Lecture 4: Supervised Learning

Yohann De Castro & Aurélien Garivier

The ML family

• Supervised Learning:

- Goal: Learn a function f predicting a variable Y from an individual X.
- Data: Learning set (X_i, Y_i)

• Supervised Learning:

- Goal: Learn a function f predicting a variable Y from an individual X.
- Data: Learning set (X_i, Y_i)
- Unsupervised Learning:
 - Goal: Discover a structure within a set of individuals (X_i).
 - Data: Learning set (X_i)

Supervised Learning

Decision Theory and Bias-Variance Decomposition, the quest for optimality

- Input measurement $\boldsymbol{X} \in \mathcal{X}$
- Output measurement $Y \in \mathcal{Y}$.
- $(\mathbf{X}, Y) \sim \mathbf{P}$ with \mathbf{P} unknown.
- Training data : $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)

- \bullet Input measurement $\boldsymbol{X} \in \mathcal{X}$
- Output measurement $Y \in \mathcal{Y}$.
- $(\mathbf{X}, Y) \sim \mathbf{P}$ with \mathbf{P} unknown.
- Training data : $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)
- Often
 - $X \in \mathbb{R}^d$ and $Y \in \{-1, 1\}$ (classification)
 - or $\mathbf{X} \in \mathbb{R}^d$ and $Y \in \mathbb{R}$ (regression).
- A classifier is a function in $\mathcal{F} = \{f : \mathcal{X} \to \mathcal{Y} \text{ meas.}\}$

6

- \bullet Input measurement $\bm{X} \in \mathcal{X}$
- Output measurement $Y \in \mathcal{Y}$.
- $(\mathbf{X}, Y) \sim \mathbf{P}$ with \mathbf{P} unknown.
- Training data : $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)
- Often
 - $X \in \mathbb{R}^d$ and $Y \in \{-1, 1\}$ (classification)
 - or $\mathbf{X} \in \mathbb{R}^d$ and $Y \in \mathbb{R}$ (regression).
- A classifier is a function in $\mathcal{F} = \{f : \mathcal{X} \to \mathcal{Y} \text{ meas.}\}$

Goal

- Construct a good classifier \hat{f} from the training data.
- Need to specify the meaning of good.
- Classification and regression are almost the same problem!

Loss function for a generic predictor

- Loss function : l(Y, f(X)) measures the goodness of the prediction of Y by f(X)
- Examples:
 - Prediction loss: $\ell(Y, f(\mathbf{X})) = \mathbf{1}_{Y \neq f(\mathbf{X})}$
 - Quadratic loss: $\ell(Y, \mathbf{X}) = |Y f(\mathbf{X})|^2$

Loss function for a generic predictor

- Loss function : l(Y, f(X)) measures the goodness of the prediction of Y by f(X)
- Examples:
 - Prediction loss: $\ell(Y, f(X)) = \mathbf{1}_{Y \neq f(X)}$
 - Quadratic loss: $\ell(Y, \mathbf{X}) = |Y f(\mathbf{X})|^2$

Risk function

Risk measured as the average loss for a new couple:

 $\mathcal{R}(f) = \mathbb{E}_{(X,Y)\sim \mathbf{P}}\left[\ell(Y,f(\mathbf{X}))\right]$

• Examples:

ML 2020

- Prediction loss: $\mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \mathbb{P}\left\{Y \neq f(\mathbf{X})\right\}$
- Quadratic loss: $\mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \mathbb{E}\left[|Y f(\mathbf{X})|^2\right]$

• **Beware:** As \hat{f} depends on \mathcal{D}_n , $\mathcal{R}(\hat{f})$ is a random variable!

