Machine Learning 5: PAC learning, No-Free-Lunch theorem, uniform convergence

Master 2 Computer Science

Aurélien Garivier 2019-2020

- 1. PAC learning
- 2. No-Free-Lunch theorems: when learning is not possible
- 3. Uniform convergence for infinite classes: VC dimension

Défi 2019 - Mozilla Fixefox d (
🖬 📑 💿 f13.pdf 🛛 🗙 📩 Julien 1	Tierny - Topo 🗴 🛛 🔀 Persistence2018.po	X Geometric and Topolo X Microsoft 1	Nord - CV 🖂 🗙 📔 CANieeespm08.pdf 🛪 🛛 📴 [190	6.11300] Beni 🛪 🛛 🕸 Slack defiia2020 🗙	Défi 2019 × +
	tional des Sciences (FR) https://defi-i	a insa-toulouse fr		··· 🖂 🏠	⊪\⊡ <mark>⊛</mark> ⊒ ® ≡
🗘 Les plus visités 🔮 SciDoLySE 🚭 Accuell 🔋 rubik					
		Accueil	🕐 FAQ 👹 Se connecter 🕒 S'inscrie	re 🖻 Défis Précédents 🔹	
	Toulouse School of Economics		université Bordeaux 👸 😈 🎫		
Avec le soutien de :					
			Madics		
Journée de Lancement du défi					
	Lieu: Amphi Schwartz, université Paul S Date: Jeudi 10 Octobre 2019. Programme: (Non définitif)	Sabatier, båtiment 1R3. (Plan : C4) .			
	14h Cécile Chouquet (UPS)		Présentation du Défi.		
	14h15 Jayant Sen Gupta (Airbus)				
15h15 Brendun Guillourt (NSA Toulouse) Présentation du site					
Classement pour la première partie					

PAC learning

Definition

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ and a learning algorithm $S \mapsto \hat{h}_m$ such that for every $\epsilon, \delta \in (0,1)$, for every distribution D_X on \mathcal{X} and for every labelling function $f : \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathcal{H}, D_X, f then when $S = ((X_1, f(X_1)), \dots, (X_m, f(X_m)))$ with $(X_i)_{1 \le i \le m} \stackrel{iid}{\sim} D_X,$ $\mathbb{P}(L_{(D_X, f)}(\hat{h}_m) \ge \epsilon) \le \delta$

for all $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

The smallest possible function $m_{\mathcal{H}}$ is called the *sample complexity* of learning \mathcal{H} .

Remark: Valiant's PAC requires also sample complexity and running time polynomial in $1/\epsilon$ and $1/\delta.$

The sample complexity of finite hypothese classes in the realizable case is smaller than $\frac{\log \frac{|\mathcal{H}|}{\delta}}{\epsilon}$:

Theorem

Let \mathcal{H} be a finite hypothesis class. Let $\epsilon, \delta \in (0, 1)$ and let m be an integer that satisfies

$$m \geq \frac{\log \frac{|\mathcal{H}|}{\delta}}{\epsilon}$$

Then, for any labeling function f and for any distribution D_X on \mathcal{X} , under the realizability assumption, with probability at least $1 - \delta$ over the choice of iid sample S of size m, any ERM hypothesis \hat{h}_m is such that

$$L_{(D_X,f)}(\hat{h}_m) \leq \epsilon$$
.

Proof

The realizability assumption implies that an ERM \hat{h}_S has empirical risk $L_S(\hat{h}_S) = 0$. Hence, $\mathbb{P}\left(L(\hat{h}_{\mathcal{S}}) \geq \epsilon\right) = D_{X}^{\otimes m} \Big(\big\{ \mathcal{S} \in \mathcal{X}^{m} : \exists h \in \mathcal{H}, L_{\mathcal{S}}(h) = 0 \text{ and } L_{D}(h) \geq \epsilon \big\} \Big)$ $= D_X^{\otimes m} \left(\bigcup_{h: L_p(h) > \epsilon} S_h \right) \quad \text{where } S_h = \left\{ S \in \mathcal{X}^m : L_s(h) = 0 \right\}$ $\leq \sum D_X^{\otimes m}(S_h)$ $h:L_D(h) \ge \epsilon$ $=\sum_{h:L_D(h)\geq\epsilon}\prod_{i=1}^m\underbrace{D_X\big(\big\{x\in\mathcal{X}:h(x)=f(x)\big\}\big)}_{=1-L_D(h)\leq 1-\epsilon}$ $\leq \sum \prod (1-\epsilon) \leq |\mathcal{H}|(1-\epsilon)^m \leq |\mathcal{H}|\exp(-m\epsilon)$. $h: L_{(D_{Y},f)}(h) \ge \epsilon i = 1$ This quantity is smaller than δ for $m \ge \frac{\log \frac{|\mathcal{H}|}{\delta}}{1}$.

