Lecture 4: Supervised Learning

Yohann De Castro & Aurélien Garivier
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The ML family

@ Supervised Learning:
e Goal: Learn a function f predicting a variable Y from an
individual X.

e Data: Learning set (X;, Y7)
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The ML family

@ Supervised Learning:

e Goal: Learn a function f predicting a variable Y from an
individual X.

e Data: Learning set (X;, Y;)
@ Unsupervised Learning:

e Goal: Discover a structure within a set of individuals (X;).
o Data: Learning set (X;)
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A Python Library: Scikit-Learn 4
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Supervised Learning

Decision Theory and Bias-Variance Decomposition, the quest for optimality



Framework

Supervised Learning Framework

@ Input measurement X € X
@ Qutput measurement Y € V.

o (X,Y) ~ P with P unknown.
@ Ilraining data

: Dp={(X1,Y1),...,( X, Yn)} (iid. ~P)
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Framework 6

Supervised Learning Framework

@ Input measurement X € X

@ Qutput measurement Y € V.
o (X,Y) ~ P with P unknown.
@ Training data : D, = {(X1, Y1),...,(Xn, Ya)} (i.id. ~P)

e Often
o XcR?and Y € {—1,1} (classification)
o or X € R and Y € R (regression).

e A classifier is a function in F = {f : X — ) meas.}

uuuuuuuuuu
nnnnnn

ML 2020 ﬂ@* =:

EEEEEEEEE



Framework 6

Supervised Learning Framework

@ Input measurement X € X

@ Qutput measurement Y € V.
o (X,Y) ~ P with P unknown.
@ Training data : D, ={(X1, Y1),...,(Xn, Yn)} (i.id. ~P)

e Often
o XcR?and Y € {—1,1} (classification)
o or X RY and Y € R (regression).

e A classifier is a function in F = {f : X — ) meas.}

@ Construct a good classifier f from the training data.

@ Need to specify the meaning of good.
@ Classification and regression are almost the same problem!

uuuuuuuu
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L.oss Function

Loss function for a generic predictor

@ | oss function :

((Y, f(X)) measures the goodness of the
prediction of Y by f(X)

@ Examples:

o Prediction loss: /(

Y, F(X)) = Lyxr(x)
o Quadratic loss: £(Y,

f
X) =Y — f(X)[
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L.oss Function

Loss function for a generic predictor

@ Loss function : (Y, f(X)) measures the goodness of the
prediction of Y by f(X)

@ Examples:

o Prediction loss: /(
o Quadratic loss: #(

@ Risk measured as the average loss for a new couple:

(X)) = Lyzr(x)

Y, f
Y. X) =Y = f(X)[*

@ Examples:
o Prediction loss: E [((Y,f(X))] =P{Y # f(X)}
o Quadratic loss: E [((Y,f(X))] =E [|Y — f(X)/|?|

o Beware: As f depends on D,, R(f) is a random variable!

uuuuuuuuuu
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Goal

Supervised Learning Framework

@ Input measurement X € X
@ Output measurement Y € ).

o (X,Y)~ P with P unknown.
@ Training data : D, = {(
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Goal

Supervised Learning Framework

@ Input measurement X € X

@ Output measurement Y € ).
o (X,Y)~ P with P unknown.
@ Training data : D, = {(X1, Y1),

N~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

e Learn a rule to construct a classifier f € F from the training
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Best Solution

@ The best solution f* (which is independent of D,,) is

f* = arg %‘2 R(f) = arg ,rrrg]r_lIE (Y, f(X))] = arg 'ngJQEX [EY|X (Y, f(x))]]
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Best Solution 9

@ The best solution f* (which is independent of D,) is

f* = arg ?1€|]rj_ R(f) = arg ;ry]rj_IE (Y, f(X))] = arg 'f‘y]f_lEx [EY|X (Y, f(x))]]

Bayes Classifier (explicit solution)

e In binary classification with 0 — 1 loss:

+1 if P{Y =+1|X} >P{Y = -1|X}
f(X) = &S P{Y =+1|X} >1/2
—1 otherwise

e In regression with the quadratic loss

fFF(X) = E[Y[X]

Issue: Explicit solution requires to know [E | Y| X] for all values of X!
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Empirical Risk Minimizer

10

Machine Learning

~~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

e Learn a rule to construct a classifier f € F from the training

@ In practice, the rule should be an algorithm!
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Empirical Risk Minimizer

10

Machine Learning

~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

e Learn a rule to construct a classifier f € F from the training

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer

@ One restricts f to a subset of functions S = {fy,0 € O}

@ One replaces the minimization of the average loss by the
minimization of the empirical loss

n

. 1
f=Ff

— argmin — (Y, fo(X;
0 fejg()ee n; ( (X))

@ Example: univariate linear regression!
ML 2020



Bias-Variance Trade-off .
@ General setting: /f ) a \
o F = {measurable fonctions X — y} I"’ e fg, —
o Best solution: f* = argmin,. » R(f) 'f:j’g S
o Class § C F of functions \ ‘ o /
o Ideal target in §: f& = argming.g R(f) ~_

ML 2020
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Bias-Variance Trade-off 11

@ General setting: / o
F = {measurable fonctions X — Y} :" 7 J—
Best solution: f* = argming. » R(f) . S

Class & C F of functions
|deal target in S: f4 = argmin;. g R(f) ~

A~

e Estimate in &: fs obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(Es) — R(F) = R(§) — R(F) + R(Fs) — R(f5)

Approximation error Estimation error

@ Approx. error can be large if the model & is not suitable.

@ Estimation error can be large if the model is complex.

nnnnnnnn
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Bias-Variance Trade-off 12

Underfit o
(High bias) Generalization

error

Overfit
(High
variance)

Error

Model complexity
@ Different behavior for different model complexity

@ Low complexity model are easily learned but the
approximation error (“bias”) may be large (Under-fit).

@ High complexity model may contains a good ideal target but
the estimation error (“variance”) can be large (Over-fit)
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Bias-Variance Trade-off 12

Underfit
(High bias)

Generalization
error

Overfit
(High
variance)

Error

I
I
|
|
1

Model complexity

@ Different behavior for different model complexity

@ Low complexity model are easily learned but the
approximation error (“bias”) may be large (Under-fit).

@ High complexity model may contains a good ideal target but
the estimation error (“variance”) can be large (Over-fit)

Bias-variance trade-off <= avoid overfitting and underfitting

Agnostic approach

@ No assumption (so far) on the law of (X, Y).
ML 2020 A



From large bias to overfitting ....

13
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From large bias to overfitting .... 14

... a quest for optimality

it Jrd Degree Polyncmial

- 10th Degre= Pclynom a

Empirical Risk Minimizer on different Models
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From large bias to overfitting .... 14

... a quest for optimality

it Jrd Degree Polyncmial

- 10th Degre= Pclynom a

Empirical Risk Minimizer on different Models
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From large bias to overfitting ....

15

Approximation Interpolation
-
Underfitting = Overfitting
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of the model (~ effective number of degrees of freedom)
[mainly tuned by the hyperparameters of the estimator]
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Approximation vs Estimation 16

Statistical Learning Analysis
@ Error decomposition:

R(fs) — R(F*) = R(£5) — R(F*) + R(Fs) — R(£S)

- '
Approximation error Estimation error

-~

—

@ Bound on the approximation term: approximation theory.

@ Probabilistic bound on the estimation term: probability
theory!

@ Goal: Agnostic bounds, i.e. bounds that do not require
assumptions on P! (Statistical Learning?)
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Approximation vs Estimation 16

Statistical Learning Analysis
@ Error decomposition:

R(fs) — R(F*) = R(£5) — R(F*) + R(Fs) — R(£S)

- '
Approximation error Estimation error

-~

—

@ Bound on the approximation term: approximation theory.