- \bullet Input measurement $\bm{X} \in \mathcal{X}$
- Output measurement $Y \in \mathcal{Y}$.
- $(\mathbf{X}, Y) \sim \mathbf{P}$ with \mathbf{P} unknown.
- Training data : $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)

- Input measurement $\boldsymbol{X} \in \mathcal{X}$
- Output measurement $Y \in \mathcal{Y}$.
- $(\mathbf{X}, Y) \sim \mathbf{P}$ with \mathbf{P} unknown.
- Training data : $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)

Goal

• Learn a rule to construct a classifier $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

8

• The best solution f^* (which is independent of \mathcal{D}_n) is

 $f^* = \arg\min_{f\in\mathcal{F}} R(f) = \arg\min_{f\in\mathcal{F}} \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \arg\min_{f\in\mathcal{F}} \mathbb{E}_{\mathbf{X}}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y, f(\mathbf{x}))\right]\right]$

9

• The best solution f^* (which is independent of \mathcal{D}_n) is

$$f^* = \arg\min_{f \in \mathcal{F}} R(f) = \arg\min_{f \in \mathcal{F}} \mathbb{E} \left[\ell(Y, f(\mathbf{X})) \right] = \arg\min_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{X}} \left[\mathbb{E}_{Y|\mathbf{X}} \left[\ell(Y, f(\mathbf{x})) \right] \right]$$

Bayes Classifier (explicit solution)

• In binary classification with 0-1 loss:

$$f^*(\mathbf{X}) = \begin{cases} +1 & \text{if } \mathbb{P}\left\{Y = +1 | \mathbf{X}\right\} \ge \mathbb{P}\left\{Y = -1 | \mathbf{X}\right\} \\ & \Leftrightarrow \mathbb{P}\left\{Y = +1 | \mathbf{X}\right\} \ge 1/2 \\ -1 & \text{otherwise} \end{cases}$$

• In regression with the quadratic loss

$$f^*(\mathsf{X}) = \mathbb{E}\left[Y|\mathsf{X}
ight]$$

Issue: Explicit solution requires to know $\mathbb{E}[Y|X]$ for all values of X!

Machine Learning

- Learn a rule to construct a classifier $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .
- In practice, the rule should be an algorithm!

Machine Learning

- Learn a rule to construct a classifier $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .
- In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer

- One restricts f to a subset of functions $\mathcal{S} = \{f_{\theta}, \theta \in \Theta\}$
- One replaces the minimization of the average loss by the minimization of the empirical loss

$$\widehat{f} = f_{\widehat{\theta}} = \underset{f_{\theta}, \theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(\mathbf{X}_i))$$

• Example: univariate linear regression!

- General setting:
 - $\mathcal{F} = \{ \text{measurable fonctions } \mathcal{X} \to \mathcal{Y} \}$
 - Best solution: $f^* = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{R}(f)$
 - Class $\mathcal{S} \subset \mathcal{F}$ of functions
 - Ideal target in \mathcal{S} : $f_{\mathcal{S}}^* = \operatorname{argmin}_{f \in \mathcal{S}} \mathcal{R}(f)$
 - Estimate in \mathcal{S} : $\widehat{f}_{\mathcal{S}}$ obtained with some procedure

- General setting:
 - $\mathcal{F} = \{ \text{measurable fonctions } \mathcal{X} \to \mathcal{Y} \}$
 - Best solution: $f^* = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{R}(f)$
 - Class $\mathcal{S} \subset \mathcal{F}$ of functions
 - Ideal target in \mathcal{S} : $f_{\mathcal{S}}^* = \operatorname{argmin}_{f \in \mathcal{S}} \mathcal{R}(f)$
 - Estimate in \mathcal{S} : $\widehat{f}_{\mathcal{S}}$ obtained with some procedure

Approximation error and estimation error (Bias/Variance)

$$\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*) = \underbrace{\mathcal{R}(f^*_{\mathcal{S}}) - \mathcal{R}(f^*)}_{\mathcal{S}} + \underbrace{\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*_{\mathcal{S}})}_{\mathcal{S}}$$

Approximation error

Estimation error

- \bullet Approx. error can be large if the model ${\mathcal S}$ is not suitable.
- Estimation error can be large if the model is complex.

Model complexity

- Different behavior for different model complexity
- Low complexity model are easily learned but the approximation error ("bias") may be large (Under-fit).
- High complexity model may contains a good ideal target but the estimation error ("variance") can be large (Over-fit)

Model complexity

- Different behavior for different model complexity
- Low complexity model are easily learned but the approximation error ("bias") may be large (Under-fit).
- High complexity model may contains a good ideal target but the estimation error ("variance") can be large (Over-fit)

 $\mathsf{Bias-variance\ trade-off}\ \Longleftrightarrow\ \mathsf{avoid\ overfitting\ and\ underfitting}$

Agnostic approach

• No assumption (so far) on the law of (\mathbf{X}, Y) .

