsf{KL}(\mathcal{N}(\mu_1,\sigma^2), \ \mathcal{N}(\mu_2,\sigma^2)) = \frac{(\mu_1-\mu_2)^2}{2\sigma^2}.$

Properties

Tensorization of entropy:

If $P = P_1 \otimes P_2$ and $Q = Q_1 \otimes Q_2$, then

$$\mathsf{KL}(P,Q) = \mathsf{KL}(P_1,Q_1) + \mathsf{KL}(P_2,Q_2) .$$

Contraction of entropy data-processing inequality:

Let (Ω, \mathcal{A}) be a measurable space, and let P and Q be two probability measures on (Ω, \mathcal{A}) . Let $X : \Omega \to (\mathcal{X}, \mathcal{B})$ be a random variable, and let P^X (resp. Q^X) be the push-forward measures, ie the laws of X wrt P (resp. Q). Then

$$\mathsf{KL}(P^X, Q^X) \leq \mathsf{KL}(P, Q)$$
.

Pinsker's inequality:

Let $P, Q \in \mathfrak{M}_1(\Omega, \mathcal{A})$. Then

$$\|P-Q\|_{TV} \stackrel{ ext{def}}{=} \sup_{A \in \mathcal{A}} |P(A)-Q(A)| \leq \sqrt{rac{\mathsf{KL}(P,Q)}{2}}$$

Proof: contraction

Contraction: if $KL(P, Q) = +\infty$, the result is obvious. Otherwise, $P \ll Q$ and there exists $\frac{dP}{dQ} : \Omega \to \mathbb{R}$ such that for all measurable $f : \Omega \to \mathbb{R}$, $\int_{\Omega} f \, dP = \int_{\Omega} f \, \frac{dP}{dQ} \, dQ$.

• We first prove that $P^X \ll Q^X$ and, if $\gamma(x) := \mathbb{E}_Q\left[\frac{dP}{dQ}|X=x\right]$ is the Q-a.s. unique function such that $\mathbb{E}_Q\left[\frac{dP}{dQ}|X\right] = \gamma(X)$, then $\gamma = \frac{dP^X}{dQ^X}$. Indeed, for all $B \in \mathcal{B}$,

$$P^{X}(B) = P(X \in B) = \int_{X \in B} \frac{dP}{dQ} dQ = \mathbb{E}_{Q} \left[\frac{dP}{dQ} \mathbb{1} \{ X \in B \} \right]$$
$$= \mathbb{E}_{Q} \left[\mathbb{E}_{Q} \left[\frac{dP}{dQ} \mathbb{1} \{ X \in B \} | X \right] \right] = \mathbb{E}_{Q} \left[\mathbb{1} \{ X \in B \} \mathbb{E}_{Q} \left[\frac{dP}{dQ} | X \right] \right]$$
$$= \mathbb{E}_{Q} \left[\mathbb{1} \{ X \in B \} \gamma(X) \right] = \int_{X \in B} \gamma(X) dQ = \int_{B} \gamma dQ^{X}$$

and hence $P^X \ll Q^X$ and $\frac{dP^X}{dQ^X} = \gamma$.

• Now,

$$\begin{aligned} \mathsf{KL}\left(P^{X}, Q^{X}\right) &= \int_{\mathcal{X}} \gamma \log \gamma \ dQ^{X} = \int_{\Omega} \gamma(X) \log \gamma(X) \ dQ \\ &= \mathbb{E}_{Q}\left[\phi\left(E_{Q}\left[\frac{dP}{dQ}\Big|X\right]\right)\right] \quad \text{where } \phi := x \mapsto x \log(x) \text{ is convex} \\ &\leq \mathbb{E}_{Q}\left[\mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\Big|X\right]\right] \quad \text{ by (conditional) Jensen's inequality} \\ &= \mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\right] = \mathsf{KL}(P, Q) \ . \end{aligned}$$