@ Probabilistic bound on the estimation term: probability
theory!

@ Goal: Agnostic bounds, i.e. bounds that do not require
assumptions on P! (Statistical Learning?)

e Often need mild assumptions on P... (Nonparametric
Statistics?)

ML 2020
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Take Home Message

17

How to find a good function f that makes small
R(f) =E[(Y,f(X))] 7?
Canonical approach: fs = argming LS UYL (X))

@ How to choose &7

@ How to compute the minimization?
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Take Home Message 17

How to find a good function f that makes small
R(f) =E[((Y,f(X))] 7

Canonical approach: fs = argmingcg % > oim LY, (X))

Problems

@ How to choose &7

@ How to compute the minimization?

Statistical Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes
classifier: (generalized) linear models, kernel methods, k-nn, naive
Bayes...

Optimization Point of View

Solution: If necessary replace the loss / by an upper bound ¢ and
minimize the empirical loss: SVR, SVM, Neural Network, Boosting

ML 2020 T =i



Supervised Learning

Linear Regression



Linear Model on a starter 19

Experience, Task and Performance measure

o Training data : D = {(X1, Y1), ..., (Xn, Ya)}  (i.i.d. ~ P)

@ Predictor: f: RY — R measurable

@ Cost/Loss function : £(Y, f(X)) = |F(X) — Y|* measure how
well £(X) “predicts" Y

@ Risk:

R(f) =E[(Y, F(X))] = Ex [Eyx [((Y, £(X))]
E|[|Y - f(X)]?] =Ex [Eyx [|Y — f(X)2]]
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Linear Model on a starter

Experience, Task and Performance measure

@ Training data : D = {(X1, Y1),--., (X, Yn)} (i.id. ~P)
@ Predictor: f:RY — R measurable

@ Cost/Loss function :

(Y, f(X)) = |[f(X) — Y|* measure how
well £(X) “predicts" Y

@ Risk:

R(f) =E[(Y, F(X))] = Ex [Eyx [((Y, £(X))]

E|[|Y - F(X)]?] = Ex [Eyx [|Y = FX)P]]

S~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

@ Learn a rule to construct a predictor f € F from the training

ML 2020
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Linear Model for Prediction

20

Linear Model
@ Prediction model:

p
f3(X) =Y 68X = (X,3)
j=1

with an unknown parameter 3 € RP

ML 2020
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Linear Model for Prediction

L osses

@ Quadratic loss: |, ,,
Q (Y. F(X) =E[lY - (X.5)P]
@ Empirical quadratic loss:

1 n
=Y = (X, B))?
(e

Minimizer
@ Loss minimizer:

3" = argmin E “ Y — (X, ,.3)|2}

@ Empirical loss minimizer:

~ 1 < |
3 = argmin — Z 1Y — (X, ;")’)]2
n -
i=1

@ Empirical loss minimization: easy problem with an explicit

EEEEEEEE
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Linear Model for Prediction

21

Optimization heuristic
@ Minimizing the empirical loss

Is a good idea.

@ This can easily be done here!

ML 2020



Linear Model for Prediction 21

Optimization heuristic

@ Minimizing the empirical loss

Is a good idea.
@ This can easily be done here!

Statistical heuristic

@ Estimating E [Y|X] is a good idea.

@ A natural estimate (if we assume finite second order
moments) is provided by the least squares approach
(quadratic contrast minimization...)