From large bias to overfitting

Model of the form
$$Y = w_0 + w_1 X + w_2 X^2 + \ldots + w_p X^p + \varepsilon$$

x

x

... a quest for optimality

Empirical Risk Minimizer on different Models

... a quest for optimality

Empirical Risk Minimizer on different Models

15

Statistical Learning Analysis

1

• Error decomposition:

$$\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*) = \underbrace{\mathcal{R}(f^*_{\mathcal{S}}) - \mathcal{R}(f^*)}_{\mathcal{S}} + \underbrace{\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*_{\mathcal{S}})}_{\mathcal{S}}$$

Approximation error

Estimation error

- Bound on the approximation term: approximation theory.
- Probabilistic bound on the estimation term: probability theory!
- **Goal:** Agnostic bounds, i.e. bounds that do not require assumptions on **P**! (Statistical Learning?)

Statistical Learning Analysis

• Error decomposition:

$$\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*) = \underbrace{\mathcal{R}(f^*_{\mathcal{S}}) - \mathcal{R}(f^*)}_{\mathcal{S}} + \underbrace{\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*_{\mathcal{S}})}_{\mathcal{S}}$$

Approximation error

Estimation error

- Bound on the approximation term: approximation theory.
- Probabilistic bound on the estimation term: probability theory!
- **Goal:** Agnostic bounds, i.e. bounds that do not require assumptions on **P**! (Statistical Learning?)
- Often need mild assumptions on P... (Nonparametric Statistics?)

How to find a good function f that makes small $R(f) = \mathbb{E} \left[\ell(Y, f(X)) \right] ?$ Canonical approach: $\hat{f}_{S} = \operatorname{argmin}_{f \in S} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_{i}, f(\mathbf{X}_{i}))$

Problems

- How to choose \mathcal{S} ?
- How to compute the minimization?

17

How to find a good function f that makes small

 $R(f) = \mathbb{E}\left[\ell(Y, f(X))\right]$?

Canonical approach: $\hat{f}_{S} = \operatorname{argmin}_{f \in S} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_{i}, f(\mathbf{X}_{i}))$

Problems

- How to choose \mathcal{S} ?
- How to compute the minimization?

Statistical Point of View

Solution: For **X**, estimate $Y|\mathbf{X}$ plug this estimate in the Bayes classifier: (generalized) linear models, kernel methods, k-nn, naive Bayes...

Optimization Point of View

Solution: If necessary replace the loss ℓ by an upper bound ℓ' and minimize the empirical loss: SVR, SVM, Neural Network, Boosting

Supervised Learning

Linear Regression

Experience, Task and Performance measure

- Training data : $\mathcal{D} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)
- Predictor: $f : \mathbb{R}^d \to \mathbb{R}$ measurable
- Cost/Loss function : ℓ(Y, f(X)) = |f(X) Y|² measure how well f(X) "predicts" Y

Risk:

$$egin{split} \mathcal{R}(f) &= \mathbb{E}\left[\ell(Y,f(\mathbf{X}))
ight] = \mathbb{E}_X\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y,f(\mathbf{X}))
ight]
ight] \ &\mathbb{E}\left[|Y-f(\mathbf{X})|^2
ight] = \mathbb{E}_X\left[\mathbb{E}_{Y|\mathbf{X}}\left[|Y-f(\mathbf{X})|^2
ight]
ight] \end{split}$$

Experience, Task and Performance measure

- Training data : $\mathcal{D} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)
- Predictor: $f : \mathbb{R}^d \to \mathbb{R}$ measurable
- Cost/Loss function : ℓ(Y, f(X)) = |f(X) Y|² measure how well f(X) "predicts" Y

• Risk:

$$\mathcal{R}(f) = \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \mathbb{E}_{X}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y, f(\mathbf{X}))\right]\right]$$
$$\mathbb{E}\left[|Y - f(\mathbf{X})|^{2}\right] = \mathbb{E}_{X}\left[\mathbb{E}_{Y|\mathbf{X}}\left[|Y - f(\mathbf{X})|^{2}\right]\right]$$