Let $A \in A$, p = P(A) and q = Q(A). By contraction,

$$\mathsf{KL}(P,Q) \ge \mathsf{KL}(P^{1_A},Q^{1_A}) = \mathsf{KL}\left(\mathcal{B}(P(A)),\mathcal{B}(Q(A))\right) = \mathsf{kl}\left(P(A),Q(A)\right) \ge 2(P(A)-Q(A))^2.$$

Application: Lower bound "Chernoff's bound is asymptotically almost tight"

Let
$$\mu \in (0, 1)$$
. $X_1, \ldots, Y_n \stackrel{\text{id}}{\sim} \mathcal{B}(\mu)$, and let $x \in (\mu, 1]$. Then
$$\liminf_n \frac{1}{n} \log \mathbb{P}(\bar{Y}_n > x) \ge - \operatorname{kl}(x, \mu) .$$

Proof: Let $\epsilon > 0$ and on the same probability space let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{B}(x + \epsilon)$ and $Y_1, \ldots, Y_n \stackrel{iid}{\sim} \mathcal{B}(\mu)$. Then

$$n \operatorname{kl}(x + \epsilon, \mu) = \operatorname{KL} \left(P^{\mathbf{X}}, P^{\mathbf{Y}} \right) \quad \text{by tensorization}$$
$$\geq \operatorname{KL} \left(P^{1\{\bar{X}_n \ge x\}}, P^{1\{\bar{Y}_n \ge x\}} \right) \quad \text{by contraction}$$
$$= \operatorname{kl} \left(\mathbb{P}(\bar{X}_n \ge x), \mathbb{P}(\bar{Y}_n \ge x) \right)$$
$$\geq \mathbb{P}(\bar{X}_n \ge x) \log \frac{1}{\mathbb{P}(\bar{Y}_n \ge x)} - \log(2)$$

since $kl(p,q) = -h(p) + p \log \frac{1}{q} + (1-p) \log \frac{1}{1-q}$. Hence, by Hoeffding's inequality,

$$\liminf_{m} \frac{1}{n} \log \mathbb{P}(\bar{Y}_n > x) \geq \liminf_{n} \frac{-n \operatorname{kl}(x + \epsilon, \mu) + \log(2)}{n(1 - \exp(-2n\epsilon^2))} = -\operatorname{kl}(x + \epsilon, \mu)$$

for all $\epsilon > 0$, and we conclude by the continuity of kl (\cdot, μ) . Note that one can also derive non-asymptotic lower bounds.

PAC learning

- Underlying distribution D on $\mathcal{X} \times \mathcal{Y}$.
- Sample $S \stackrel{iid}{\sim} D$ (otherwise: transductive learning).
- $h: \mathcal{X} \to \mathcal{Y}, h \in \mathcal{H}$ hypothesis class.
- loss function I(y, y') (regression, classification)
- generalization error (loss) $L_D(h)$
- training error $L_S(h)$
- Realizable assumption: there exists h^* such that $L_S(h^*) = 0$.
- Antonym: agnostic learning.

Definition

Any learning algorithm \hat{h}_m of the form

 $\mathit{ERM}_{\mathcal{H}}(S) \in \operatorname*{arg\,min}_{h \in \mathcal{H}} \mathit{L}_{S}(h)$

is called a *empirical risk minimizer*.

Risk of overfitting

Definition

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm $S \mapsto \hat{h}_m$ such that for every $\epsilon, \delta \in (0,1)$, for every distribution D_X on \mathcal{X} and for every labelling function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathcal{H}, D_X, f then when $S = ((X_1, f(X_1)), \dots, (X_m, f(X_m))$ with $(X_i)_{1 \le i \le m} \stackrel{iid}{\sim} D_X,$ $\mathbb{P}(L_{(D_X, f)}(\hat{h}_m) \ge \epsilon) \le \delta$

for all $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

The smallest possible function $m_{\mathcal{H}}$ is called the *sample complexity* of learning \mathcal{H} .