@ The two approaches does not always coincide. (classification!)
ML 2020 2 =S



Linear Model for Prediction

e Capitalize on (X, 3) = X3

Matrix rewriting
@ Denoting

i 2

X(n) — : and Y(n) —
\X;./

\Y,,/

we obtain

8= argmin ||Y () — X(,,),,BHz.
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Linear Model for Prediction

22

e Capitalize on (X, 3) = X3

Matrix rewriting

@ Denoting

X0\ i\
X(n) = and Y(n) —
\X}/ \Y,/
we obtain ~
3 = argmin HY(n) — X(n)'wz
Optimization

@ First order optimality condition:

2X€n)(Y(n) — X(n)ﬁ) =0 an)X(n)‘B — an)Y(n)
o If an)X(n) is invertible, the unique solution is given by

B = (X{nXm) X Yin
ML 2020
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Linear Model for Prediction 23

Prediction =

)

@ X(n) is the orthonormal projection of Y, onto the space
spanned by the column of X,

Non unique solution

@ If X, is not full rank, the minimizer is not unique but every
solution yields the same prediction at the observation points.

@ Beware: The predictions may differ on non observation points!

uuuuuuuu
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Bias-Variance Decomposition

24

@ General case:

E Y — f5(X)2| =minE
1Y = fs(X)]° rfn_'g[

F*(X) — f(X)|2]l+ E ||e?]

S —

Approx. error

Variability

@ Issue: the best choice requires the knowledge of both f*(X)
and the law of X!

Linear prediction

o Model: f3(X) = (X, 3)
ElY = 6X)] =E ||f(X) = (X, 8)

| +B [l
@ Best linear prediction: f4; with

3" = argmin E [lf*(X) — (X, _B}|2] + E {Ié?lz}
;BN

"
—~—

N ——’

Approx. error Variability

ML 2020
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ERM 25

Empirical Risk Minimizer Case
o 7= argminges L300, Vi~ F(X))P
a1 A
o Ry(f) = nZ‘Y" F(X:)[?
i—1

o No independence between f and (X;, Y;)!
o Intuitively R,(f) should be optimistic...

[ [Rn(?)} = [k {flgg R,,(f)} < }21‘9 < [Ra(F)] =

Two directions

e Find a way to correct R,,(?)?

N

@ Estimate R(f) in a different way?

ML 2020
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Issues

A

Find a way to correct R,(f)

@ Bias correction: Find a correction cor(?) such that

R(f) ~ Ry(f) + cor(f).
@ Rk: An upper bound is already interesting.

@ Issue:No easy way to construct such a bound without further
assumptions...

ML 2020



Issues

A

Find a way to correct R,(f)

@ Bias correction: Find a correction cor(?) such that
R(F) ~ Ra(f) + cor(f).

@ Rk: An upper bound is already interesting.

@ Issue:No easy way to construct such a bound without further
assumptions...

A

Estimate R(f) in a different way

@ Naive idea: use another sample to estimate the error...
@ Impossible by definition!

@ Cross Validation: split the sample in two, learn with one part
and estimate the error with the other one.

o Issue: not exactly the same estimator (less data is used...)

\\\\\\\\\\
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Supervised Learning

Classification and Logistic Regression



Classification rule

@ Input: a data set D,

Learn Y'|x or equivalently p,(x) =P {Y = k|X = x} (using
the data set) and plug this estimate in the Bayes classifier

o Output: a classifier f : RY — {—1,1}

2 if D > D_
f(X) _ +1 if p—l-l(x) Z P 1(X)
—1 otherwise

® [ hree instantiations:

© Generative Modeling (Bayes method)

© Logistic modeling (parametric method)
© Nearest neighbors (kernel method)

ML 2020
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Classification rule

29

Bayes formula

i) PNV HE(Y =

Remark: If one knows the law of (X, Y) or equivalently of X
given y and of Y then everything is easy!

@ Binary Bayes classifier (the best solution)

)

1 if > p_
F*(x) = ¢ +1 P+1(x.) > p-1(x)
-1 otherwise

@ Heuristic: Estimate those quantities and plug the estimations.

@ By using different models for P {X|Y'}, we get different
classifiers.

@ Remark: You can also use your favorite density estimator...
ML 2020
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K-Nearest Neighbors

30
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K-Nearest Neighbors

31
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K-Nearest Neighbors, a local averaging

32

@ Neighborhood V, of x: k closest from x learning samples.

k-NN as local conditional density estimate

@ KNN Classifier:

?KNN(X) _ +1 if pra(x) = p-1(x)
—1 otherwise

@ Remark: You can also use your favorite kernel estimator...