Goal

• Learn a rule to construct a predictor $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

Linear Model for Prediction

Linear Model

• Prediction model:

$$f_{\beta}(\mathbf{X}) = \sum_{j=1}^{p} \beta_j \mathbf{X}_j = \langle \mathbf{X}, \beta \rangle$$

with an unknown parameter $\boldsymbol{\beta} \in \mathbb{R}^p$

Losses

• Quadratic loss:
$$\ell(Y, f(\mathbf{X})) = \mathbb{E}\left[|Y - \langle \mathbf{X}, \beta \rangle|^2\right]$$

• Empirical quadratic loss:

$$\frac{1}{n}\sum_{i=1}^{n}|Y_{i}-\langle \mathbf{X}_{i},\beta \rangle|^{2}$$

Minimizer

• Loss minimizer:

$$\beta^{\dagger} = \operatorname{argmin} \mathbb{E} \left[|Y - \langle \mathbf{X}, \beta \rangle|^2 \right]$$

• Empirical loss minimizer:

$$\widehat{eta} = \operatorname{argmin} \frac{1}{n} \sum_{i=1}^{n} |Y_i - \langle \mathbf{X}_i, \beta \rangle|^2$$

• Empirical loss minimization: easy problem with an explicit

Optimization heuristic

• Minimizing the empirical loss

$$\frac{1}{n}\sum_{i=1}^{n}|Y_{i}-\langle \mathbf{X}_{i},\beta\rangle|^{2}.$$

is a good idea.

• This can easily be done here!

Optimization heuristic

• Minimizing the empirical loss

$$\frac{1}{n}\sum_{i=1}^{n}|Y_{i}-\langle \mathbf{X}_{i},\beta\rangle|^{2}.$$

is a good idea.

• This can easily be done here!

Statistical heuristic

- Estimating $\mathbb{E}[Y|X]$ is a good idea.
- A natural estimate (if we assume finite second order moments) is provided by the least squares approach (quadratic contrast minimization...)

The two approaches does not always coincide. (classification!)
 ML 2020

Linear Model for Prediction

• Capitalize on $\langle \mathbf{X}, \beta \rangle = \mathbf{X}^t \beta$

Matrix rewriting

• Denoting

$$\mathbf{X}_{(n)} = \begin{pmatrix} \mathbf{X}_{1}^{t} \\ \vdots \\ \mathbf{X}_{n}^{t} \end{pmatrix} \text{ and } \mathbf{Y}_{(n)} = \begin{pmatrix} Y_{1} \\ \vdots \\ Y_{n} \end{pmatrix}$$

we obtain

$$\widehat{eta} = \operatorname{argmin} \| \mathbf{Y}_{(n)} - \mathbf{X}_{(n)} eta \|^2.$$

Linear Model for Prediction

• Capitalize on $\langle \mathbf{X}, \beta \rangle = \mathbf{X}^t \beta$

Matrix rewriting

Denoting

$$\mathbf{X}_{(n)} = \begin{pmatrix} \mathbf{X}_{1}^{t} \\ \vdots \\ \mathbf{X}_{n}^{t} \end{pmatrix} \text{ and } \mathbf{Y}_{(n)} = \begin{pmatrix} Y_{1} \\ \vdots \\ Y_{n} \end{pmatrix}$$

we obtain

$$\widehat{eta} = \operatorname{argmin} \| \mathbf{Y}_{(n)} - \mathbf{X}_{(n)} eta \|^2.$$

Optimization

• First order optimality condition:

$$2\mathbf{X}_{(n)}^{t}(\mathbf{Y}_{(n)} - \mathbf{X}_{(n)}\beta) = 0 \Leftrightarrow \mathbf{X}_{(n)}^{t}\mathbf{X}_{(n)}\beta = \mathbf{X}_{(n)}^{t}\mathbf{Y}_{(n)}$$

• If $\mathbf{X}_{(n)}^{t} \mathbf{X}_{(n)}$ is invertible, the unique solution is given by $\widehat{\beta} = (\mathbf{X}_{(n)}^{t} \mathbf{X}_{(n)})^{-1} \mathbf{X}_{(n)}^{t} \mathbf{Y}_{(n)}$

Prediction = Projection

• $X_{(n)}\hat{\beta}$ is the orthonormal projection of $Y_{(n)}$ onto the space spanned by the column of $X_{(n)}$.