Agnostic PAC learnability

Definition

A hypothesis class \mathcal{H} is *agnostic PAC learnable* if there exists a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ and a learning algorithm $S \mapsto \hat{h}_m$ such that for every $\epsilon, \delta \in (0,1)$, for every distribution D on $\mathcal{X} \times \mathcal{Y}$ when $S = ((X_1, Y_1), \dots, (X_m, Y_m)) \stackrel{iid}{\sim} D$,

$$\mathbb{P}\Big(L_D(\hat{h}_m) \geq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon\Big) \leq \delta$$

for all $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

The smallest possible function $m_{\mathcal{H}}$ is called the *sample complexity* of learning \mathcal{H} .

If the realizable assumption holds, boils down to PAC learnability. Otherwise, recall that the best Bayes classifier has a risk not larger than $\min_{h' \in \mathcal{H}} L_D(h')$.

Learning via uniform convergence

Definition

A training set S is called ϵ -representative (wrt domain $\mathcal{X} \times \mathcal{Y}$, hypothese class \mathcal{H} , loss function I and distribution D) if

$$\forall h \in \mathcal{H}, \left| L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h) \right| \leq \epsilon$$
.

Lemma

If S is $\epsilon/2$ -representative, then any ERM \hat{h}_m defined by $\hat{h}_m \in \arg\min_{h \in \mathcal{H}} L_S(h)$ satisfies:

$$L_D(\hat{h}_m) \leq \min_{h \in \mathcal{H}} L_D(h) + \epsilon$$
.

Proof: for every $h \in \mathcal{H}$,

$$L_D(\hat{h}_m) \leq L_S(\hat{h}_m) + \frac{\epsilon}{2} \leq L_S(h) + \frac{\epsilon}{2} \leq L_D(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

Definition

A hypothesis class \mathcal{H} has the uniform convergence property (wrt $\mathcal{X} \times \mathcal{Y}$ and *I*) if there exists a function $m_{\mathcal{H}}^{UC} : (0,1)^2 \to \mathbb{N}$ such that for every $\epsilon, \delta \in (0,1)$ and for every distribution D over $\mathcal{X} \times \mathcal{Y}$, a sample $S = ((X_1, Y_1), \dots, (X_m, Y_m)) \stackrel{iid}{\sim} D$ of size $m \ge m_{\mathcal{H}}^{UC}(\epsilon, \delta)$ has probability at least $1 - \delta$ to be ϵ -representative.

Corollary

If \mathcal{H} has the uniform convergence property with a function $m_{\mathcal{H}}^{UC}$, then \mathcal{H} is agnostically PAC learnable with a sample complexity $m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\frac{\epsilon}{2}, \delta)$. Furthermore, the ERM is a successful PAC learner for \mathcal{H} .

Theorem

Let \mathcal{H} be a finite hypothesis class. Then \mathcal{H} enjoys the uniform convergence property with sample complexity

$$m_{\mathcal{H}}^{UC}(\epsilon,\delta) \leq \left\lceil rac{\log rac{2|\mathcal{H}|}{\delta}}{2\epsilon^2}
ight
ceil$$

Moreover, \mathcal{H} is agnostically PAC learnable using an ERM algorithm with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq 2m_{\mathcal{H}}^{\textit{UC}}\left(rac{\epsilon}{2},\delta
ight) \leq \left\lceil rac{2\lograc{2|\mathcal{H}|}{\delta}}{\epsilon^2}
ight
ceil$$

Proof: Hoeffding's inequality and the union bound.

No-Free-Lunch theorems: when learning is not possible

Theorem

Let A be any learning algorithm for binary classification over a domain \mathcal{X} . If the training set size is $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- there exists a function $f : \mathcal{X} \to \{0, 1\}$ with $L_D(f) = 0$;
- with probability at least 1/7 over the choice of $S \sim \mathcal{D}^{\otimes m}$,

$$L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$$

Note that the ERM over $\mathcal{H} = \{f\}$, or over any set \mathcal{H} such that $m \ge 8 \log(7|\mathcal{H}|/6)$, is a successful learner in that setting.