ML 2020
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Plugin Classification

33

Linear Classifier
@ Classifier family:

S = {fg . X = sign{,BTX + ‘1'30} /d = Rd, 'BO = R}
o Natural loss: (91(Y, f(x)) =1, 4f(x)

ML 2020
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Plugin Classification

Linear Classifier

@ Classifier family:

— {fg . X = Sign{.;f'i’Tx + ;))0}/d = Rd, 330 = R}
o Natural loss: (%1(Y, f(x)) =1, 4¢(x)

Empirical Risk Minimization

@ ERM C(lassifier:

f=r

=argmin— » 1y ¢
0 AV n; #fo(X;))

@ Not smooth or convex = no easy minimization scheme!
@ + regression with quadratic loss case!

@ How to go beyond?

ML 2020
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Plugin Classification

34

Bayes Classifier and Plugin
@ Best classifier given by

+1 if P{Y =+1|X} > P{Y = —1|X)

&S P{Y =+1|X} >1/2
—1 otherwise

F(X) =

@ Plugin classifier: replace P{Y = +1|X} by a data driven

A

estimate P {Y = +1|X}!

@ Other strategies are possible (Risk convexification...)

ML 2020
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Plugin Classification

35

Plugin Linear Discrimination

@ Model P{Y = +1|X} by h(3"X + 39) with h non decreasing.
@ h(BTX+By)>1/2 BTX+Bo—h1(1/2) >0
o Linear Classifier: sign(3"X + 8o — h=1(1/2))

ML 2020
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Plugin Classification

35

Plugin Linear Discrimination

@ Model P{Y = +1|X} by h(3"X + 39) with h non decreasing.
@ h(BTX+Fo)>1/2< BTX+Bo—h11/2) >0
o Linear Classifier: sign(3" X + 5o — h=1(1/2))

Plugin Linear Classifier Estimation

@ (lassical choice for h:

h(t) = ; i " logit or logistic
h(t) = Far(t) probit
h(t)=1—e¢ log-log

@ Choice of the best 3 from the data.

@ Need to specify the quality criterion...
ML 2020
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Logistic Regression

36

Logistic Regression and Odd

@ Logistic model: h(t) = 1fet (most natural choice...)

@ The Bernoulli law B(h(t)) satisfies then

P{Y =1} 4
P{Y:—l}_e < log

P{y=1}
P{y=-1} °

@ Interpretation in term of odd.

@ Logistic model: linear model on the logarithm of the odd.

Associated Classifier

@ Plugin strategy:

]. f ext/;“:( 1 2 <:> t3 O
fa(x) = { T e / X"p >

—1 otherwise

ML 2020
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Logistic Regression

37

Likelikood Rewriting
@ Opposite of the log-likelihood:

1 . ,
= =3 (11 log(h(x{ 8)) + 1y,——1log(1 — h(x{3)))
i=1

1 e’ 1
= —— 1,110 -
o3 (e )

| 1 .=_" |Og
+ ex,-td Vi 1 n exit"j

1

= ,2:; log (1 + e_y"(xft"'a)))

@ Convex and smooth function of 3
@ Easy optimization.

ML 2020
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Logistic Regression

38

Risk Convexification Heuristic

og (1 + e Y8
@ Prop: Eo/l(yl', fa(xi)) =1 yi(xt8)<0 < ( )

log 2
@ Link between the empirical prediction loss and the likelihood

1
_ Z lyl;éf;_](xl — Z ly, td)<0 < n|0g Zlog (1 + e Y:(X <3))

@ Logistic: easy minimization of the right hand instead of the
untractable left hand side...
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Risk Convexification

39

0 !

3 2

1

0

1

= |Ogistic

square

—

2

¢(a, 1) for several classification losses
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