Non unique solution

- If X_(n) is not full rank, the minimizer is not unique but every solution yields the same prediction at the observation points.
- Beware: The predictions may differ on non observation points!

Bias-Variance Decomposition

Best $f_{\mathcal{S}} \in \mathcal{S}$

• General case:

$$\mathbb{E}\left[|Y - f_{\mathcal{S}}(\mathbf{X})|^{2}\right] = \min_{f \in \mathcal{S}} \underbrace{\mathbb{E}\left[|f^{\star}(\mathbf{X}) - f(\mathbf{X})|^{2}\right]}_{\text{Approx. error}} + \underbrace{\mathbb{E}\left[|\varepsilon|^{2}\right]}_{\text{Variability}}$$

 Issue: the best choice requires the knowledge of both f*(X) and the law of X!

Linear prediction

• Model:
$$f_{\beta}(\mathbf{X}) = \langle \mathbf{X}, \beta \rangle$$

 $\mathbb{E}\left[|Y - f_{\beta}(\mathbf{X})|^2\right] = \mathbb{E}\left[|f^*(\mathbf{X}) - \langle \mathbf{X}, \beta \rangle|^2\right] + \mathbb{E}\left[|\varepsilon|^2\right]$

• Best linear prediction:
$$f_{\beta^{\dagger}}$$
 with

$$\beta^{\dagger} = \underset{\beta}{\operatorname{argmin}} \underbrace{\mathbb{E}\left[|f^{\star}(\mathbf{X}) - \langle \mathbf{X}, \beta \rangle|^{2}\right]}_{\operatorname{Approx. error}} + \underbrace{\mathbb{E}\left[|\varepsilon|^{2}\right]}_{\operatorname{Variability}}$$

24

Empirical Risk Minimizer Case

•
$$\hat{f} = \operatorname{argmin}_{f \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} |Y_i - f(\mathbf{X}_i)|^2$$

•
$$R_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n |Y_i - \hat{f}(\mathbf{X}_i)|^2$$

- No independence between \hat{f} and $(X_i, Y_i)!$
- Intuitively $R_n(\hat{f})$ should be optimistic...:

$$\mathbb{E}\left[R_n(\widehat{f})\right] = \mathbb{E}\left[\inf_{f\in\mathcal{S}}R_n(f)\right] \leq \inf_{f\in\mathcal{S}}\mathbb{E}\left[R_n(f)\right] = \inf_{f\in\mathcal{S}}R(f) = R(f^{\dagger})$$

Two directions

- Find a way to correct $R_n(\hat{f})$?
- Estimate $R(\hat{f})$ in a different way?

Find a way to correct $R_n(\hat{f})$

• Bias correction: Find a correction $cor(\hat{f})$ such that

$$R(\hat{f}) \sim R_n(\hat{f}) + \operatorname{cor}(\hat{f}).$$

- Rk: An upper bound is already interesting.
- Issue:No easy way to construct such a bound without further assumptions...

Find a way to correct $R_n(\hat{f})$

• **Bias correction**: Find a correction $cor(\hat{f})$ such that

$$R(\hat{f}) \sim R_n(\hat{f}) + \operatorname{cor}(\hat{f}).$$

- Rk: An upper bound is already interesting.
- Issue:No easy way to construct such a bound without further assumptions...

Estimate $R(\hat{f})$ in a different way

- Naive idea: use another sample to estimate the error...
- Impossible by definition!
- Cross Validation: split the sample in two, learn with one part and estimate the error with the other one.
- Issue: not exactly the same estimator (less data is used...)