Proof

Take $C \subset \mathcal{X}$ of cardinality 2m, and $\{0, 1\}^C = \{f_1, \ldots, f_T\}$ where $T = 2^{2m}$. For each $1 \leq i \leq T$, we denote by D_i the probability distribution on $C \times \{0, 1\}$ defined by

$$D_{i}(\{x, y\}) = \begin{cases} \frac{1}{2m} \text{ if } y = f_{i}(x) \\ 0 \text{ otherwise.} \end{cases}$$

We will show that $\max_{1 \le i \le T} \mathbb{E}[L_{D_i}(A(S))] \ge 1/4$, which entails the result thanks to the small lemma: if $P(0 \le Z \le 1) = 1$ and $\mathbb{E}[Z] \ge 1/4$, then $\mathbb{P}(Z \ge 1/8) \ge 1/7$. Indeed, $1/4 \le \mathbb{E}[Z] \le \mathbb{P}(Z < 1/8)/8 + \mathbb{P}(Z \ge 1/8) = 1/8 - 7 \mathbb{P}(Z \ge 1/8)/8$. All the X-samples S_1^X, \ldots, S_k^X , for $k = m^{2m}$, are equally likely. For $1 \le j \le k$, if $S_j^X = (x_1, \ldots, x_m)$ we denote by $S_j^i = ((x_1, f_i(x_1)), \ldots, (x_m, f_i(x_m)), \text{ and } \hat{f}_j^i = A(S_j^i)$.

$$\max_{1 \le i \le T} \mathbb{E} \Big[\mathcal{L}_{D_{i}} \left(\mathcal{A}(S) \right) \Big] = \max_{1 \le i \le T} \frac{1}{r} \sum_{k=1}^{k} \mathcal{L}_{D_{i}} \left(\hat{f}_{j}^{i} \right) \ge \frac{1}{T} \sum_{i=1}^{T} \frac{1}{k} \sum_{j=1}^{k} \mathcal{L}_{D_{i}} \left(\hat{f}_{j}^{i} \right)$$
$$= \frac{1}{k} \sum_{j=1}^{k} \frac{1}{r} \sum_{i=1}^{T} \mathcal{L}_{D_{i}} \left(\hat{f}_{j}^{i} \right) \ge \min_{1 \le j \le k} \frac{1}{T} \sum_{i=1}^{T} \mathcal{L}_{D_{i}} \left(\hat{f}_{j}^{i} \right)$$

 $\mathsf{Fix} \ 1 \leq j \leq \mathsf{k}, \ \mathsf{denote} \ \mathsf{S}_j^X = (\mathsf{x}_1, \ldots, \mathsf{x}_m) \ \mathsf{and} \ \mathsf{define} \ \{\mathsf{v}_1, \ldots, \mathsf{v}_p\} = \mathsf{C} \setminus \{\mathsf{x}_1, \ldots, \mathsf{x}_m\}, \ \mathsf{where} \ p \geq \mathsf{m}. \ \mathsf{Then} \ \mathsf{Then} \ \mathsf{S}_j^X = (\mathsf{x}_1, \ldots, \mathsf{x}_m) \ \mathsf{and} \ \mathsf{define} \ \mathsf{s}_j^X = \mathsf{C} \setminus \{\mathsf{x}_1, \ldots, \mathsf{x}_m\}, \ \mathsf{where} \ \mathsf{p} \geq \mathsf{m}. \ \mathsf{Then} \ \mathsf{S}_j^X = \mathsf{C} \setminus \{\mathsf{x}_1, \ldots, \mathsf{x}_m\}, \ \mathsf{where} \ \mathsf{p} \geq \mathsf{m}. \ \mathsf{Then} \ \mathsf{S}_j^X = \mathsf{C} \setminus \{\mathsf{x}_1, \ldots, \mathsf{x}_m\}, \ \mathsf{s}_j^X = \mathsf{C} \setminus \{\mathsf{x}_j, \ldots, \mathsf{x}_m\}, \ \mathsf{s}_j^X = \mathsf{C} \setminus \mathsf{C$

$$L_{D_{i}}\left(\hat{f}_{j}^{i}\right) = \frac{1}{2m} \sum_{x \in C} \mathbb{1}\left\{\hat{f}_{j}^{i}(x) \neq f_{i}(x)\right\} \geq \frac{1}{2p} \sum_{r=1}^{p} \mathbb{1}\left\{\hat{f}_{j}^{i}(v_{r}) \neq f_{i}(v_{r})\right\}$$