Remark: Valiant's PAC requires also sample complexity and running time polynomial in $1/\epsilon$ and $1/\delta.$

Examples

H = {*h_a* : *a* ∈ ℝ} where *h_a(x)* = 1{*x* ≤ *a*} is PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil \frac{\log \frac{2}{\delta}}{\epsilon} \right\rceil$$

Proof: let a^* be such that $L_D(h_{a^*}) = 0$ and let $a_0 = \inf\{a : D_X([a, a^*]) \le \epsilon\}$ and $a_1 = \sup\{a : D_X([a^*, a]) \le \epsilon\}$. An ERM is $\hat{h}_S(x) = 1_{x \le T}$ where $T \in [B_0, B_1]$, with $B_0 = \max\{x : (x, 1) \in S\}$ and $B_1 = \min\{x : (x, 0) \in S\}$. Then $P(L(\hat{h}_S) \ge \epsilon) \le \mathbb{P}(B_0 < a_0) + \mathbb{P}(B_1 > a_1)$. As $D_X(a_0, a^*) \ge \epsilon$, $\mathbb{P}(B_0 < a_0) \le (1 - D_Y([a_0, a^*])^m \le \exp(-m\epsilon)$.

• Exercise: Learning axis-aligned rectangles: given real numbers $a_1 \leq b_1$ and $a_2 \leq b_2$, let

$$h_{(a_1,b_1,a_2,b_2)}(x_1,x_2) = \begin{cases} 1 & \text{ if } a_1 \leq x_1 \leq b_1 \text{ and } a_2 \leq x_2 \leq b_2 \text{ ;} \\ 0 & \text{ otherwise }. \end{cases}$$

Let $\mathcal{H}^2_{rec} = \{h_{(a_1,b_1,a_2,b_2)} : a_1 \leq b_1 \text{ and } a_2 \leq b_2\}$. Show that \mathcal{H}^2_{rec} is PAC-learnable, with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil rac{4 \log rac{4}{\delta}}{\epsilon}
ight
ceil \,.$$
 1

The sample complexity of finite hypothese classes in the realizable case is smaller than $m \ge \frac{\log \frac{|\mathcal{H}|}{\delta}}{\epsilon}$:

Theorem

Let \mathcal{H} be a finite hypothesis class. Let $\epsilon, \delta \in (0, 1)$ and let m be an integer that satisfies

$$m \geq \frac{\log \frac{|\mathcal{H}|}{\delta}}{\epsilon}$$

Then, for any labeling function f and for any distribution D_X on \mathcal{X} , under the realizability assumption, with probability at least $1 - \delta$ over the choice of iid sample S of size m, any ERM hypothesis \hat{h}_m is such that

$$L_{(D_X,f)}(\hat{h}_m) \leq \epsilon$$
.

Proof

The realizability assumption implies that an ERM \hat{h}_S has empirical risk $L_S(\hat{h}_S) = 0$. Hence, $\mathbb{P}\left(L(\hat{h}_{\mathcal{S}}) \geq \epsilon\right) = D_{X}^{\otimes m} \Big(\big\{ \mathcal{S} \in \mathcal{X}^{m} : \exists h \in \mathcal{H}, L_{\mathcal{S}}(h) = 0 \text{ and } L_{D}(h) \geq \epsilon \big\} \Big)$ $= D_X^{\otimes m} \left(\bigcup_{h: L_p(h) > \epsilon} S_h \right) \quad \text{where } S_h = \left\{ S \in \mathcal{X}^m : L_s(h) = 0 \right\}$ $\leq \sum D_X^{\otimes m}(S_h)$ $h:L_D(h) \ge \epsilon$ $=\sum_{h:L_D(h)\geq\epsilon}\prod_{i=1}^m\underbrace{D_X\big(\big\{x\in\mathcal{X}:h(x)=f(x)\big\}\big)}_{=1-L_D(h)\leq 1-\epsilon}$ $\leq \sum \prod (1-\epsilon) \leq |\mathcal{H}|(1-\epsilon)^m \leq |\mathcal{H}| \exp(-m\epsilon) \;.$ $h: L_{(D_{Y},f)}(h) \ge \epsilon i = 1$ This quantity is smaller than δ for $m \ge \frac{\log \frac{|\mathcal{H}|}{\delta}}{1}$.