Supervised Learning

Classification and Logistic Regression

• Input: a data set \mathcal{D}_n

Learn Y|x or equivalently $p_k(\mathbf{x}) = \mathbb{P} \{Y = k | \mathbf{X} = \mathbf{x}\}$ (using the data set) and plug this estimate in the Bayes classifier

• Output: a classifier $\widehat{f} : \mathbb{R}^d \to \{-1, 1\}$

$$\widehat{f}(\mathbf{x}) = egin{cases} +1 & ext{if } \widehat{p}_{+1}(\mathbf{x}) \geq \widehat{p}_{-1}(\mathbf{x}) \ -1 & ext{otherwise} \end{cases}$$

- Three instantiations:
 - Generative Modeling (Bayes method)
 - 2 Logistic modeling (parametric method)
 - Searest neighbors (kernel method)

Bayes formula

$$p_k(\mathbf{x}) = rac{\mathbb{P}\left\{\mathbf{X} = \mathbf{x} | Y = k
ight\} \mathbb{P}\left\{Y = k
ight\}}{\mathbb{P}\left\{\mathbf{X} = \mathbf{x}
ight\}}$$

Remark: If one knows the law of (X, Y) or equivalently of X given y and of Y then everything is easy!

• Binary Bayes classifier (the best solution)

$$f^*(\mathbf{x}) = egin{cases} +1 & ext{if }
ho_{+1}(\mathbf{x}) \geq
ho_{-1}(\mathbf{x}) \ -1 & ext{otherwise} \end{cases}$$

- Heuristic: Estimate those quantities and plug the estimations.
- By using different models for ℙ {X|Y}, we get different classifiers.
- Remark: You can also use your favorite density estimator...

K-Nearest Neighbors

• Neighborhood $\mathcal{V}_{\mathbf{x}}$ of \mathbf{x} : k closest from \mathbf{x} learning samples.

k-NN as local conditional density estimate

$$\widehat{p}_{+1}(\mathbf{x}) = rac{\sum_{\mathbf{x}_i \in \mathcal{V}_{\mathbf{x}}} \mathbf{1}_{\{y_i = +1\}}}{|\mathcal{V}_{\mathbf{x}}|}$$

• KNN Classifier: $\widehat{f}_{KNN}(\mathbf{x}) = \begin{cases}
+1 & \text{if } \widehat{p}_{+1}(\mathbf{x}) \ge \widehat{p}_{-1}(\mathbf{x}) \\
-1 & \text{otherwise}
\end{cases}$

• Remark: You can also use your favorite kernel estimator...

Plugin Classification

Linear Classifier

• Classifier family:

$$\mathcal{S} = \{ f_{\theta} : \mathbf{x} \mapsto \mathtt{sign}\{ \beta^{\mathsf{T}} \mathbf{x} + \beta_{\mathbf{0}} \} \, / \beta \in \mathbb{R}^{d}, \beta_{\mathbf{0}} \in \mathbb{R} \}$$

• Natural loss: $\ell^{0/1}(Y, f(x)) = \mathbf{1}_{y \neq f(x)}$

Plugin Classification

Linear Classifier

• Classifier family:

$$\mathcal{S} = \{ f_{\theta} : \mathbf{x} \mapsto \mathtt{sign}\{ \beta^{\mathsf{T}} \mathbf{x} + \beta_{\mathbf{0}} \} / \beta \in \mathbb{R}^{d}, \beta_{\mathbf{0}} \in \mathbb{R} \}$$

• Natural loss:
$$\ell^{0/1}(Y, f(x)) = \mathbf{1}_{y \neq f(x)}$$

Empirical Risk Minimization

• ERM Classifier:

$$\widehat{f} = f_{\widehat{\theta}} = \operatorname*{argmin}_{f_{\theta}, \theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{Y_i \neq f_{\theta}}(\mathbf{x}_i))$$

- Not smooth or convex => no easy minimization scheme!
- \neq regression with quadratic loss case!
- How to go beyond?

Bayes Classifier and Plugin

Best classifier given by

$$f^*(\mathbf{X}) = egin{cases} +1 & ext{if} \quad \mathbb{P}\left\{Y = +1 | \mathbf{X}
ight\} \geq \mathbb{P}\left\{Y = -1 | \mathbf{X}
ight\} \ & \Leftrightarrow \mathbb{P}\left\{Y = +1 | \mathbf{X}
ight\} \geq 1/2 \ -1 & ext{otherwise} \end{cases}$$

- Plugin classifier: replace $\mathbb{P} \{ Y = +1 | X \}$ by a data driven estimate $\mathbb{P} \{ Y = +1 | X \}!$
- Other strategies are possible (Risk convexification...)