and hence

$$\frac{1}{\tau} \sum_{i=1}^{T} \mathcal{L}_{D_i}\left(\hat{f}_j^i\right) \geq \frac{1}{\tau} \sum_{i=1}^{T} \frac{1}{2\rho} \sum_{r=1}^{\rho} \mathbb{1}\{\hat{f}_j^i(\mathbf{v}_r) \neq f_i(\mathbf{v}_r)\} \geq \frac{1}{2} \min_{1 \leq r \leq \rho} \frac{1}{\tau} \sum_{i=1}^{T} \mathbb{1}\{\hat{f}_j^i(\mathbf{v}_r) \neq f_i(\mathbf{v}_r)\} \ .$$

Fix $1 \leq r \leq p$. Then the functions $\{f_i: 1 \leq i \leq T\}$ can be grouped into T/2 pairs of functions $(\tilde{t}_i^0, \tilde{t}_i^1), 1 \leq i \leq T/2$ which agree on all $x \in C$ except on v_r , and for all $1 \leq i \leq T/2$ it holds that $1\{\hat{t}_i^j(v_r) \neq \tilde{t}_i^0(v_r)\} + 1\{\hat{t}_i^j(v_r) \neq \tilde{t}_i^1(v_r)\} = 1$. Hence,

$$\sum_{i=1}^{T} \mathbb{1}\{\tilde{t}_{j}^{i}(\mathsf{v}_{r}) \neq f_{i}(\mathsf{v}_{r})\} = \sum_{i=1}^{T/2} \mathbb{1}\{\tilde{t}_{j}^{i}(\mathsf{v}_{r}) \neq \tilde{t}_{i}^{0}(\mathsf{v}_{r})\} + \mathbb{1}\{\tilde{t}_{j}^{i}(\mathsf{v}_{r}) \neq \tilde{t}_{i}^{1}(\mathsf{v}_{r})\} = T/2, \text{ which concludes the proof.}$$

11

Theorem

Let c > 1 be a Lipschitz constant. Let A be any learning algorithm for binary classification over a domain $\mathcal{X} = [0, 1]^d$. If the training set size is $m \leq (c+1)^d/2$, then there exists a distribution \mathcal{D} over $[0, 1]^d \times \{0, 1\}$ such that:

- $\eta(x)$ is *c*-Lipschitz;
- the Bayes error of the distribution is 0;
- with probability at least 1/7 over the choice of $S\sim \mathcal{D}^{\otimes m}$,

$$L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$$
.

Uniform convergence for infinite classes: VC dimension

Shattering

Definition

Let \mathcal{H} be a class of functions $\mathcal{X} \to \{0,1\}$ and let $C = \{c_1, \ldots, c_m\} \subset \mathcal{X}$. The *restriction* of \mathcal{H} to C is the set of functions $C \to \{0,1\}$ that can be derived from \mathcal{H} :

$$\mathcal{H}_{\mathcal{C}} = \left\{ (c_1, \ldots, c_m)
ightarrow \left(h(c_1), \ldots, h(c_m)
ight) : h \in \mathcal{H}
ight\}.$$

Shattering

A hypothesis class \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if $\mathcal{H}_{\mathcal{C}} = \{0, 1\}^{\mathcal{C}}$.

Example:

•
$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}.$$

• $\mathcal{H}^2_{rec} = \{h_{(a_1, b_1, a_2, b_2)} : a_1 \le b_1 \text{ and } a_2 \le b_2\}$ where
 $h_{(a_1, b_1, a_2, b_2)}(x_1, x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 \le b_1 \text{ and } a_2 \le x_2 \le b_2; \\ 0 & \text{otherwise}. \end{cases}$

Definition

The Vapnik Chervonenkis dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that $VCdim(\mathcal{H}) = \infty$.

Theorem

Let ${\mathcal H}$ be a class of infinite VC-dimension. Then ${\mathcal H}$ is not PAC-learnable.

Proof: for every training size *m*, there exists a set *C* of size 2m that is shattered by \mathcal{H} . By the NFL theorem, for every learning algorithm *A* there exists a probability distribution *D* over $\mathcal{X} \times \{0,1\}$ such that $L_D(h) = 0$ but with probability at least 1/7 over the training set, we have $L_D(\mathcal{A}(S)) \ge 1/8$.