34

Plugin Linear Discrimination

- Model $\mathbb{P} \{ Y = +1 | X \}$ by $h(\beta^T X + \beta_0)$ with h non decreasing.
- $h(\beta^T X + \beta_0) > 1/2 \Leftrightarrow \beta^T X + \beta_0 h^{-1}(1/2) > 0$
- Linear Classifier: sign($\beta^T \mathbf{X} + \beta_0 h^{-1}(1/2)$)

Plugin Linear Discrimination

- Model $\mathbb{P} \{ Y = +1 | \mathbf{X} \}$ by $h(\beta^T \mathbf{X} + \beta_0)$ with h non decreasing.
- $h(\beta^T \mathbf{X} + \beta_0) > 1/2 \Leftrightarrow \beta^T \mathbf{X} + \beta_0 h^{-1}(1/2) > 0$
- Linear Classifier: sign $(\beta^T \mathbf{X} + \beta_0 h^{-1}(1/2))$

Plugin Linear Classifier Estimation

• Classical choice for h:

$$egin{aligned} h(t) &= rac{e^t}{1+e^t} & ext{logit or logistic} \ h(t) &= F_\mathcal{N}(t) & ext{probit} \ h(t) &= 1-e^{-e^t} & ext{log-log} \end{aligned}$$

- Choice of the *best* β from the data.
- Need to specify the quality criterion...

Logistic Regression and Odd

- Logistic model: $h(t) = \frac{e^t}{1+e^t}$ (most *natural* choice...)
- The Bernoulli law $\mathcal{B}(h(t))$ satisfies then

$$\frac{\mathbb{P}\left\{Y=1\right\}}{\mathbb{P}\left\{Y=-1\right\}} = e^t \Leftrightarrow \log \frac{\mathbb{P}\left\{Y=1\right\}}{\mathbb{P}\left\{Y=-1\right\}} = t$$

- Interpretation in term of odd.
- Logistic model: linear model on the logarithm of the odd.

Associated Classifier

• Plugin strategy:
$$f_{\beta}(x) = \begin{cases} 1 & \text{if } \frac{e^{x^{t}\beta}}{1+e^{x^{t}\beta}} > 1/2 \Leftrightarrow x^{t}\beta > \\ -1 & \text{otherwise} \end{cases}$$

()

Likelikood Rewriting

• Opposite of the log-likelihood:

$$\begin{aligned} &-\frac{1}{n}\sum_{i=1}^{n}\left(\mathbf{1}_{y_{i}=1}\log(h(x_{i}^{t}\beta))+\mathbf{1}_{y_{i}=-1}\log(1-h(x_{i}^{t}\beta))\right)\\ &=-\frac{1}{n}\sum_{i=1}^{n}\left(\mathbf{1}_{y_{i}=1}\log\frac{e^{x_{i}^{t}\beta}}{1+e^{x_{i}^{t}\beta}}+\mathbf{1}_{y_{i}=-1}\log\frac{1}{1+e^{x_{i}^{t}\beta}}\right)\\ &=\frac{1}{n}\sum_{i=1}^{n}\log\left(1+e^{-y_{i}(x_{i}^{t}\beta)}\right)\end{aligned}$$

- $\bullet\,$ Convex and smooth function of $\beta\,$
- Easy optimization.

Risk Convexification Heuristic

• **Prop:**
$$\ell^{0/1}(y_i, f_{\beta}(x_i)) = \mathbf{1}_{y_i(x_i^t\beta) < 0} \le \frac{\log\left(1 + e^{-y_i(x_i^t\beta)}\right)}{\log 2}$$

• Link between the empirical prediction loss and the likelihood:

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{y_{i}\neq f_{\beta}(x_{i})} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{y_{i}(x_{i}^{t}\beta)<0} \le \frac{1}{n\log 2}\sum_{i=1}^{n}\log\left(1+e^{-y_{i}(x_{i}^{t}\beta)}\right)$$

 Logistic: easy minimization of the right hand instead of the untractable left hand side...

Risk Convexification

